Cross-layer adaptive elastic optical networks [Invited]

Ippokratis Sartzetakis, Konstantinos Christodoulopoulos, Emmanuel Varvarigos

Abstract—Optical Networks are designed to be operated statically: lightpaths are provisioned for uninterrupted operation for several years using high margins to anticipate the deterioration of their Quality of Transmission (QoT) from various factors (equipment aging, malfunctioning and maintenance operations). Operating the network dynamically and closer to its actual capabilities increases the efficiency and reduces capital expenditure (CAPEX). We develop a cross layer QoT-aware toolkit that leverages monitoring information and the flexibility dimensions of Elastic Optical Networks (EONs). It adapts the network’s parameters and regulates the QoT to achieve high efficiency. The toolkit can be used in a plethora of use cases in the deployment or during the operation phase of the network: to harvest the excessive margins when lightpaths are initially deployed or failures are repaired, to adapt the network to changing traffic demands and to restore margins when soft failures such as equipment malfunction or aging render the QoT of certain lightpaths unacceptable. In the last case the toolkit can be used to reconfigure appropriately the lightpaths to restore their QoT and postpone the deployment of regenerators, as indicated by our simulations.

Index Terms—Network Survivability; Margins; Failures; Reconfiguration; Cross Layer Optimization

I. INTRODUCTION

In an optical transport network lightpaths must have acceptable Quality of Transmission (QoT) at all times. The current practice is to operate optical networks statically: lightpaths are provisioned to have acceptable QoT until their End-of-Life (EoL) without having to be reconfigured. Certain inevitable events such as equipment aging or malfunction (e.g. of an amplifier), maintenance operations (e.g. using splices to fix fiber cuts) and interference from new lightpaths, degrade the QoT during the lifetime of the network. To anticipate for such possible future degradations, the current practice is to provision lightpaths with high margins (also referred to as power budgets) [1]. Such margins result in the deployment of regenerators or more robust transponders that are not strictly necessary at the initial set-up time.

Lower margins result in higher efficiency since resources are utilized closer to their capabilities, thereby reducing the overall required equipment. This in turn yields significant cost savings [2][3][4]. To enable the reduction of margins, new mechanisms are required to i) understand the network state so as to reduce appropriately the margins, and ii) anticipate, identify and take appropriate actions to resolve any QoT issue that may arise [5][6]. This requires new feedback-based control mechanisms that can rely on the use of optical performance monitors (OPMs), to observe the state of the network. During the past few years, optical coherent transceivers are being installed in core optical networks and they are finding their way into metro/regional networks. ORCHESTRA project [7] proposes to exploit the Digital Signal Processing (DSP) capabilities of coherent receivers and make them function as OPMs. Information from OPMs combined with a scalable monitoring and control plane can enable dynamic network operation, and provide the mechanisms needed for lowering the margins through real cross-layer optimization.

In this paper, which is an extension of [8], we present a novel algorithmic toolkit designed to enable the efficient operation of Elastic Optical Networks (EONs) [9]. The toolkit exploits the configuration capabilities of elastic transponders (also referred to as Bandwidth Variable Transponders–BVTs) and feedback information from the physical layer. It can be used to decide on appropriate reconfiguration actions aiming to regulate the QoT margins, keep them low but always acceptable, and achieve overall high efficiency. In particular, the toolkit considers the combination of three re-configuration techniques to regulate the QoT of a lightpath: (i) modifying its Forward Error Correction (FEC) overhead, (ii) adjusting the spectrum guard-band to control the interference from neighboring lightpaths, and (iii) adapting its modulation format. Depending on the capabilities of the transponder and the related class of service and Service Layer Agreements (SLAs), these adaptations can be combined with the modification of the baud-rate of the respective lightpath. Thus, these techniques result in a set of network adaptation actions that can involve spectrum re-configuration of one or more lightpaths [8]. Since the available optimization combinations in an EON are vast, the toolkit searches the possible solutions using various criteria such as the control plane overhead (i.e. the actions that have to be performed and the number of lightpaths that are adapted) or the required additional spectrum. It can also leverage a QoT
estimation model such as [6] in order to estimate whether an adaptation action will result in an acceptable QoT. Alternatively, we can gradually apply the changes, monitor their effect and adjust the configurations accordingly until we reach the targeted margins levels.

We examined the application of our proposal in the recovery from soft failures. We define a soft-failure as a QoT degradation as opposed to a hard failure that causes total loss of the signal e.g. due to a fiber cut or a complete breakdown of some equipment. The current practice is to use high margins that can absorb soft failures up to a certain amount. When these margins are exceeded, operators rely on protection/restoration mechanisms [10]. A network operated with low margins, as the one proposed in this paper, has lightpaths whose QoT is close to the acceptable threshold: it achieves high efficiency and requires less equipment, but is susceptible to soft failures. Our toolkit can be used to adapt the transmission parameters of the problematic lightpaths in order to restore their QoT to acceptable levels. If the failure is repaired and the QoT is improved, then we can again use the toolkit to harvest the excessive margins and restore the previous or another appropriate configuration. In this way we always keep the utilization of the resources and the efficiency of the network high.

We evaluate the benefits of our proposal by simulating various soft-failures scenarios and comparing them to the traditional practice of planning with high margins. Our results indicate that significant savings can be achieved, while always guaranteeing acceptable QoT.

The paper is organized as follows: in Section II we provide an overview of previous related work. In Section III we define the network scenario that we assume and in Section IV we present the proposed toolkit. In Section V we present the simulation results obtained and Section VI describes our conclusions.

II. RELATED WORK

Dynamic network optimization has received significant research attention. In [11] and [12] certain adaptive routing and wavelength assignment (RWA) algorithms are presented. They perform cross-layer optimization in that they take into account the physical layer impairments in order to increase the QoT and reduce the blocking rate of new lightpaths. As EONs appeared, the optimization dimensions increased and new problems emerged. In [13] and [14] the authors consider dynamic spectrum defragmentation for EONs according to current routing network state, and [14] further investigates the reconfiguration of the network after a failure. The authors in [15] propose dynamic guardband creation in EONs according to physical layer impairment/QoT estimation. The results indicate significant reduction in the number of dropped connections, and subsequent increase in throughput. Finally, [16] and [17] consider dynamic spectrum allocation in order to adapt to fluctuations in traffic demands. Network efficiency is increased and blocking probability is subsequently decreased.

Another significant research subject is the reduction of margins. It further complicates the cross layer optimization problem, because it adds another dimension: the evolution of the network’s parameters in time. Optical networks are traditionally planned using QoT estimation models and high margins. System margins are used to account for time-varying physical conditions [1]: future degradations due to equipment aging, interference from increases in load, and failures until the EoL. Design margin is used to account for inaccuracies of the QoT estimation model. Overall, high margins ensure future degradations (up to a certain amount, corresponding to the expected QoT at the EoL) will not render the lightpath unacceptable. Planning the network to take advantage of the evolution of margins is done in multi-period studies [18][19] as opposed to the typical one shot (single period) cross-layer optimization problems with fixed network parameters discussed in the previous paragraph. Moreover, reduced margins make a network susceptible to QoT degradations (soft failures) and thus affect the operation phase of the network as well.

Recovery from severe soft (QoT degradation) or hard (complete loss of signal) failures is typically performed by protection or restoration mechanisms [10]. In the first case, certain resources (e.g. transponders, spectrum) are dedicated and reserved for the failure. So protection is an expensive solution and is mainly used for gold connections where the SLAs require guaranteed availability and rate. On the other hand restoration is typically cheaper, since it enables the sharing of resources but is slower since the resources have to be reserved after the failure has occurred.

EONs offer several flexibility dimensions which can be used to regulate the QoT and to recover from QoT degradations according to actual conditions. In [20], an EON tested with a real-time adaptive control plane was demonstrated that adjusted modulation format and spectrum positioning to recover the QoT of lightpaths with degraded OSNR. Similarly, the authors in [21] and [22] investigated the combination of modulation format adaptation and lightpath rerouting to restore impaired connections. Significant blocking and spectrum savings were reported in all cases. Finally, [4] investigated the reduction of margins and the adaptation of the modulation format when aging occurs. The results indicate a capacity increase of up to 63%.

To the best of our knowledge there is no previous work that considers dynamic cross-layer optimization through QoT regulation in EONs. We propose a toolkit to maintain QoT close enough to the acceptable threshold so as to achieve high efficiency. This implies that the toolkit can be used not only to decrease the QoT when there are excessive margins (e.g. when the lightpath is initially deployed or when a failure is restored) but also to increase it (e.g. in case of a soft failure). Our toolkit can also be used to adapt the rate of the lightpaths to meet changing demands while always ensuring appropriate QoT.

III. NETWORK SCENARIO

We assume EONs [9] with configurable transceivers that can adapt a number of transmission parameters: modulation format, baudrate, FEC, and spectrum used. The nodes are comprised of Reconfigurable Optical Add/Drop Multiplexers (ROADMs) with flex-grid capabilities and they
are connected through uncompensated fiber links. Each fiber link consists of a number of fiber spans that terminate at an Erbium-Doped Fiber Amplifier (EDFA) that compensates the span loss. We assume that there is no wavelength (or spectrum) conversion and thus the wavelength (or spectrum) continuity constraint holds for each lightpath when it is established or reconfigured. In long connections regenerators are placed, and each segment between regenerators is considered a separate lightpath that may use a different wavelength or spectrum.

We assume that the network conforms to the ORCHESTRA approach (Fig. 1) [7]. The vision of ORCHESTRA is to close the loop between the physical layer and the control plane, by using real-time impairment measurement capabilities of coherent optical transceivers. Coherent receivers deployed today employ DSP and already monitor certain physical layer impairments and compensate them. However, this information remains local. ORCHESTRA proposes to use/extend the monitoring capabilities of the coherent receivers but the main contribution is that it exploits the monitoring information in global optimization decisions. This enables real cross-layer optimization and the ability to lower the network margins, thereby using the transceivers’ capabilities to the fullest extent. So in this study we consider that the coherent receivers function as OPMs, and thus OPMs are located at the termination point of each lightpath (receiver) and can provide information about various physical parameters (e.g. residual dispersion, OSNR, Q factor) of the lightpath. Also OPMs are programmable so as to trigger alarms on specific measurable events. Alarms and monitoring information are transferred to the controller where they can be used to estimate QoT [6][23], localize problems [24] and take dynamic optimization decisions, which is the topic of this paper. ORCHESTRA develops a novel hierarchical monitoring plane to efficiently process alarms and monitoring information and avoid overwhelming the central controller [25]. Active control capabilities of monitoring elements and pre-programming are studied to enable ultra-fast restoration [26]. The toolkit proposed in this paper is independent of the management and control plane as long as monitoring information for margins calculation is provided and appropriate alarms are triggered when QoT becomes critical.

The ORCHESTRA network enables unparalleled network efficiency. ORCHESTRA novel feedback based mechanisms make the lowering of margins possible: i) its dynamic optimization capabilities guarantee the adaptation of the network to actual traffic and physical layer state. ORCHESTRA harvests the elastic capabilities of the transceivers, reconfigures their transmission parameters, regulating the QoT and trading off capacity and spectrum. In this paper we present a toolkit that plays the role of the optimization logic in the ORCHESTRA dynamic network operation.

The toolkit examines three reconfiguration actions: i) FEC adaptation, ii) spectrum repositioning to control the interference from neighboring lightpaths iii) modulation format adaptation. Depending on the capabilities of the transponder and the related classes of service and SLAs, these adaptations can be combined with the adaptation of the baud-rate in order to preserve or not the channel data rate. For example FEC adaptation from 12% to 28% overhead results in respective reduction in the useful net rate which can be subsequently compensated by an appropriate increase of the baud rate. Similarly, baud rate adaptation can be applied when the modulation format is changed.

The proposed toolkit exploits the push-pull technique [27] in order to move lightpaths in the spectrum domain hitlessly (without traffic interruption). The first step of the push-pull technique is to reserve contiguous free spectrum slots from the initial frequency \(f \) to the new frequency \(f' \), over the whole path. The second step is to retune the laser at the transmitter: the central frequency of the lightpath is slowly pushed from \(f \) to \(f' \). Finally, the resulting unused spectrum slots are released.

The proposed algorithmic toolkit combined with the push-pull technique can provide the necessary functions to dynamically optimize the network in a number of use cases that are discussed in the following.

A. Use Cases

We assume that the network is operated close to its actual condition, in the sense that the lightpaths have reduced (i.e. just enough, and not worst case) margins [1] in

Fig. 1: The ORCHESTRA observe-decide-act control cycle.
order to obtain high network efficiency.

One use case is the recovery from soft failures. In a “soft-failure” event, we want to avoid rerouting or adding new regenerators because both are considered expensive actions. So our goal is to find the set of reconfiguration actions that solve the QoT problem at hand, while regenerator placement is considered a measure of last resort.

We classify the soft failures in 2 types: predictable and sudden. A predictable soft failure is when the QoT deteriorates slowly, e.g. due to aging of equipment or after a proper repair of a fiber cut, while a sudden soft failure is related to the malfunctioning of some equipment, e.g. EDFA pump problem, and results in a sharp deterioration of the QoT. When a soft-failure renders the QoT unacceptable or degrades it close to the FEC threshold, we need to restore it. The current practice for predictable soft failures is to account them in high margins, while sudden soft failures are partially covered by the margins. A sudden failure might be reported (or not) through the network management system and trigger the repair or replacement of the related equipment, but the network is bound to operate for certain period (hours/days) with it. So for sudden failures not covered by the high margins, the operators rely to the traditional protection/restoration mechanisms.

In an optical network operating with low margins, as the one proposed here, we can use the proposed toolkit to account for both types of soft failures. For predictable soft failures we apply the toolkit as the network operates and according to the scheduled network maintenance cycles. The toolkit can decide on the full set of reconfiguration actions to restore the QoT when it approaches the FEC threshold. If the situation cannot be dynamically restored then the lightpath can be rerouted or a regenerator can be deployed. All such decisions can be timed according to the next scheduled network maintenance window. As discussed, traditionally, we would deploy all the necessary equipment from the Beginning-of-Life (BoL), anticipating these predictable failures. Postponing the purchase of equipment has been shown to provide significant CAPEX savings [18], [19].

In the case of a sudden soft failure, a pro-active approach is more appropriate. To be more specific, we can run the toolkit before we provision the lightpaths and decide pro-actively on the reconfiguration actions to execute or place regenerators and use the toolkit to survive from the sudden soft failure when it occurs. Such actions can be also pre-programmed [26] to achieve ultra-fast restoration. If these operations are implemented in a real network, the concept and gains that can be achieved are close to those of protection/pro-active restoration of hard failures: in pro-active restoration we take advantage of the independence of the failure events (shared risk groups), e.g. for single fiber cuts we reuse equipment for different cuts [28]. In the sudden soft failure use case, protection is similar to planning with high margins, while pro-active restoration enabled by the proposed toolkit can reuse the spectrum and the regenerators for different soft-failures.

Apart from restoring the QoT, the proposed toolkit can be used to harvest the excess QoT. For example, prior the establishment of a lightpath, the QoT is usually estimated using a physical layer model and high margins. To reduce the margins we can use an accurate QoT estimator, such as [6], although such estimator requires several lightpaths to be established and monitored. An alternative approach is to deploy the lightpaths with high margins (not only a high design margin but also high EoL system margins), monitor the actual margins after the deployment and use the proposed toolkit to dynamically reconfigure the parameters. For example, once the lightpath is established and we observe that margins allow it, we can use a higher order modulation format to support extra capacity and save in the installation of equipment by means of traffic grooming either in the current or in a future state of the network. A similar use case where we can harvest excessive margins is when malfunctioned equipment is replaced and the QoT improves.

Finally, another use case is when the traffic requirements change either periodically (e.g. typical daily traffic fluctuations, scheduled data-center backup) or suddenly (e.g. certain lightpaths need to be upgraded due to traffic increase/upgrades at the lower network segments). In these cases, the toolkit can be used to adapt the spectrum and the rate of the lightpaths while regulating (in both directions: positively and negatively) their QoT to ensure high efficiency.

IV. ADAPTATION TOOLKIT

We propose a toolkit that takes into account three reconfiguration actions in order to regulate the QoT of lightpaths: FEC, spectrum guard-band and modulation format adaptation.

A. FEC Adaptation

The first technique that we consider is FEC adaptation. FEC relies on transmitting redundant information that can be used to correct errors at the receiver. The performance of FEC (in terms of post-FEC BER) depends on the amount of the redundant information (overhead). In order for the useful net data rate to be preserved, a higher overhead requires either higher baud rate and therefore spectrum assuming Nyquist shaping, or a higher constellation modulation format. The baud rate can be adapted in a much finer granularity and thus it is usually more suitable to compensate for small variations in the data rate. Therefore FEC adaptation can be used to trade-off QoT with spectrum. For example assuming lightpath provisioning with reduced margins, there are cases where the most robust FEC available is not used: the selected lower FEC yields acceptable QoT, while the most robust FEC requires an additional slot (e.g. for 25 Gbaud net baudrate, using 12% or 28% FEC results in 3 or 4 slots for 28 or 32 Gbaud respectively, assuming we want to keep interference low and/or we cross more than 6 filters [29]). The most robust FEC has lower pre-FEC BER threshold and as a result a lightpath with unacceptable QoT with the lower FEC, may have acceptable QoT when the higher FEC is employed. So, in this case the BER is not actually changed, but the related threshold is.

The authors in [30] demonstrated hitless adaptation of the baud rate, while [31] demonstrated FEC adaptation without traffic interruption. When the extra spectrum is not available in all the links that the lightpath crosses, the push-pull technique [27] can be used to hitlessly shift the
neighboring lightpaths in frequency. If a certain lightpath should not be moved (could e.g. depend on the class of service) then other options can be investigated (e.g. pushing lightpaths at the other side, or perform an adaptation where no shifting is required). Note that to the best of our knowledge, current commercial transponders cannot perform baud-rate and FEC adaptation hitlessly and require the lightpaths to be instantaneously switched-off, in which case a make-before-break approach can be used for the lightpath at hand. However if its neighbors are required to be shifted, then no traffic interruption is necessary for them, since the push-pull technique can be supported in commercial transponders. A limitation might exist for the maximum frequency range in which a lightpath can be shifted without traffic interruption. This can be taken into account by the shifting algorithm that we describe in section IV.D.

B. Spectrum Guard-Band Adaptation

The second technique that we consider is spectrum guard band adaptation in order to control interference from neighboring lightpaths. In case of a low QoT, the developed technique reduces interference by using spectrum as guard-band, that is, creating spectrum space between lightpaths. This can decrease the noise (e.g. due to crosstalk) or cross- and multi-channel nonlinear interference which in turn leads to reduced BER. Note that the considered technique reduces the out-of-band crosstalk for both add/drop and pass-through traffic that is created by neighboring channels. It does not account for the in-band crosstalk (between signals of the same frequency) that may occur e.g. in the add/drop stages. Also, this technique is particularly useful in cases where there is misalignment of the filters (Wavelength Selective Switches - WSSs) due to aging or malfunction, a problem that get bigger the higher the number of filters/nodes crossed by the tested channel (e.g. in metro networks). Depending on the severity of a filter malfunctioning, it may or may not be self-reported. In this case the spectrum guard band will not actually solve the root cause of the problem but it can be a temporary solution until the filter is replaced. Spectrum guard-band creation involves shifting (using e.g. push-pull) in frequency one or both spectrum neighbors from each side of the affected lightpath. This can result in a high number of cascading lightpaths needed to be shifted in frequency which incurs high control plane overhead. The recursive lightpath spectrum shifting algorithm that we developed and is described in Section IV.D examines how to create the required guard-band while minimizing the related control plane overhead at the same time.

On the other hand if there are excessive margins on the QoT of a lightpath, then the spectrum guard-band can be reduced in order to save spectrum, as long as the additional interference does not render the QoT unacceptable. A spectrum defragmentation algorithm such as [13] can be used for this purpose.

C. Modulation Format Adaptation

The third technique that we consider is the modulation format adaptation, which can be combined with baud rate adaptation to maintain the original transmission rate if needed. In order to increase the QoT, we can reduce the modulation format in half (e.g. from PM-16QAM to PM-QPSK). If the original transmission rate should be preserved then the baud rate can be increased as well (e.g. from 28Gbaud to 56 Gbaud). The increase of the baud rate requires additional spectrum that can be acquired using the push-pull technique. The modulation format adaptation results in minor traffic disruption since the lightpath has to be switched off instantaneously. It also may require several other lightpaths to be shifted in frequency since the doubling of the baud rate requires more spectrum when compared to that the FEC adaptation requires. If the objective is to harvest excessive margins, then we can consider a higher order modulation format with an appropriate baud rate adaptation. Fig. 2 depicts a network scenario where a modulation format adaptation is used in order to restore the QoT of a lightpath affected by a soft failure. When the failure is repaired, then the toolkit can be used again to restore either the previous configuration or another more appropriate based on the current routing and physical layer conditions of the network.

D. Recursive Lightpath Spectrum Shifting Algorithm

The above techniques may result in the allocation to a lightpath of a certain number of additional slots, which could serve as guardband or allow a baud rate increase. This in turn might result in certain spectrum reconfigurations of some neighboring lightpaths if the required spectrum space is not available. To carry out such reconfigurations we developed a recursive heuristic

![Diagram](image-url)
algorithm assuming the use of the push-pull technique [27].
The algorithm examines all the links of the considered
lightpath and it recursively shifts the neighboring
lightpaths towards the same direction (in frequency) so as to
clear the required number of slots. In doing so, it tries all
the possible combinations of slots both higher and lower to
the occupied spectrum of the considered lightpath, it
calculates the total number of shifted lightpaths and
chooses the one resulting in the lowest number of
recursively shifted lightpaths. Note that we do not assume
circular shifting. This means that if a connection e.g.
reaches the lower end of the spectrum it will not be able to
move circularly to the higher end of the spectrum, and
another solution will be searched. The algorithm can also
take into account any lightpaths that should not be shifted
at all (due to certain policies), and also the maximum
frequency range in which a lightpath can be practically
shifted without traffic interruption. If any of the above
constraints is violated, another solution is searched. This
algorithm is a variation of the heuristic algorithm presented
in [32], where an optimal algorithm assuming both
spectrum shifting and reroutings is also given.

E. Toolkit Workflow

The aforementioned techniques can regulate the QoT of
a lightpath, trading off QoT and margins for capacity and
spectrum. The order in which they are investigated and
executed can depend on various criteria. One criterion is the
amount of spectrum that each technique requires. Under
such standard, a lowest spectrum utilization policy will lead
to better use of the network resources. This results in a
better ability to adapt the parameters of other lightpaths in
the future and in lower blocking rate. If it is imperative to
not have any traffic interruption, then the spectrum guard
band and the FEC adaptation (assuming transponders
capable of hitlessly adapting the FEC) can be considered.
The disadvantage of the spectrum guard band adaptation
method is that it can have a high control plane overhead
because of the large number of lightpaths that may have to
be shifted. In general, the control plane overhead is
proportional to the amount of spectrum required, because
the latter results in shifting lightpaths which in turn is the
main contributor to the control plane overhead in the
techniques we consider. Note that apart from the
adaptation actions we have described, other actions can be
considered as well, such as power adaptation or reroutings.
The only requirement is to define the relative cost of each
action and the policy under which each action will be
applied.

Having described the order in which the solutions can be
searched, we need to estimate in a fast and accurate way
the impact of each action on the QoT of the lightpath and
the related margins. For this purpose a QoT estimator such
as [6] can be used. Alternatively, we can gradually apply the
actions, monitor their effect and adjust the configurations
accordingly until we reach the targeted QoT margins.

V. SIMULATIONS

To evaluate the efficiency of the proposed toolkit we
performed a number of simulation experiments in
MATLAB. We decided to focus on the soft-failure use cases
that relate to the deterioration of the QoT of the lightpaths.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>CONNECTION STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 Tbps</td>
</tr>
<tr>
<td>Num. Of Connections</td>
<td>100G</td>
</tr>
<tr>
<td>Length (km)</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Std</td>
</tr>
<tr>
<td>Num. of Hops</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Std</td>
</tr>
</tbody>
</table>

In the considered scenarios we assumed that the rate of the
connections should be preserved (i.e. that all connections are
gold class connections). The application of the proposed
toolkit to the other use cases is part of our future endeavors.

We assumed a topology inspired by the Telecom Italia
European backbone network (Fig. 3) with 49 nodes and 66
bidirectional links (we always assumed one pair of bi-
directional links between two nodes, as opposed to the
original network), SSMF fiber with attenuation coefficient
0.25 dB/km, dispersion parameter 16.7 ps/nm/km, and
nonlinear coefficient 1.3 1/W/km. The span length was set at
100 km and EDFA noise figure to 6 dB. We used the GN
model [33] to approximate the behaviour of the physical
layer. We assumed 100 and 200 Gbps connections that are
served using the following options: modulation format: PM
16QAM and PM-QPSK with transmission reaches of 1000
and 4600 km respectively under low load and 800 and 3800
km under high load, baudrate: 28, 32, 56, 64 Gbaud, and
FEC: 12% and 28%, with pre-FEC BER thresholds of 6.3*10^−3 (which translates to -2.2dB and Q²-factor of 7.94dB) and
1.32*10^−2 (-1.88dB and Q²-factor of 6.93dB), respectively.
The 12% FEC option is combined with either 28 or 56
Gbaud data rates, while the 28% FEC is combined with 32
or 64 Gbaud in order to maintain the same useful net data
rate. We assumed two traffic scenarios of 20 and 49.2 Tbps.
The connections are derived from realistic traffic scenarios

![Fig. 3. The extended Pan-European backbone Network](image-url)
second scenario is due to the additional number of connections most of which are 200G (see Table 1).

We first calculated the BER savings (which correspond to the increase of the margins) each reconfiguration action can yield. All the metrics below are derived using the GN model’s assumptions and capabilities. The FEC adaptation modifies the blocking threshold by 0.32 dB, however a slight baud rate increase is required in order to preserve the original transmission rate. This translates to a maximum penalty of 0.1 dB from increased NLs, so the resulting BER saving of the FEC adaptation is 0.22 dB. The creation of spectrum guard band yields at most 0.2 dB when the two direct neighbours (one at each side) are pushed and 0.3 dB when the four neighbors are pushed (which results in large control plane overhead, due to the pushing of many lightpaths, and is not used in the subsequent simulations). However, depending on the spectrum allocation in most cases the benefit is much less. Note that in a real network these values may vary significantly. Also, in cases where there is a drift in the frequencies of filters, the spectrum guard band can provide larger benefits since it will avoid the distortion of the signal at its edges and also reduce the (out-of-band) crosstalk between neighboring lightpaths. However, in our simulations we do not take such effects into account. The modulation format adaptation from PM-QPSK to PM-BPSK along with the baud rate adaptation (from 28 to 56, or from 32 to 64Gbaud) yields maximum benefit of 1.6 dB, while the adaptation of PM-16QAM to PM-QPSK yields 2.5 dB, and that of PM-16QAM to PM-8QAM 2.2 dB Note that the PM-8QAM metrics are provided only for comparison purposes. This modulation format is not used in the subsequent simulations.

A. Pro-Active Restoration

In this section we assume a given network state and a single link at a time SNR degradation of 1, 2 or 3 dB which could for example correspond to equipment malfunctioning. Our objective is to plan the network to be survivable from any such failure. In particular, for each single link failure crossed by a signal under test we examine whether the proposed toolkit can absorb the created QoT problems by reconfiguring the lightpaths that fall below the QoT threshold, and if not we place regenerators. Note that in this way we calculate the reconfiguration actions that should be performed when such a failure occurs on that link. These can be pre-programmed [26] so as to achieve fast restoration time. When the failure is repaired, the toolkit can be used again to restore the initial or another appropriate configuration. Regarding the algorithm once we examine a single link, then we return to the initial state of the lightpaths and examine independently the next single link failure. Regenerators placed (in the same node) can be reused when examining a different link failure (following the concept of backup multiplexing restoration [28]). We compare the proposed re-configuration toolkit with the concept of planning with high margins to absorb the QoT problems: in this case we decide on transmission configuration (using the appropriate combination of the highest baud rate and most resilient modulation format) and place regenerators from the BoL so as to be able to absorb the QoT problems without having to do post-hoc any kind of reconfiguration. One single-link failure is examined at a time and we decide the transmission configuration of the lightpaths and place regenerators. The decisions for each connection are kept when we examine the next link failure. In essence, we assign from the BoL the transmission options (for all the connections and for all possible single link failures) that would have been used by our toolkit if one single link failure occurred. Both scenarios offer the same robustness against single link soft failures. In planning with high margins the network operator does not know where a soft failure may happen. Therefore all single link soft failures that lead to unacceptable QoT have to be planned for. Let’s assume for example that the operator planned for the failure of only the worst single link degradation. Then the degradation of a different link may render the QoT of the connection unacceptable since the regeneration sites are fixed for each planned failure. The total required number of regenerators is the ultimate comparison metric and we also consider the total spectrum utilization which in the proposed restoration case is defined as the maximum spectrum slot used under any single link failure. The comparison of our proposal to the concept of planning with high margins is showing the equipment savings in regenerators (which are very expensive) that can be obtained by using our toolkit to repair a QoT problem if and when it appears instead of assigning the most robust transmission options for all the connections from the BoL. In any case, for a correct evaluation of the relative cost...

Fig 4. Number of regenerators required as a result of a single link soft failure of 1, 2 and 3 dB for a) 20Tbps and b) 49.2Tbps loads.
reductions that our toolkit provides, the network operator should take into account the costs for all the necessary equipment for the operation of the network (e.g., BoL regenerators, transponders etc.). The spectrum utilization is of secondary importance as long as no blocking occurs.

Figure 4 presents the number of regenerators that are required as a result of a single link soft failure for traffic loads of 20 (Fig. 4a) and 49.2Tbps (Fig. 4b). Under both loads, our toolkit requires approximately at least 22% (Fig. 4a 3dB degradation) and at most 40% (Fig. 4b 3dB degradation) less regenerators than the high margin scenario. Note that if we take into account the BoL regenerators required for both our toolkit and the high margin scenario, the relative savings are 7% and 16% respectively. Our proposal requires at most 138 spectrum slots of 12.5 GHz each for the 20 Tbps load and at most 318 slots for the 49.2 Tbps. The spectrum utilization is 2% lower in the proposed solution compared to planning with high margins since we examine restoration for each single link failure instead of planning for all link failures. We do not provide relevant figures or tables for the spectrum utilization due to the small differences and space limitations. The spectrum savings are not large because the high margins scenario requires more regenerators which relax the spectrum continuity constraint and result in shorter lightpaths, allowing a more dense utilization of spectrum. The shorter lightpaths also allow the allocation of more efficient modulation formats thereby further decreasing the utilization of the spectrum. We notice that using our toolkit results in significant equipment savings, as we harvest the available re-configuration options whenever a failure occurs and not from the BoL and place regenerators when needed.

B. Dynamic Network Operation

In this section we consider a dynamic network evolution scenario and we present results from using the adaptation toolkit in this context. We assume a continuous time horizon, and we examine how the gradual deterioration of the physical layer (equipment aging, increasing number of splices to repair fiber cuts) affects the network. The QoT of the lightpaths deteriorate gradually and when the QoT of a lightpath falls beneath the related threshold, an alarm is triggered and the proposed adaptation toolkit is used to re-configure the problematic lightpath (and any other needed) to restore its QoT. In case the toolkit does not find a solution and cannot restore the QoT to acceptable levels, regenerators are placed. We assume that the alarm threshold is set appropriately so that enough time is given to allow the operation of the lightpath until the next network maintenance period, where the regenerator is placed. The maintenance period is considered to be 6 months.

As in the previous section, we again consider the same network topology, physical layer parameters, and realistic traffic profiles (20 and 49.2 Tbps). In a given period we generate uniform soft failures for each link and a randomly generated soft failure to one (random) link at a time to account for uneven aging-degradation. Note that in this case the intensity of the soft failure is quite lower than the soft-failures modeled in the previous section. The effect of a failure may not immediately be noticed, and as the time passes and new (additional) failures arrive, a significant QoT degradation may occur. In particular, we consider a 10 year time horizon. In this time frame, we consider the following degradations according to [1]. We assume 2 fiber cuts for each span each contributing 0.3 dB loss at EoL. We also assume 0.7 dB EDFA noise degradation, again at EoL. Therefore, each span will have accumulated EoL degradation of 1.3 dB. We also consider 0.05 dB/filter EoL degradation for each node, and 0.5 dB EoL degradation for transponder aging. We assumed a linear (in dB) degradation over the 10 years and we simulate the network at a month scale. So for each month at each link we accumulate the related (constant) degradation. We also consider an additional 0.05 dB degradation per time unit (month) in one random link in order to introduce variation in the aging of the components. The maximum transmission reach at the EoL is 600 and 3100 km for PM-16QAM and PM-QPSK, respectively under low load and 500 and 2700 km under high load.

We follow the state of the network over a total of 120 time units—soft failures. After each soft failure, we examine the QoT of all the lightpaths. If the BER of a lightpath is below the acceptable threshold, we use the proposed adaptation toolkit to restore it. If no solution is feasible then we place regenerators. We graph the number of regenerators that are required due to the failures, as a function of the number of
time units-induced soft failures. For comparison purposes, we also consider the case of planning with EoL margins. In this case as in section V.A we assign the appropriate combination of highest baud rate and most resilient modulation format for all the connections from the BoL. We estimate the QoT of all the lightpaths after 120 time units-failures with the addition of a design margin which is not necessary when our toolkit is used as we have mentioned in section III.A. We consider a 1dB design margin that can be regarded as an appropriate value [2]. We calculate the required number of regenerators, and we assume that they are all placed from the BoL representing a high margin scenario. Therefore in this section, we use our toolkit to delay the deployment of the necessary equipment and we evaluate the respective benefits.

Figure 5 a) and b) shows the number of deployed regenerators required due to aging as a function of time for two traffic scenarios (20 and 49.2 Tbps). Note that the number of regenerators increases in steps because as we mentioned before, we have considered a 6 month maintenance period. This means that if our toolkit is used, then the regenerators for the 0 time unit actually correspond to the regenerators that will be needed at the 6th month. Also, note that as we mentioned earlier, both the high margin scenario and our toolkit require 42 and 325 BoL regenerators for 20Tbps and 49.2 Tbps respectively. These numbers are however small when compared to the 301 and 1008 regenerators that the operator should additionally place in advance in the high margin scenario to account for the future degradations. In both Fig. 5 a) and b) we notice that there is a big difference in the number of regenerators between low and EoL margins. In particular, in the BoL the low margins when combined with our proposed toolkit require approximately 94% less regenerators when compared to the high margin scenario. If we take into account the initial regenerators required for both the high margin scenario and our toolkit, then the difference is approximately 80%. Around year 5, our toolkit requires approximately 50% less regenerators compared to the planning with high margin scenario and 40% if we take into account the initial regenerators for both scenarios. Therefore the purchase of significant amount of equipment can be postponed for a considerable number of years. This results in substantial savings because their price generally decreases with time and saved capital can be lent with interest. The benefits of this investment postponement have been demonstrated in [19]. We also observe that in the 49.2 Tbps scenario the total regenerators are much more than the low load 20 Tbps. This is as we mentioned due to the added set of connections most of which are 200G and also because the 200G connections use high modulation formats, operate closer to the FEC thresholds and are more vulnerable to soft failures when compared to the 100G connections. We also notice that in the high load scenario the number of regenerators after 10 years is closer to the high margin scenario when compared to the low load scenario. This can be attributed to the fact that the high network utilization results in less available spectrum for the adaptation toolkit to exploit. Note that the number of regenerators in both case does not converge to that of the high margin scenario, since the latter considers an additional design margin.

Fig. 6 presents the number of failed connections per time period and the number of connections that were successfully reconfigured by our toolkit. Note that the difference between these values is the number of regenerators (shown in Fig. 5). In the low load scenario (Fig. 6a) we notice that in the BoL our toolkit can restore most of the failures that occurred. As the time passes and degradations accumulate, there are more failures that cannot be repaired. This can be explained as follows: as the degradations accumulate they may increase over the maximum amount that our toolkit can absorb. Also, as time passes and reconfigurations are executed, spectrum utilization increases which means that there will be less available resources in the future to exploit in order to recover for additional failures. Also, we notice that the number of failures does not increase monotonically. This can be explained as follows: as the degradations accumulate they cause an increasing number of failures. At some point they reach a peak, where a large number of connections are affected and subsequently reconfigured. This causes future degradations to not cause many connection failures, because most established connections are already fixed. As the degradations continue to accumulate, more failures start to appear for connections that may have been fixed in the past and this causes the next peak. In the high load scenario, we notice that the number of failed connections is very high and the

![Image](https://via.placeholder.com/150)
percentage of connections that were repaired from our toolkit is less than in the low load scenario for the same reasons we explained for Fig. 5.

VI. CONCLUSION

We developed a toolkit that leverages the flexibility dimensions of elastic optical networks and regulates the QoT of the lightpaths to achieve high efficiency. The toolkit can be employed in a number of use cases and was used in this paper to restore the QoT of lightpaths in the case of soft-failures. We performed simulation experiments where we modeled two soft-failures scenarios. For sudden soft failures we observed that we can save at least 22% and at most 40% in regenerators when compared to planning with high margins. We also observed significant postponement in the deployment of regenerators in a 10 year operating period of the network. Future work includes the application of the toolkit in other use cases such as the adaptation to traffic fluctuations and include further actions such as power adaptation and rerouting.

ACKNOWLEDGMENT

I. Sartzetakis was supported by IKY Greek State PhD Scholarship which was funded from initiative “Support of the research human resources through the implementation of doctoral research” from resources of “Human Resources Development, Education and Lifelong Learning” 2014-2020, co-funded by the European Social Fund and the Greek State. K. Christodoulopoulos was supported by IKY post-doctoral scholarship co-funded by the European Social Fund and the Greek State. E. Varvarigos was supported by the ORCHESTRA project, funded by EC (grant agreement 645360). The authors would like to thank M. Quaglotti for providing the realistic traffic scenarios, and the anonymous reviewers for their constructive comments.

REFERENCES

