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Abstract

Multi-vendor interoperability can be achieved 
at node and network levels by relying on standard 
data modeling. YANG represents an attractive data 
modeling solution for network component defi-
nition. This article reports on the work done on 
YANG models for optical networks with particu-
lar reference to flexible-grid networks. In addition 
to a YANG model description for link, node, and 
media channels, YANG for a sliceable transpon-
der is introduced given the importance of such a 
data plane device for the next generation back-
bone. Then a contribution is provided in propos-
ing YANG models for events and state machine to 
further extend and increase the programmability 
of networks. This latter contribution is particularly 
relevant in the case of faults or physical layer deg-
radation in a network. Finally, YANG models are 
validated in an experimental control plane testbed.

Introduction
Recently, network operators have shown interest 
in the deployment of data plane hardware pro-
viding multi-vendor interoperability [1]. This way, 
operators can use systems of different vendors 
optimizing transmission performance (e.g., achiev-
able transmission distance), network device reuse, 
and capital expenditure without the need for 
being tied to single-vendor equipment. Multi-ven-
dor operability can be applied in two different 
contexts: network and node. In the former, a 
network composed of nodes provided by differ-
ent vendors is operated under the same control 
system (e.g., elastic black links [1]). In the latter, 
a node composed of components provided by 
different vendors is assembled under the same 
control system. This has brought about the con-
cept of white boxes. With respect to black boxes 
provided by a single vendor, white boxes are 
assembled with different vendors’ components 
(i.e., disaggregated hardware).

To support control and management of 
multi-vendor networks and white boxes, standard 
operator-defined data models are required so 
that common application programming interfaces 
(APIs) can be adopted for controlling/managing 
these multi-vendor optical systems [2].

A key candidate language to describe a stan-
dard-defined data model is the emerging Yet 
Another Next Generation (YANG) [3–5]. Regard-

ing flexible/elastic optical networks [6, 7], which 
are the focus of this article, some recent works 
have provided YANG models to describe basic 
attributes of links (e.g., identification), nodes (e.g., 
connectivity matrix), media channels, and tran-
sponders (e.g., supported forward error correc-
tion, FEC) [4, 8–10].

However, effort is still required to achieve 
detailed models of optical devices and their func-
tionalities to increase the level of programmability 
of networks. As an example, some actions have 
to be taken on data plane devices when events 
such as soft failures (i.e., performance degrada-
tion implying bit error rate [BER] increase) occur; 
for example, transmission should be consequent-
ly switched to a more robust modulation format 
[11]. Typically, actions upon failure or degra-
dations imply either manual intervention or the 
involvement of a centralized controller. In the lat-
ter case, when the controller is first notified of the 
soft-failure event, it makes a decision and config-
ures the involved network devices accordingly 
(such method requires certain time). Alternatively, 
the device is programmed at the moment of the 
installation to take an action or a reconfiguration 
after a specific event occurs. Currently, no YANG 
model has been defined to allow the controller to 
(re)configure events, actions, and state machine 
or functions on a generic network device.

In this article, we first introduce the YANG mod-
eling language and the YANG-related works done 
in the field of optical networks (in particular, elastic 
optical networks). Then a model for the sliceable 
transponder is detailed. Furthermore, we propose 
and demonstrate the enhancement of YANG to 
model events and functions that can be executed 
in an ordered way through a finite state machine 
(FSM). The latter models enable a remote control-
ler (on behalf of a network operator) to instruct a 
device controller about critical events and actions 
to be taken if these events occur. The actions to 
be taken and the critical events can be re-pro-
grammed on the device by simply sending a new 
message configuration on the device local control-
ler with the new information.

YANG Language
YANG [3] is a data modeling language stan-
dardized by the Internet Engineering Task Force 
(IETF). It has been developed in the context 
of NETCONF [12], a protocol standardized as 
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an answer to specific requirements of the IETF 
[5]: developing standards for network config-
uration and management, and using XML for 
data encoding. Thus, NETCONF is a protocol 
for the configuration and management of net-
work devices that operates on data encoded in 
XML. YANG has been developed and standard-
ized as a language to model data into NETCONF 
messages. In particular, a YANG module can 
be translated into an XML representation called 
YIN. For this reason, commonly used XML tools 
can be adopted to process YANG data models, 
making YANG suitable for NETCONF. Thus, one 
of the main advantages of YANG is the XML rep-
resentation, which makes YANG also adoptable 
by other protocols (e.g., RESTCONF) besides 
NETCONF. As stated in the introduction, in the 
last years the interest of operators in YANG has 
grown because of the possibility to standardize 
common models for configuration and manage-
ment data in a vendor-neutral way. However, 
such models should be the synthesis of a trade-
off between different vendors. This could repre-
sent a key limitation of YANG and NETCONF, 
since it may result in complex common models 
and in a time-consuming standardization process. 
In this context, YANG also supports “deviations” 
from the common model to enable a vendor to 
adopt small variations with respect to the original 
model. YANG can be hierarchically represented 
in a tree structure with a root and leaves.

Figure 1 shows an example of a generic YANG 
model and the resulting tree organization: root 
and leaves have names, data types, data values, 
and child leaves. For example, YANG defines 
data types as 16-bit unsigned integers (as “data-
1,” line 14 in Fig. 1a) or 64-bit signed decimal 
(as “data-2,” line 18), and others [3]. New data 
types can be also defined. In Fig. 1a, “data-3” is of 
“NEW-TYPE” type. In the example, the new type 
can assume just three values (lines 5–12). YANG 
also includes the definition of lists. The “key” of 
a list is used to specify one or more leaves in a 
list that will uniquely identify an element (data 
instance) of the list. The example in Fig. 1a shows 
the model “example” composed of four leaves 
(each leaf is defined with the syntax “leaf,” e.g., 
line 13): “data-1,” “data-2,” “data-3,” and a list 
(line 27). Each piece of this data is associated 
with a type. A list is initiated with the command 
“list” (line 27), and the data of a list can have 
child leaves as “leaf-data-1” and “leaf-data-2.” The 
resulting tree, obtained with the Pyang software 
[9], is visualized in Fig. 1b with “example” as the 
root; “data-1,” “data-2,” “data-3,” and the list as 
leaves; and “leaf-data-1” and “leaf-data-2” as the 
leaves of each element in the list.

YANG data can be of two types: configuration 
or state. Configuration data is explicitly set by an 
external entity from the system (e.g., the central-
ized controller). State data cannot be set by the 
external entity, but they can be read. State data 
can be used for monitoring purposes. A further 
layer in the hierarchy indicating the list of config-
uration and state data can be defined, as detailed 
later. YANG also supports the definition of “Noti-
fication” to model the content of NETCONF 
Notification messages, which indicate that certain 
events have been recognized (e.g., a failed link). 
Moreover, although YANG is mostly considered 

as a data modeling language, it also provides the 
possibility to define executable functions through 
remote procedure calls (RPCs) that specify the 
name, the input, and the output parameters of a 
specific function, for example, switching on (off) a 
device inside a node. For further information the 
reader is referred to [3].

Then some considerations are here reported 
on the nature of YANG. First, it is a highly read-
able text language. This significantly simplifies 
management and troubleshooting operations 
compared to protocols relying on bit encoding, 
which require ad hoc software to parse encod-
ed information. Nowadays, handling a text file 
instead of bit encoding does not represent a 
particular challenge. Moreover, in the case of 
bit encoding, the support of novel parameters 
at the data plane would imply redesigning the 
protocol messages’ content, such as header and 
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Figure 1. a) Example of YANG code; b) resulting 
tree.

(a)
1.			   module example {
2.				    namespace “sssup:example”;
3.			   prefix example ;
4.
5.			   typedef NEW-TYPE{
6.				    type enumeration {
7.					     enum type-one;
8.					     enum type-two;
9.					     enum type-three; 
10.				    }
11.			   }
12.
13.			   leaf data-1 {
14.				    type uint16 ;
15.			   }
16.
17.			   leaf data-2 {
18.				    type decimal64 {
19.						      fraction-digits 18;
20.				    }
21.			   }
22.
23.			   leaf data-3 {
24.				    type NEW-TYPE ;
25.			   }
26.
27.			   list element-of-a-list {
28.				    key “leaf-data-1”;
29.				    leaf leaf-data-1 {
30.					     type uint16;
31.				    }
32.				    leaf leaf-data-2 {
33.					     type uint16;
34.				    }
35.		  }
36.	 }

(b)
module: example
	 +--rw data-1?		  uint16
	 +--rw data-2?		  decima164
	 +--rw data-3?		  NEW-TYPE
	 +--rw element-of-a-list	 [leaf-data-1]
		  +--rw leaf-data-1	 uint16
		  +--rw leaf-data-2?	 uint16
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objects. On the contrary, thanks to the nature 
of YANG, when the model changes, the YANG 
model can be refined without redesigning the 
protocol, thus providing a much more effective 
solution with respect to bit encoding. Such an 
example has to be considered relevant given 
the continuous evolution of the technology at 
the data plane.

In the context of optical networks, several 
standardization bodies and working groups (e.g., 
IETF, OpenConfig, OpenROADM) have released 
YANG models. As an example, the IETF draft in 
[13] defines a YANG model for representing, 
retrieving, and manipulating traffic engineer-
ing (TE) topologies supporting optical switch-
ing nodes. OpenROADM has recently defined 
YANG models focused on reconfigurable opti-
cal add/drop multiplexer (ROADM) disaggre-
gation. These models describe how different 
pluggable devices for optical networks (e.g., 
amplifiers, transponders) can be interconnect-
ed. However, more details on the transponder 
parameters (e.g., chromatic dispersion, polar-
ization mode dispersion, analog bandwidth) 
could be provided. OpenConfig aims to provide 
a set of vendor-neutral data models based on 
network operator requirements. In particular, 
OpenConfig released preliminary models on 
optical amplifiers, ROADMs, and transponders. 
The OpenConfig model does not consider disag-
gregation as OpenROADM does, while the tran-
sponder model is more accurate with respect to 
OpenROADM but still lacks some parameters 
(e.g., sampling rate, analog bandwidth) and does 
not define any Notification that can be very rele-
vant for monitoring purposes [8].

In the next section, YANG models for flexible 
(or elastic) optical networks are introduced.

YANG Model for 
Elastic Optical Networks

Elastic optical networks (EONs) are cir-
cuit-switched optical networks equipped with flex-
ible-grid spectrum selective switches (SSSs) [11]. 
SSSs enable switching of the configurable portion 
of the bandwidth, depending on the bandwidth 
required by the circuit or media channel (e.g., by 
fixing the modulation format, a high-rate connec-
tion requires more bandwidth than a lower-rate 
connection). The media channel is defined as a 
specific portion of the optical spectrum along an 
optical path between a source and a destination 
node [11]. For EONs, International Telecommu-
nication Union — Telecommunication Standard-
ization Sector (ITU-T) G.694.1 states that a media 
channel occupies a portion of spectrum called 
frequency slot, defined by two parameters: the 
central frequency and the width of the occupied 
spectrum portion. According to this ITU-T speci-
fication, the central frequency can assume values 
in steps of 6.25 GHz, while the width has to be 
a multiple of 12.5 GHz. In [4], the authors have 
been focused on the representation of the flexi-
grid optical layer dividing the model into two 
modules: one related to the TE database (TED) 
and the other one representing the media chan-
nel. The TED module defines the information 
required to represent nodes, links, transponders, 
and spectrum resources. Portions of the trees of 
these sub-modules are shown in Fig. 2.

The sub-module of the transponder, being 
more complex, is detailed in the next section. The 
“interfaces” leaf of the node sub-module is a list 
containing all the interfaces in the node. Each ele-
ment of this leaf has several sub-leaves defining 
attributes of the considered interface (or port), 

Figure 2. Portions of a YANG tree representation of flexible optical networks as proposed by [4]: node, 
link, and media channel.

Link

Node

flexi-grid-link-attributes
          augment /nd:networks/nd:network/nt:link:
     +--rw available-label-flexi-grid*                                bits
     +--rw N-max?                                                          int32
     +--rw base-frequency?                                            decimal164
     +--rw nominal-central-frequency-granularity?          decimal164
     +--rw slot-width-granularity?                                   decimal164

+--rw interfaces* [name]
|   +--rw name                                       string
|   +--rw port-number?                           uint32
|   +--rw input-port?                               boolean
|   +--rw output-port?                             boolean
|   +--rw description?                              string
|   +--rw type?                                        interface-type
|   +--rw numbered-interface
|   |    +--rw n-i-ip-address?                 inet: ip-address
|   +--rw unnumbered-interface        
|        +--rw u-i-ip-address?                 inet: ip-address
|        +--rw label?                              uint32

+--rw media-channel
|   +--rw source
|   |    +--rw source-node?             fg-ted:flexi-grid-node-ref
|   |    +--rw source-port?              fg-ted:flexi-grid-node-port-ref
|   +--rw destination
|   |    +--rw destination-node?          fg-ted:flexi-grid-node-ref
|   |    +--rw destination-port?           fg-ted:flexi-grid-node-port-ref
|   +--rw effective-freq-slot
|   |    +--rw N?     int32
|   |    +--rw M?     int32
|   +--rw link-channel* [link-id]
|        +--rw link-id                           int32
|        +--rw N?                                int32
|        +--rw M?                                int32
|        +--rw source-node?                fg-ted:flexi-grid-node-ref
|        +--rw source-port?                 fg-ted:flexi-grid-node-port-ref
|        +--rw destination-node?         fg-ted:flexi-grid-node-ref
|        +--rw destination-port?          fg-ted:flexi-grid-node-port-ref
|        +--rw link?                             fg-ted:flexi-grid-node-link-ref
|        +--rw bidirectional?                boolean

Media channel
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such as the name, the number, two Boolean vari-
ables indicating if it is an input or an output port, 
and the IP address if present. The model also 
includes the “connectivity matrix” (not shown 
in the figure): a list of connected input/output 
ports in the node. Additional information may be 
added. This model can be further augmented by 
including information on the add/drop part of the 
node, in particular, to define the reachability of an 
add port (or a drop port) to an output interface 
(or an input interface). More information on add/
drop is included in the YANG model in [10].

The link sub-module consists of five leaves: the 
availability of flex-grid technology for that link, 
the maximum value N of slices supported by that 
link (i.e., slices of 12.5 GHz), the nominal central 
frequency for the link, the spacing among chan-
nels’ central frequency (i.e., 6.25 GHz), and the 
slot width granularity (i.e., 12.5 GHz). The media 
channel sub-module consists of four main leaves: 
the source and destination nodes of the media 
channel, the frequency slot, and a list of traversed 
links. Both source and destination nodes include 
two leaves: one defining a reference to the mod-
ule of the node (i.e., the tree of Fig. 2) and the 
other one related to the used interface (port) in 
such a node. This model can be further augment-
ed including a reference to the transponder used 
by the media channel, the used add/drop port, 
and also information on the adopted transmission 
technique (e.g., Nyquist wavelength-division multi-
plexing, NWDM).

Sliceable Transponder
A sliceable transponder is a transponder gener-
ating multiple independent optical flows that can 
be directed toward different destinations [11]. A 
reference architecture agreed on among several 
vendors and operators has been proposed in [11]. 
In this article, we mainly refer to the transponder 
model in [9], which reports a comprehensive set 
of physical parameters with a particular reference 
to state data that can be used for monitoring pur-
poses. In [9], the authors enhanced the YANG 
model for the sliceable transponder by leveraging 
on the one presented in [4]. In particular, more 
physical data has been included in the YANG 
model (e.g., baud rate, output power at the trans-
mitter side, the local oscillator and the analog 
bandwidth at the receiver, monitoring parameters 
that are detailed in this section, and a reference to 
the media channels using the transponder). More-
over, a classification on the configurable and state 
data is provided. This YANG model reflects the 
transponder architecture of [11]. The transponder 
is composed of a set of subcarrier modules. Each 
subcarrier module is devoted to generating (at 
the transmitter side) or detecting (at the receiver 
side) an optical subcarrier. Similarly, the YANG 
model is organized per subcarrier module. The 
related tree is shown in Fig. 3. First, a Boolean 
data indicates if slice-ability is supported or not. 
Then a list of subcarriers’ sub-modules is modeled. 
As configuration data, different data are present 
if the “direction” is in transmission or detection 
(e.g., local oscillator configuration if the module 
is in detection). Other data has to be specified 
in both transmission and detection: for example, 
baud rate, bit rate, modulation format, FEC. Note 
that we defined the type “frequency-ghz-type” 

to discern between the central frequency of a 
subcarrier and that of a media channel. Indeed, 
while the central frequency of a media channel 
has to follow ITU-T specifications in steps of 6.25 
GHz, and thus can be expressed as just an integer 
number, the central frequency of a subcarrier of 
a media channel composed of several subcarri-
ers does not necessary follow a grid [11]. Thus, 
the central frequency of a subcarrier can be any 
number. For this reason, we defined the type “fre-
quency-ghz-type” to express the frequency value 
in “GHz.” Regarding state data, first, configura-
tion data is replicated into state data to enable 
an operator to verify (“read”) the actual config-
uration of the transponder. Then other data is 
included in the model, mainly related to the mon-
itoring capabilities of coherent detection. Indeed, 
thanks to the digital signal processing (DSP) at 
the receiver, it is possible to monitor end-to-
end parameters associated with each subcarrier 
[11]. As an example, monitored parameters can 
be pre-FEC BER, Q-factor, chromatic dispersion 
(CD), and polarization mode dispersion (PMD), 
all expressed as decimal64. Other leaves of the 
subcarrier module comprise (not shown in the 
figure) the identification of the node and of the 
add/drop module, and a list of media channels 
that are using such a transponder. Finally, different 
from the representation in [4], the “transmission 
scheme” is included to identify the adopted trans-
mission technique. For that, a new type is defined 
including NWDM, orthogonal frequency-division 
multiplexing (OFDM), and others. The full code of 
this model can be retrieved from [14].

Events and State Machine
A sliceable transponder can be reconfigured 
when some events occur [15]: for example, deg-
radations of the physical layer due to aging may 
imply an increase of the pre-FEC BER. Such an 
event can be overcome by making the transmis-
sion more robust (e.g., by changing the modula-
tion format or the FEC). This section is devoted 
to model events, actions, and FSMs. Such models 
are proposed to enable a remote controller (on 
behalf of a network operator) to instruct a device 
controller about critical events and actions to be 
taken if this event occurs. The actions to be taken 
and the critical events can be reprogrammed on 
the device by simply resending a new message 
configuration (e.g., through the NETCONF proto-
col, as detailed in the next section) on the device 
controller with the new information. Such a sys-
tem has the prospect to speed up the reaction 
of the network to certain events/faults and to 
alleviate, in a standard way, the workload of the 
centralized controller. The speedup derives from 
the fact that the centralized controller is able to 
pre-configure, on the network devices, the actions 
to take when an event occurs. In this way, the 
device already knows what to do and can imme-
diately react, avoiding informing the controller 
and waiting for the response indicating what to 
do. Consequently, part of the workload is also 
removed from the centralized controller, which 
can instruct the device once, transferring to it 
some intelligence to make decisions autonomous-
ly. When the reaction is successfully completed in 
the data plane, the centralized controller can be 
notified about the faults and the action taken.
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The use of YANG and, in particular, find-
ing common models for events and transceiver 
actions/functions can be considered relevant 
because of two main trends: network operators 
looking for common vendor-neutral solutions; 
and developing transponders supporting multiple 
transmission parameters (e.g., bit rate, coding, 
modulation format, baud rate) and monitoring 
capabilities. Moreover, several activities of oper-
ators and vendors are evaluating the reduction of 
network margins [15] (i.e., worst-case margins for 

aging and transmission modeling inaccuracy), for 
example, to decrease the number of opto-elec-
tronic converters. This will cause networks to suf-
fer more from changes in the physical layer (e.g., 
due to events such as soft failures), thus increas-
ing the needs of devices supporting transmission 
adaptation (e.g., to increase robustness).

The proposed YANG model, schematized with 
the tree diagram of Fig. 4a, describes events (e.g., 
soft failures) and functions (e.g., baud rate and code 
change) to be executed in an ordered way following 

Figure 3. YANG tree representation of a sliceable transponder.

Subcarrier
mod. RX

Subcarrier
mod. RX

Subcarrier
mod. RX

Subcarrier
mod. RX

Configuration data
of a single sub-carrier

Additional configuration
data at TX

State data of
a single sub-carrier

Additional configuration
data at RX

Physical parameters
monitored by DSP at RX

Subcarrier
mod. TX

Subcarrier
mod. TX

Subcarrier
mod. TX

Subcarrier
mod. TX

module: transponder
    +--rw transponder
        +--ro slice-ability-support?    boolean
        +--rw subcarrier-module [subcarrier-id]
        |    +--rw subcarrier-id    uint32
        |    +--rw config
        |    |    +--rw direction?               direction-type
        |    |    +--rw bit-rate?                  bit-rate-type
        |    |    +--rw baud-rate?              baud-rate-type
        |    |    +--rw modulation?           modulation-type
        |    |    +--rw fec-in-use?
        |    |    |    +--rw name?       fec-type
        |    |    |    +--rw rate
        |    |    |        +--rw message-length?     int16
        |    |    |        +--rw block-length?          int16
        |    |    +--rw central-frequency?    frequency-ghz-type
        |    |    +--rw bandwidth?              frequency-ghz-type
        |    |    +--rw transmitter
        |    |    +--rw output-power?         int16
        |    |    +--rw receiver
        |             +--rw local-oscillator?          frequency-ghz-type
        |             +--rw sampling-rate?           uint32
        |             +--rw analog-bw?                frequency-ghz-type
        |    +--ro state
        |         +--ro direction?                        direction-type
        |         +--ro bit-rate?                           bit-rate-type
        |         +--ro baud-rate?                      baud-rate-type
        |         +--ro modulation?                   modulation-type
        |         +--ro fec-in-use?
        |         |    +--ro name?     fec-type
        |         |    +--ro rate
        |         |        +--ro message-length?    int16
        |         |        +--ro block-length?         int16
        |         +--ro central-frequency?             frequency-ghz-type
        |         +--ro bandwidth?                       frequency-ghz-type
        |         +--ro supported-bit-rates
        |         |    +--ro bit-rate*       bit-rate-type
        |         +--ro supported-baud-rates
        |         |    +--ro baud-rate*      baud-rate-type
        |         +--ro supported-modulations
        |         |    +--ro modulation*   modulation-type
        |         +--ro supported-fec
        |         |    +--ro fec*       fec-type
        |         +--ro transmitter
        |         |    +--ro output-power?   int16
        |         +--ro receiver
        |              +--ro local-oscillator?         frequency-ghz-type
        |              +--ro sampling-rate?          uint32
        |              +--ro analog-bw?               frequency-ghz-type
        |              +--ro input-power?            int16
        |              +--ro pre-fec-ber?             decimal64
        |              +--ro sample-variance?     decimal64
        |              +--ro pmd?                       decimal64
        |              +--ro cd?                          decimal64
        |              +--ro q-factor?                  decimal64

The use of YANG and, 

in particular, finding 

common models for 

events and transceiver 

actions/functions can 

be considered of rele-

vance because of two 

main trends: network 

operators looking for 

common vendor-neutral 

solutions; and devel-

oping transponders 

supporting multiple 

transmission parameters 

and monitoring  

capabilities.



IEEE Communications Magazine • August 2017 175

an FSM. The model defines a list of events as the 
root of the hierarchy. An event is defined through 
two mandatory attributes (“name” and “type”) 
and an optional attribute (“description”). Together, 
“name” and “type” attributes uniquely identify the 
event. The “type” attribute takes its value from a 
pool of possible event types predefined inside the 
YANG model. Currently, we have defined some 
known event types such as the “ON CHANGE” 
event to describe the change of an attribute value. 
Given that the change of an attribute does not nec-
essarily mean a particular degradation or fault, we 
included in the model the sub-leaf “filter,” which can 
be used to define a threshold to further characterize 
the event. For example, by referring to the “Q-fac-
tor” state data in Fig. 3, we may define an event 
named Q-factor change of type “ON CHANGE” 
and, as a filter, a threshold to indicate when the 
Q-factor falls below the threshold. Another leaf of 
the “event” is the “reaction.” In particular, for each 
event, the controller can configure a reaction the 
device should have. The “reaction” is composed 
of a list of “operations” to perform when the event 
occurs. Each operation is identified through an “id” 
and can be either of types “simple” or “conditional.” 
A “simple” operation contains the “execute” attri-
bute that, recalling an RPC (as shown in the next 
section), is used to encapsulate the effective task to 
be executed and the “id” of the “next operation” 
(if any). A “conditional” operation, with respect to 
the “simple” one, contains in addition a “statement” 
attribute that can be “true” or “false” (related flow 
chart shown in Fig. 4b). The statement is checked at 
the beginning of the operation; then, depending on 
the outcome (true or false), only the correct oper-
ation is considered. “True” and “false” contain the 
“execute” and “next operation” as for the “simple” 
operation.

It is important to underline that this proposed 
model does not replace notification; indeed, the 
centralized controller should always be notified 
when an event occurs. However, in the meantime 
the device can already start reacting to the event. 
It is also important to note that reactions are not 
statically pre-configured; they can be revoked 
or reconfigured by the controller depending on 
the evolution of the network (e.g., depending on 
bandwidth availability).

We also propose a YANG model for an FSM. 
Each state of the machine is based on the Event 
YANG model. In particular, the FSM YANG 
model extends the YANG model for the events by 
adding the state information and state transition. 
More precisely, the model defines a list of states 
that, similar to the events, are configurable by the 
controller. Each state has a description attribute 
and it is identified through an ID. Each state also 
includes a list of events as defined in the event 
model, with the additional next-state attribute, 
which points to the next state.

Experimental Demonstration of 
YANG-Based Control Plane Modeling 

Events and State Machine
The proposed models have been experimentally 
demonstrated in a testbed composed of a cen-
tralized network controller (implementing phyton) 
and two transponder controllers (using ConfD) at 
the transmitter and receiver side, respectively.

First, the transponder YANG model discussed 
earlier is considered, and a NETCONF message is 
generated to configure the following transmission 
parameters: 100 Gb/s net rate connection with 
a baud rate of 28 Gbaud, 7 percent of FEC, and 
polarization multiplexing quadrature phase shift 
keying (PM-QPSK) modulation format.

Then the configuration of events and state 
machine is performed as in Fig. 5a, which shows 
the NETCONF message exchange between the 
centralized controller and a transponder con-
troller at the transmitter side. Similarly, message 
exchange has been performed with the controller 
at the receiver side. Initially, the centralized con-
troller sends an <edit-config> message, as in [5], 
including the structure of the FSM and the asso-
ciated events. This message enables the remote 
controller to instruct the device controller about 
FSM, critical events, and actions to be taken if 
these events occur. Once the device controller is 
instructed about FMS and the event, an acknowl-
edgment message (<ok> message as in [5]) is sent 
to the remote centralized controller notifying that 
the operation has been concluded. The actions 
to be taken and the critical events can be repro-
grammed on the device by simply sending a new 
message configuration to the device controller 

Figure 4. a) YANG tree representation of events 
and reactions; b) flow chart for conditional 
operations.
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with the new information. The experiment con-
sists of configuring the FSM depicted in Fig. 5b, 
which is composed of two states: “Steady” and 
“Fec-Baud-Adapt.” In the Steady state, the con-
nection is in a healthy condition with a pre-FEC 
BER below the assigned threshold of 9 × 10–4. If 
the pre-FEC BER exceeds the threshold, the state 
machine evolves to the Fec-Baud-Adapt state, 
where an adaptation to a more robust FEC (20 
percent) and a baud rate change (to 31 Gbaud) 
are performed. Note that the centralized control-
ler is aware of spectrum occupation. The receiver 
controller detecting the failure sends a notification 
of the event to the transmitter controller through 
the supervisory channel. This way, the transmitter 
controller reconfigures the transmission param-
eters (FEC) based on the event and the instruc-
tions in its FSM. From the FEC-Baud-Adapt state, 
if the pre-FEC BER returns below the threshold, 
the state machine moves back to the Steady state, 
readjusting the baud rate and the FEC to the ini-
tially configured values.

Figure 6a shows a portion of the message sent 
by the controller to the transponder to configure 
the FSM previously described. In particular, the 
Steady state with id 1 and Fec-Baud-Adapt with id 
2 can be identified. The Steady state is the starting 
point as indicated by the current-state attribute. 
It responds to the “ON CHANGE” event, more 
precisely only when the pre-FEC BER changes to 
a value higher than 9 × 10–4. The associated reac-
tion to the event is composed of a single opera-
tion (“execute”). As stated in the previous section, 
the “execute” command recalls an RPC (Fig. 6a) 
consisting of changing the baud rate and the FEC. 
After the execution, the current state becomes 
the state with id 2 (Fec-Baud-Adapt) as indicated 
by the next-state attribute. The “Fec-Baud-Adapt” 

state also responds to the “ON CHANGE” EVENT, 
but in this case only when the pre-FEC BER goes 
below the threshold. Similar to the Steady state, 
a single operation is executed in reaction. In this 
case, the same RPC is recalled with different val-
ues: the FEC and the baud rate are restored to the 
initial values.

This way, the transponder device controller is 
successfully configured and instructed about the 
actions to perform when specific events occur. In 
the case of pre-FEC BER increase (or decrease), 
the transponder is able to automatically reconfig-
ure itself without requesting the centralized con-
troller and then waiting for its response on the 
actions to perform (only a notification message is 
generated).

Finally, we exploited simulations on a Span-
ish backbone (the same topology used in [15]) 
to identify the average number of 100 Gb/s 
PM-QPSK lightpaths affected by a soft failure. 
Results are shown in Fig. 6b. We generated an 
optical signal-to-noise ratio (OSNR) penalty span-
ning from 1 to 3 dB on random links. A lightpath 
is considered affected by the soft failure if the 
OSNR penalty causes a pre-FEC BER increase 
above the threshold of 10–3; otherwise, the light 
path is assumed to be robust and can continue its 
normal transmission. The number of affected light-
paths increases with OSNR penalty since a higher 
penalty causes a higher pre-FEC BER increase. 
In the traditional case, the centralized controller 
has to receive notifications about the failure and 
the affected lightpaths, take a decision per light-
path (e.g., FEC adaptation), and send a message 
to reconfigure the involved devices. Thus, for 
high OSNR penalty, the centralized controller is 
also more loaded and reconfiguration at the data 
plane can suffer from delay. For example, in the 
case of 2 dB OSNR penalty, an average number 
of 16 lightpaths is affected. Conversely, a system 
exploiting the proposed YANG model for FSM is 
more scalable since the centralized controller is 
only notified upon failure.

Conclusions
In this article, the YANG modeling language has 
been described and enhanced to enable effective 
multi-vendor interoperability operations at both 
the network and node (i.e., white box) levels. 
Indeed, by standardizing a common language for 
network and node parameters, a controller can 
control and manage devices provided by different 
vendors, positively impacting the overall capital 
expenditure without being tied to single vendor’s 
equipment. Specific enhancement has been intro-
duced to also enable the YANG language to 
describe events and finite state machines, thus 
describing the set of actions to be performed at 
the node or device level without centralized con-
troller intervention.

The defined YANG models for transponder, 
events, and finite state machines have been used 
in a control plane testbed to successfully config-
ure, in a vendor-independent way, both transmis-
sion parameters and the actions to perform upon 
the occurrence of specific events. This way, upon 
pre-defined events at the physical layer (e.g., BER 
increase), the transponder is able to autonomous-
ly react without requiring time-consuming interac-
tion with the centralized controller.

Figure 5. a) NETCONF message exchange in the testbed; b) implemented finite 
state machine.
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Figure 6. a) Capture of the control plane message instructing the device controller about the state machine; b) lightpaths involved in a 
failure and related operations at the centralized controller.

<current-state>1</current-state>
<states>
  <state>
    <id>1</id>
    <description>Steady</description>
    <events xmlns=”sssup/events”
xmlns:nc=”urn:ietf:params:xml:ns:netconf:base:1/0”>
      <event>
        <name>BER-exceeds-threshold</name>
        <type>ON_CHANGE</type>
        <filters>
          <filter>
            <filter-id>1</filter-id>
            <xpath-filter xmlns:t=”sssup/transponder”>
            /t:transponder/t:subcarrier-module[t:subcarrier-id=1]
            t:state/t:receiver[t:pre-fec-ber>=0.000000001]
            </xpath-filter>
          </filter>
        </filters>
        <reaction>
          <operation>
            <id>1</id>
            <type>SIMPLE_OP</type>
            <simple>
              <execute>
                <rpc
xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
                  <edit-config
xmlns:nc=’urn:ietf:params:xml:ns:netconf:base:1.0’>
                    <remote-address>192.168.1.1</remote-address>
                    <config>
                     <transponder xmlns=”sssup/transponder”>
                      <subcarrier-module>
                        <subcarrier-id>1</subcarrier-id>
                        <config>
                          <baud-rate>32</baud-rate>
                          <fec-in-use>
                            <name xmlns:fec=”sssup/fec-
types”>fec:1dpc</name>
                            <rate>
                              <message-length>4</message-length>
                              <block-length>5</block-length>
                            </rate>
                          </fec-in-use>
                        </config>
                      </subcarrier-module>
                    </transponder>
                  </config>
                </edit-config>
              </rpc>
              <rpc>
              ....
              </rpc>
              </execute>
              <next-state>2</next-state>
            </simple>
          </operation>
        </reaction>
      </event>
    </events>
</state>

<state>
    <id>2</id>
    <description>Fec-Baud-Adapt</description>
    <events xmlns=”sssup/events”
xmlns:nc=”urn:ietf:params:xml:ns:netconf:base:1.0”>
      <event>
        <name>BER-below-threshold</name>
        <type>ON_CHANGE</type>
        <filters>
          <filter>
            <filter-id>1</filter-id>
            <xpath-filter xmlns:t=”sssup/transponder”>
            /t:transponder/t:subcarrier-module[t:subcarrier-
id=1]/t:state/t:receiver[t:pre-fec-ber<0.000000001]
            </xpath-filter>
          </filter>
        </filters>
        <reaction>
          <operation>
            <id>1</id>
            <type>SIMPLE_OP</type>
            <simple>
              <execute>
                <rpc xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
                  <edit-config
xmlns:nc=’urn:ietf:params:xml:ns:netconf:base:1.0’>
                 <remote-address>192.168.1.1</remote-address>
                 <config>
                   <transponder xmlns=”sssup/transponder”>
                     <subcarrier-module>
                       <subcarrier-id>1</subcarrier-id>
                       <config>
                         <baud-rate>28</baud-rate>
                         <fec-in-use>
                           <name xmlns:fec=”sssup/fec- types”>fec:1dpc</name>
                            <rate>
                              <message-length>14</message-length>
                              <block-length>15</block-length>
                            </rate>
                          </fec-in-use>
                        </config>
                      </subcarrier-module>
                    </transponder>
                  </config>
                </edit-config>
              </rpc>
              <rpc>
              ....
              </rpc>
            </execute>
            <next-state>1</next-state>
          </simple>
        </operation>
      </reaction>
    </event>
  </state>
</states>

(a)
 

(b)
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In the future, efforts in data modeling among 
vendors and operators will follow up to find 
common standard solutions. Moreover, func-
tional models, such as finite state machines, can 
be enriched by adding new constructs besides 
“simple” and “conditional” operations (e.g., error 
checking, and loops such as “for” and “while”).
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