
IEEE Communications Magazine • August 2017170 0163-6804/17/$25.00 © 2017 IEEE

Abstract

Multi-vendor interoperability can be achieved
at node and network levels by relying on standard
data modeling. YANG represents an attractive data
modeling solution for network component defi-
nition. This article reports on the work done on
YANG models for optical networks with particu-
lar reference to flexible-grid networks. In addition
to a YANG model description for link, node, and
media channels, YANG for a sliceable transpon-
der is introduced given the importance of such a
data plane device for the next generation back-
bone. Then a contribution is provided in propos-
ing YANG models for events and state machine to
further extend and increase the programmability
of networks. This latter contribution is particularly
relevant in the case of faults or physical layer deg-
radation in a network. Finally, YANG models are
validated in an experimental control plane testbed.

Introduction
Recently, network operators have shown interest
in the deployment of data plane hardware pro-
viding multi-vendor interoperability [1]. This way,
operators can use systems of different vendors
optimizing transmission performance (e.g., achiev-
able transmission distance), network device reuse,
and capital expenditure without the need for
being tied to single-vendor equipment. Multi-ven-
dor operability can be applied in two different
contexts: network and node. In the former, a
network composed of nodes provided by differ-
ent vendors is operated under the same control
system (e.g., elastic black links [1]). In the latter,
a node composed of components provided by
different vendors is assembled under the same
control system. This has brought about the con-
cept of white boxes. With respect to black boxes
provided by a single vendor, white boxes are
assembled with different vendors’ components
(i.e., disaggregated hardware).

To support control and management of
multi-vendor networks and white boxes, standard
operator-defined data models are required so
that common application programming interfaces
(APIs) can be adopted for controlling/managing
these multi-vendor optical systems [2].

A key candidate language to describe a stan-
dard-defined data model is the emerging Yet
Another Next Generation (YANG) [3–5]. Regard-

ing flexible/elastic optical networks [6, 7], which
are the focus of this article, some recent works
have provided YANG models to describe basic
attributes of links (e.g., identification), nodes (e.g.,
connectivity matrix), media channels, and tran-
sponders (e.g., supported forward error correc-
tion, FEC) [4, 8–10].

However, effort is still required to achieve
detailed models of optical devices and their func-
tionalities to increase the level of programmability
of networks. As an example, some actions have
to be taken on data plane devices when events
such as soft failures (i.e., performance degrada-
tion implying bit error rate [BER] increase) occur;
for example, transmission should be consequent-
ly switched to a more robust modulation format
[11]. Typically, actions upon failure or degra-
dations imply either manual intervention or the
involvement of a centralized controller. In the lat-
ter case, when the controller is first notified of the
soft-failure event, it makes a decision and config-
ures the involved network devices accordingly
(such method requires certain time). Alternatively,
the device is programmed at the moment of the
installation to take an action or a reconfiguration
after a specific event occurs. Currently, no YANG
model has been defined to allow the controller to
(re)configure events, actions, and state machine
or functions on a generic network device.

In this article, we first introduce the YANG mod-
eling language and the YANG-related works done
in the field of optical networks (in particular, elastic
optical networks). Then a model for the sliceable
transponder is detailed. Furthermore, we propose
and demonstrate the enhancement of YANG to
model events and functions that can be executed
in an ordered way through a finite state machine
(FSM). The latter models enable a remote control-
ler (on behalf of a network operator) to instruct a
device controller about critical events and actions
to be taken if these events occur. The actions to
be taken and the critical events can be re-pro-
grammed on the device by simply sending a new
message configuration on the device local control-
ler with the new information.

YANG Language
YANG [3] is a data modeling language stan-
dardized by the Internet Engineering Task Force
(IETF). It has been developed in the context
of NETCONF [12], a protocol standardized as

YANG Models for
Vendor-Neutral Optical Networks,

Reconfigurable through State Machine
Matteo Dallaglio, Nicola Sambo, Filippo Cugini, and Piero Castoldi

Optical Communications

Multi-vendor interopera-
bility can be achieved at
node and network levels
by relying on standard
data modeling. YANG rep-
resents an attractive data
modeling solution for
network component defi-
nition. This article reports
on the work done on
YANG models for optical
networks with particular
reference to flexible-grid
networks.

Matteo Dallaglio, Nicola Sambo, and Piero Castoldi are with Scuola Superiore Sant’Anna; Filippo Cugini is with CNIT.
Digital Object Identifier:
10.1109/MCOM.2017.1600733

IEEE Communications Magazine • August 2017 171

an answer to specific requirements of the IETF
[5]: developing standards for network config-
uration and management, and using XML for
data encoding. Thus, NETCONF is a protocol
for the configuration and management of net-
work devices that operates on data encoded in
XML. YANG has been developed and standard-
ized as a language to model data into NETCONF
messages. In particular, a YANG module can
be translated into an XML representation called
YIN. For this reason, commonly used XML tools
can be adopted to process YANG data models,
making YANG suitable for NETCONF. Thus, one
of the main advantages of YANG is the XML rep-
resentation, which makes YANG also adoptable
by other protocols (e.g., RESTCONF) besides
NETCONF. As stated in the introduction, in the
last years the interest of operators in YANG has
grown because of the possibility to standardize
common models for configuration and manage-
ment data in a vendor-neutral way. However,
such models should be the synthesis of a trade-
off between different vendors. This could repre-
sent a key limitation of YANG and NETCONF,
since it may result in complex common models
and in a time-consuming standardization process.
In this context, YANG also supports “deviations”
from the common model to enable a vendor to
adopt small variations with respect to the original
model. YANG can be hierarchically represented
in a tree structure with a root and leaves.

Figure 1 shows an example of a generic YANG
model and the resulting tree organization: root
and leaves have names, data types, data values,
and child leaves. For example, YANG defines
data types as 16-bit unsigned integers (as “data-
1,” line 14 in Fig. 1a) or 64-bit signed decimal
(as “data-2,” line 18), and others [3]. New data
types can be also defined. In Fig. 1a, “data-3” is of
“NEW-TYPE” type. In the example, the new type
can assume just three values (lines 5–12). YANG
also includes the definition of lists. The “key” of
a list is used to specify one or more leaves in a
list that will uniquely identify an element (data
instance) of the list. The example in Fig. 1a shows
the model “example” composed of four leaves
(each leaf is defined with the syntax “leaf,” e.g.,
line 13): “data-1,” “data-2,” “data-3,” and a list
(line 27). Each piece of this data is associated
with a type. A list is initiated with the command
“list” (line 27), and the data of a list can have
child leaves as “leaf-data-1” and “leaf-data-2.” The
resulting tree, obtained with the Pyang software
[9], is visualized in Fig. 1b with “example” as the
root; “data-1,” “data-2,” “data-3,” and the list as
leaves; and “leaf-data-1” and “leaf-data-2” as the
leaves of each element in the list.

YANG data can be of two types: configuration
or state. Configuration data is explicitly set by an
external entity from the system (e.g., the central-
ized controller). State data cannot be set by the
external entity, but they can be read. State data
can be used for monitoring purposes. A further
layer in the hierarchy indicating the list of config-
uration and state data can be defined, as detailed
later. YANG also supports the definition of “Noti-
fication” to model the content of NETCONF
Notification messages, which indicate that certain
events have been recognized (e.g., a failed link).
Moreover, although YANG is mostly considered

as a data modeling language, it also provides the
possibility to define executable functions through
remote procedure calls (RPCs) that specify the
name, the input, and the output parameters of a
specific function, for example, switching on (off) a
device inside a node. For further information the
reader is referred to [3].

Then some considerations are here reported
on the nature of YANG. First, it is a highly read-
able text language. This significantly simplifies
management and troubleshooting operations
compared to protocols relying on bit encoding,
which require ad hoc software to parse encod-
ed information. Nowadays, handling a text file
instead of bit encoding does not represent a
particular challenge. Moreover, in the case of
bit encoding, the support of novel parameters
at the data plane would imply redesigning the
protocol messages’ content, such as header and

YANG data can be of

two types: configuration

or state. Configuration

data is explicitly set

by an external entity

from the system. State

data cannot be set by

the external entity but

they can be read. State

data can be used for

monitoring purposes.

A further layer in the

hierarchy indicating the

list of configuration and

state data can

be defined.

Figure 1. a) Example of YANG code; b) resulting
tree.

(a)
1.			 module example {
2.				 namespace “sssup:example”;
3.			 prefix example ;
4.
5.			 typedef NEW-TYPE{
6.				 type enumeration {
7.					 enum type-one;
8.					 enum type-two;
9.					 enum type-three;
10.				 }
11.			 }
12.
13.			 leaf data-1 {
14.				 type uint16 ;
15.			 }
16.
17.			 leaf data-2 {
18.				 type decimal64 {
19.						 fraction-digits 18;
20.				 }
21.			 }
22.
23.			 leaf data-3 {
24.				 type NEW-TYPE ;
25.			 }
26.
27.			 list element-of-a-list {
28.				 key “leaf-data-1”;
29.				 leaf leaf-data-1 {
30.					 type uint16;
31.				 }
32.				 leaf leaf-data-2 {
33.					 type uint16;
34.				 }
35.		 }
36.	 }

(b)
module: example
	 +--rw data-1?		 uint16
	 +--rw data-2?		 decima164
	 +--rw data-3?		 NEW-TYPE
	 +--rw element-of-a-list	 [leaf-data-1]
		 +--rw leaf-data-1	 uint16
		 +--rw leaf-data-2?	 uint16

IEEE Communications Magazine • August 2017172

objects. On the contrary, thanks to the nature
of YANG, when the model changes, the YANG
model can be refined without redesigning the
protocol, thus providing a much more effective
solution with respect to bit encoding. Such an
example has to be considered relevant given
the continuous evolution of the technology at
the data plane.

In the context of optical networks, several
standardization bodies and working groups (e.g.,
IETF, OpenConfig, OpenROADM) have released
YANG models. As an example, the IETF draft in
[13] defines a YANG model for representing,
retrieving, and manipulating traffic engineer-
ing (TE) topologies supporting optical switch-
ing nodes. OpenROADM has recently defined
YANG models focused on reconfigurable opti-
cal add/drop multiplexer (ROADM) disaggre-
gation. These models describe how different
pluggable devices for optical networks (e.g.,
amplifiers, transponders) can be interconnect-
ed. However, more details on the transponder
parameters (e.g., chromatic dispersion, polar-
ization mode dispersion, analog bandwidth)
could be provided. OpenConfig aims to provide
a set of vendor-neutral data models based on
network operator requirements. In particular,
OpenConfig released preliminary models on
optical amplifiers, ROADMs, and transponders.
The OpenConfig model does not consider disag-
gregation as OpenROADM does, while the tran-
sponder model is more accurate with respect to
OpenROADM but still lacks some parameters
(e.g., sampling rate, analog bandwidth) and does
not define any Notification that can be very rele-
vant for monitoring purposes [8].

In the next section, YANG models for flexible
(or elastic) optical networks are introduced.

YANG Model for
Elastic Optical Networks

Elastic optical networks (EONs) are cir-
cuit-switched optical networks equipped with flex-
ible-grid spectrum selective switches (SSSs) [11].
SSSs enable switching of the configurable portion
of the bandwidth, depending on the bandwidth
required by the circuit or media channel (e.g., by
fixing the modulation format, a high-rate connec-
tion requires more bandwidth than a lower-rate
connection). The media channel is defined as a
specific portion of the optical spectrum along an
optical path between a source and a destination
node [11]. For EONs, International Telecommu-
nication Union — Telecommunication Standard-
ization Sector (ITU-T) G.694.1 states that a media
channel occupies a portion of spectrum called
frequency slot, defined by two parameters: the
central frequency and the width of the occupied
spectrum portion. According to this ITU-T speci-
fication, the central frequency can assume values
in steps of 6.25 GHz, while the width has to be
a multiple of 12.5 GHz. In [4], the authors have
been focused on the representation of the flexi-
grid optical layer dividing the model into two
modules: one related to the TE database (TED)
and the other one representing the media chan-
nel. The TED module defines the information
required to represent nodes, links, transponders,
and spectrum resources. Portions of the trees of
these sub-modules are shown in Fig. 2.

The sub-module of the transponder, being
more complex, is detailed in the next section. The
“interfaces” leaf of the node sub-module is a list
containing all the interfaces in the node. Each ele-
ment of this leaf has several sub-leaves defining
attributes of the considered interface (or port),

Figure 2. Portions of a YANG tree representation of flexible optical networks as proposed by [4]: node,
link, and media channel.

Link

Node

flexi-grid-link-attributes
 augment /nd:networks/nd:network/nt:link:
 +--rw available-label-flexi-grid* bits
 +--rw N-max? int32
 +--rw base-frequency? decimal164
 +--rw nominal-central-frequency-granularity? decimal164
 +--rw slot-width-granularity? decimal164

+--rw interfaces* [name]
| +--rw name string
| +--rw port-number? uint32
| +--rw input-port? boolean
| +--rw output-port? boolean
| +--rw description? string
| +--rw type? interface-type
| +--rw numbered-interface
| | +--rw n-i-ip-address? inet: ip-address
| +--rw unnumbered-interface
| +--rw u-i-ip-address? inet: ip-address
| +--rw label? uint32

+--rw media-channel
| +--rw source
| | +--rw source-node? fg-ted:flexi-grid-node-ref
| | +--rw source-port? fg-ted:flexi-grid-node-port-ref
| +--rw destination
| | +--rw destination-node? fg-ted:flexi-grid-node-ref
| | +--rw destination-port? fg-ted:flexi-grid-node-port-ref
| +--rw effective-freq-slot
| | +--rw N? int32
| | +--rw M? int32
| +--rw link-channel* [link-id]
| +--rw link-id int32
| +--rw N? int32
| +--rw M? int32
| +--rw source-node? fg-ted:flexi-grid-node-ref
| +--rw source-port? fg-ted:flexi-grid-node-port-ref
| +--rw destination-node? fg-ted:flexi-grid-node-ref
| +--rw destination-port? fg-ted:flexi-grid-node-port-ref
| +--rw link? fg-ted:flexi-grid-node-link-ref
| +--rw bidirectional? boolean

Media channel

Thanks to the nature of

YANG, when the model

changes, the YANG

model can be refined

without redesigning the

protocol, thus providing

a much more effective

solution with respect to

bit encoding. Such an

example has to be con-

sidered relevant given

the continuous evolu-

tion of the technology

at the data plane.

IEEE Communications Magazine • August 2017 173

such as the name, the number, two Boolean vari-
ables indicating if it is an input or an output port,
and the IP address if present. The model also
includes the “connectivity matrix” (not shown
in the figure): a list of connected input/output
ports in the node. Additional information may be
added. This model can be further augmented by
including information on the add/drop part of the
node, in particular, to define the reachability of an
add port (or a drop port) to an output interface
(or an input interface). More information on add/
drop is included in the YANG model in [10].

The link sub-module consists of five leaves: the
availability of flex-grid technology for that link,
the maximum value N of slices supported by that
link (i.e., slices of 12.5 GHz), the nominal central
frequency for the link, the spacing among chan-
nels’ central frequency (i.e., 6.25 GHz), and the
slot width granularity (i.e., 12.5 GHz). The media
channel sub-module consists of four main leaves:
the source and destination nodes of the media
channel, the frequency slot, and a list of traversed
links. Both source and destination nodes include
two leaves: one defining a reference to the mod-
ule of the node (i.e., the tree of Fig. 2) and the
other one related to the used interface (port) in
such a node. This model can be further augment-
ed including a reference to the transponder used
by the media channel, the used add/drop port,
and also information on the adopted transmission
technique (e.g., Nyquist wavelength-division multi-
plexing, NWDM).

Sliceable Transponder
A sliceable transponder is a transponder gener-
ating multiple independent optical flows that can
be directed toward different destinations [11]. A
reference architecture agreed on among several
vendors and operators has been proposed in [11].
In this article, we mainly refer to the transponder
model in [9], which reports a comprehensive set
of physical parameters with a particular reference
to state data that can be used for monitoring pur-
poses. In [9], the authors enhanced the YANG
model for the sliceable transponder by leveraging
on the one presented in [4]. In particular, more
physical data has been included in the YANG
model (e.g., baud rate, output power at the trans-
mitter side, the local oscillator and the analog
bandwidth at the receiver, monitoring parameters
that are detailed in this section, and a reference to
the media channels using the transponder). More-
over, a classification on the configurable and state
data is provided. This YANG model reflects the
transponder architecture of [11]. The transponder
is composed of a set of subcarrier modules. Each
subcarrier module is devoted to generating (at
the transmitter side) or detecting (at the receiver
side) an optical subcarrier. Similarly, the YANG
model is organized per subcarrier module. The
related tree is shown in Fig. 3. First, a Boolean
data indicates if slice-ability is supported or not.
Then a list of subcarriers’ sub-modules is modeled.
As configuration data, different data are present
if the “direction” is in transmission or detection
(e.g., local oscillator configuration if the module
is in detection). Other data has to be specified
in both transmission and detection: for example,
baud rate, bit rate, modulation format, FEC. Note
that we defined the type “frequency-ghz-type”

to discern between the central frequency of a
subcarrier and that of a media channel. Indeed,
while the central frequency of a media channel
has to follow ITU-T specifications in steps of 6.25
GHz, and thus can be expressed as just an integer
number, the central frequency of a subcarrier of
a media channel composed of several subcarri-
ers does not necessary follow a grid [11]. Thus,
the central frequency of a subcarrier can be any
number. For this reason, we defined the type “fre-
quency-ghz-type” to express the frequency value
in “GHz.” Regarding state data, first, configura-
tion data is replicated into state data to enable
an operator to verify (“read”) the actual config-
uration of the transponder. Then other data is
included in the model, mainly related to the mon-
itoring capabilities of coherent detection. Indeed,
thanks to the digital signal processing (DSP) at
the receiver, it is possible to monitor end-to-
end parameters associated with each subcarrier
[11]. As an example, monitored parameters can
be pre-FEC BER, Q-factor, chromatic dispersion
(CD), and polarization mode dispersion (PMD),
all expressed as decimal64. Other leaves of the
subcarrier module comprise (not shown in the
figure) the identification of the node and of the
add/drop module, and a list of media channels
that are using such a transponder. Finally, different
from the representation in [4], the “transmission
scheme” is included to identify the adopted trans-
mission technique. For that, a new type is defined
including NWDM, orthogonal frequency-division
multiplexing (OFDM), and others. The full code of
this model can be retrieved from [14].

Events and State Machine
A sliceable transponder can be reconfigured
when some events occur [15]: for example, deg-
radations of the physical layer due to aging may
imply an increase of the pre-FEC BER. Such an
event can be overcome by making the transmis-
sion more robust (e.g., by changing the modula-
tion format or the FEC). This section is devoted
to model events, actions, and FSMs. Such models
are proposed to enable a remote controller (on
behalf of a network operator) to instruct a device
controller about critical events and actions to be
taken if this event occurs. The actions to be taken
and the critical events can be reprogrammed on
the device by simply resending a new message
configuration (e.g., through the NETCONF proto-
col, as detailed in the next section) on the device
controller with the new information. Such a sys-
tem has the prospect to speed up the reaction
of the network to certain events/faults and to
alleviate, in a standard way, the workload of the
centralized controller. The speedup derives from
the fact that the centralized controller is able to
pre-configure, on the network devices, the actions
to take when an event occurs. In this way, the
device already knows what to do and can imme-
diately react, avoiding informing the controller
and waiting for the response indicating what to
do. Consequently, part of the workload is also
removed from the centralized controller, which
can instruct the device once, transferring to it
some intelligence to make decisions autonomous-
ly. When the reaction is successfully completed in
the data plane, the centralized controller can be
notified about the faults and the action taken.

In the context of opti-

cal networks, several

standardization bodies

and working groups

(e.g., IETF, OpenConfig,

OpenROADM) have

released YANG models..

IEEE Communications Magazine • August 2017174

The use of YANG and, in particular, find-
ing common models for events and transceiver
actions/functions can be considered relevant
because of two main trends: network operators
looking for common vendor-neutral solutions;
and developing transponders supporting multiple
transmission parameters (e.g., bit rate, coding,
modulation format, baud rate) and monitoring
capabilities. Moreover, several activities of oper-
ators and vendors are evaluating the reduction of
network margins [15] (i.e., worst-case margins for

aging and transmission modeling inaccuracy), for
example, to decrease the number of opto-elec-
tronic converters. This will cause networks to suf-
fer more from changes in the physical layer (e.g.,
due to events such as soft failures), thus increas-
ing the needs of devices supporting transmission
adaptation (e.g., to increase robustness).

The proposed YANG model, schematized with
the tree diagram of Fig. 4a, describes events (e.g.,
soft failures) and functions (e.g., baud rate and code
change) to be executed in an ordered way following

Figure 3. YANG tree representation of a sliceable transponder.

Subcarrier
mod. RX

Subcarrier
mod. RX

Subcarrier
mod. RX

Subcarrier
mod. RX

Configuration data
of a single sub-carrier

Additional configuration
data at TX

State data of
a single sub-carrier

Additional configuration
data at RX

Physical parameters
monitored by DSP at RX

Subcarrier
mod. TX

Subcarrier
mod. TX

Subcarrier
mod. TX

Subcarrier
mod. TX

module: transponder
 +--rw transponder
 +--ro slice-ability-support? boolean
 +--rw subcarrier-module [subcarrier-id]
 | +--rw subcarrier-id uint32
 | +--rw config
 | | +--rw direction? direction-type
 | | +--rw bit-rate? bit-rate-type
 | | +--rw baud-rate? baud-rate-type
 | | +--rw modulation? modulation-type
 | | +--rw fec-in-use?
 | | | +--rw name? fec-type
 | | | +--rw rate
 | | | +--rw message-length? int16
 | | | +--rw block-length? int16
 | | +--rw central-frequency? frequency-ghz-type
 | | +--rw bandwidth? frequency-ghz-type
 | | +--rw transmitter
 | | +--rw output-power? int16
 | | +--rw receiver
 | +--rw local-oscillator? frequency-ghz-type
 | +--rw sampling-rate? uint32
 | +--rw analog-bw? frequency-ghz-type
 | +--ro state
 | +--ro direction? direction-type
 | +--ro bit-rate? bit-rate-type
 | +--ro baud-rate? baud-rate-type
 | +--ro modulation? modulation-type
 | +--ro fec-in-use?
 | | +--ro name? fec-type
 | | +--ro rate
 | | +--ro message-length? int16
 | | +--ro block-length? int16
 | +--ro central-frequency? frequency-ghz-type
 | +--ro bandwidth? frequency-ghz-type
 | +--ro supported-bit-rates
 | | +--ro bit-rate* bit-rate-type
 | +--ro supported-baud-rates
 | | +--ro baud-rate* baud-rate-type
 | +--ro supported-modulations
 | | +--ro modulation* modulation-type
 | +--ro supported-fec
 | | +--ro fec* fec-type
 | +--ro transmitter
 | | +--ro output-power? int16
 | +--ro receiver
 | +--ro local-oscillator? frequency-ghz-type
 | +--ro sampling-rate? uint32
 | +--ro analog-bw? frequency-ghz-type
 | +--ro input-power? int16
 | +--ro pre-fec-ber? decimal64
 | +--ro sample-variance? decimal64
 | +--ro pmd? decimal64
 | +--ro cd? decimal64
 | +--ro q-factor? decimal64

The use of YANG and,

in particular, finding

common models for

events and transceiver

actions/functions can

be considered of rele-

vance because of two

main trends: network

operators looking for

common vendor-neutral

solutions; and devel-

oping transponders

supporting multiple

transmission parameters

and monitoring

capabilities.

IEEE Communications Magazine • August 2017 175

an FSM. The model defines a list of events as the
root of the hierarchy. An event is defined through
two mandatory attributes (“name” and “type”)
and an optional attribute (“description”). Together,
“name” and “type” attributes uniquely identify the
event. The “type” attribute takes its value from a
pool of possible event types predefined inside the
YANG model. Currently, we have defined some
known event types such as the “ON CHANGE”
event to describe the change of an attribute value.
Given that the change of an attribute does not nec-
essarily mean a particular degradation or fault, we
included in the model the sub-leaf “filter,” which can
be used to define a threshold to further characterize
the event. For example, by referring to the “Q-fac-
tor” state data in Fig. 3, we may define an event
named Q-factor change of type “ON CHANGE”
and, as a filter, a threshold to indicate when the
Q-factor falls below the threshold. Another leaf of
the “event” is the “reaction.” In particular, for each
event, the controller can configure a reaction the
device should have. The “reaction” is composed
of a list of “operations” to perform when the event
occurs. Each operation is identified through an “id”
and can be either of types “simple” or “conditional.”
A “simple” operation contains the “execute” attri-
bute that, recalling an RPC (as shown in the next
section), is used to encapsulate the effective task to
be executed and the “id” of the “next operation”
(if any). A “conditional” operation, with respect to
the “simple” one, contains in addition a “statement”
attribute that can be “true” or “false” (related flow
chart shown in Fig. 4b). The statement is checked at
the beginning of the operation; then, depending on
the outcome (true or false), only the correct oper-
ation is considered. “True” and “false” contain the
“execute” and “next operation” as for the “simple”
operation.

It is important to underline that this proposed
model does not replace notification; indeed, the
centralized controller should always be notified
when an event occurs. However, in the meantime
the device can already start reacting to the event.
It is also important to note that reactions are not
statically pre-configured; they can be revoked
or reconfigured by the controller depending on
the evolution of the network (e.g., depending on
bandwidth availability).

We also propose a YANG model for an FSM.
Each state of the machine is based on the Event
YANG model. In particular, the FSM YANG
model extends the YANG model for the events by
adding the state information and state transition.
More precisely, the model defines a list of states
that, similar to the events, are configurable by the
controller. Each state has a description attribute
and it is identified through an ID. Each state also
includes a list of events as defined in the event
model, with the additional next-state attribute,
which points to the next state.

Experimental Demonstration of
YANG-Based Control Plane Modeling

Events and State Machine
The proposed models have been experimentally
demonstrated in a testbed composed of a cen-
tralized network controller (implementing phyton)
and two transponder controllers (using ConfD) at
the transmitter and receiver side, respectively.

First, the transponder YANG model discussed
earlier is considered, and a NETCONF message is
generated to configure the following transmission
parameters: 100 Gb/s net rate connection with
a baud rate of 28 Gbaud, 7 percent of FEC, and
polarization multiplexing quadrature phase shift
keying (PM-QPSK) modulation format.

Then the configuration of events and state
machine is performed as in Fig. 5a, which shows
the NETCONF message exchange between the
centralized controller and a transponder con-
troller at the transmitter side. Similarly, message
exchange has been performed with the controller
at the receiver side. Initially, the centralized con-
troller sends an <edit-config> message, as in [5],
including the structure of the FSM and the asso-
ciated events. This message enables the remote
controller to instruct the device controller about
FSM, critical events, and actions to be taken if
these events occur. Once the device controller is
instructed about FMS and the event, an acknowl-
edgment message (<ok> message as in [5]) is sent
to the remote centralized controller notifying that
the operation has been concluded. The actions
to be taken and the critical events can be repro-
grammed on the device by simply sending a new
message configuration to the device controller

Figure 4. a) YANG tree representation of events
and reactions; b) flow chart for conditional
operations.

module: events
 +--rw events
 +--rw event [name type]
 +--rw name string
 +--rw type event-type
 +--rw description? string
 +--rw filters
 | +--rw filter [filter-id]
 | +--rw filter-id yp:filter-id
 +--rw reaction
 +--rw operation [id]
 +--rw id event-id-type
 +--rw type enumeration
 +--rw conditional
 | +--rw statement string
 | +--rw true
 | | +--rw execute
 | | +--rw next-operation? event-id-type
 | +--rw false
 | +--rw execute
 | +--rw next-operation? event-id-type
 +--rw simple
 +--rw execute
 +--rw next-operation? event-id-type

FalseTrue

(b)

(a)

Event

Operation

Next
operation id1

Next
operation id2

Conditional

It is important to under-

line that this proposed

model does not replace

notification; indeed, the

centralized controller

should always be

notified when an event

occurs. However, in the

meanwhile the device

can already start react-

ing to the event.

IEEE Communications Magazine • August 2017176

with the new information. The experiment con-
sists of configuring the FSM depicted in Fig. 5b,
which is composed of two states: “Steady” and
“Fec-Baud-Adapt.” In the Steady state, the con-
nection is in a healthy condition with a pre-FEC
BER below the assigned threshold of 9 × 10–4. If
the pre-FEC BER exceeds the threshold, the state
machine evolves to the Fec-Baud-Adapt state,
where an adaptation to a more robust FEC (20
percent) and a baud rate change (to 31 Gbaud)
are performed. Note that the centralized control-
ler is aware of spectrum occupation. The receiver
controller detecting the failure sends a notification
of the event to the transmitter controller through
the supervisory channel. This way, the transmitter
controller reconfigures the transmission param-
eters (FEC) based on the event and the instruc-
tions in its FSM. From the FEC-Baud-Adapt state,
if the pre-FEC BER returns below the threshold,
the state machine moves back to the Steady state,
readjusting the baud rate and the FEC to the ini-
tially configured values.

Figure 6a shows a portion of the message sent
by the controller to the transponder to configure
the FSM previously described. In particular, the
Steady state with id 1 and Fec-Baud-Adapt with id
2 can be identified. The Steady state is the starting
point as indicated by the current-state attribute.
It responds to the “ON CHANGE” event, more
precisely only when the pre-FEC BER changes to
a value higher than 9 × 10–4. The associated reac-
tion to the event is composed of a single opera-
tion (“execute”). As stated in the previous section,
the “execute” command recalls an RPC (Fig. 6a)
consisting of changing the baud rate and the FEC.
After the execution, the current state becomes
the state with id 2 (Fec-Baud-Adapt) as indicated
by the next-state attribute. The “Fec-Baud-Adapt”

state also responds to the “ON CHANGE” EVENT,
but in this case only when the pre-FEC BER goes
below the threshold. Similar to the Steady state,
a single operation is executed in reaction. In this
case, the same RPC is recalled with different val-
ues: the FEC and the baud rate are restored to the
initial values.

This way, the transponder device controller is
successfully configured and instructed about the
actions to perform when specific events occur. In
the case of pre-FEC BER increase (or decrease),
the transponder is able to automatically reconfig-
ure itself without requesting the centralized con-
troller and then waiting for its response on the
actions to perform (only a notification message is
generated).

Finally, we exploited simulations on a Span-
ish backbone (the same topology used in [15])
to identify the average number of 100 Gb/s
PM-QPSK lightpaths affected by a soft failure.
Results are shown in Fig. 6b. We generated an
optical signal-to-noise ratio (OSNR) penalty span-
ning from 1 to 3 dB on random links. A lightpath
is considered affected by the soft failure if the
OSNR penalty causes a pre-FEC BER increase
above the threshold of 10–3; otherwise, the light
path is assumed to be robust and can continue its
normal transmission. The number of affected light-
paths increases with OSNR penalty since a higher
penalty causes a higher pre-FEC BER increase.
In the traditional case, the centralized controller
has to receive notifications about the failure and
the affected lightpaths, take a decision per light-
path (e.g., FEC adaptation), and send a message
to reconfigure the involved devices. Thus, for
high OSNR penalty, the centralized controller is
also more loaded and reconfiguration at the data
plane can suffer from delay. For example, in the
case of 2 dB OSNR penalty, an average number
of 16 lightpaths is affected. Conversely, a system
exploiting the proposed YANG model for FSM is
more scalable since the centralized controller is
only notified upon failure.

Conclusions
In this article, the YANG modeling language has
been described and enhanced to enable effective
multi-vendor interoperability operations at both
the network and node (i.e., white box) levels.
Indeed, by standardizing a common language for
network and node parameters, a controller can
control and manage devices provided by different
vendors, positively impacting the overall capital
expenditure without being tied to single vendor’s
equipment. Specific enhancement has been intro-
duced to also enable the YANG language to
describe events and finite state machines, thus
describing the set of actions to be performed at
the node or device level without centralized con-
troller intervention.

The defined YANG models for transponder,
events, and finite state machines have been used
in a control plane testbed to successfully config-
ure, in a vendor-independent way, both transmis-
sion parameters and the actions to perform upon
the occurrence of specific events. This way, upon
pre-defined events at the physical layer (e.g., BER
increase), the transponder is able to autonomous-
ly react without requiring time-consuming interac-
tion with the centralized controller.

Figure 5. a) NETCONF message exchange in the testbed; b) implemented finite
state machine.

else

else

pre-FEC BER >= th

pre-FEC BER < th

FEC-baud-adaptSteady

(a)

(b)

Instructing on events
and actions

Re-instructing on events
and actions

<edit-config>

<ok>

Remote controller Device controller

<edit-config>

<ok>

IEEE Communications Magazine • August 2017 177

Figure 6. a) Capture of the control plane message instructing the device controller about the state machine; b) lightpaths involved in a
failure and related operations at the centralized controller.

<current-state>1</current-state>
<states>
 <state>
 <id>1</id>
 <description>Steady</description>
 <events xmlns=”sssup/events”
xmlns:nc=”urn:ietf:params:xml:ns:netconf:base:1/0”>
 <event>
 <name>BER-exceeds-threshold</name>
 <type>ON_CHANGE</type>
 <filters>
 <filter>
 <filter-id>1</filter-id>
 <xpath-filter xmlns:t=”sssup/transponder”>
 /t:transponder/t:subcarrier-module[t:subcarrier-id=1]
 t:state/t:receiver[t:pre-fec-ber>=0.000000001]
 </xpath-filter>
 </filter>
 </filters>
 <reaction>
 <operation>
 <id>1</id>
 <type>SIMPLE_OP</type>
 <simple>
 <execute>
 <rpc
xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 <edit-config
xmlns:nc=’urn:ietf:params:xml:ns:netconf:base:1.0’>
 <remote-address>192.168.1.1</remote-address>
 <config>
 <transponder xmlns=”sssup/transponder”>
 <subcarrier-module>
 <subcarrier-id>1</subcarrier-id>
 <config>
 <baud-rate>32</baud-rate>
 <fec-in-use>
 <name xmlns:fec=”sssup/fec-
types”>fec:1dpc</name>
 <rate>
 <message-length>4</message-length>
 <block-length>5</block-length>
 </rate>
 </fec-in-use>
 </config>
 </subcarrier-module>
 </transponder>
 </config>
 </edit-config>
 </rpc>
 <rpc>

 </rpc>
 </execute>
 <next-state>2</next-state>
 </simple>
 </operation>
 </reaction>
 </event>
 </events>
</state>

<state>
 <id>2</id>
 <description>Fec-Baud-Adapt</description>
 <events xmlns=”sssup/events”
xmlns:nc=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 <event>
 <name>BER-below-threshold</name>
 <type>ON_CHANGE</type>
 <filters>
 <filter>
 <filter-id>1</filter-id>
 <xpath-filter xmlns:t=”sssup/transponder”>
 /t:transponder/t:subcarrier-module[t:subcarrier-
id=1]/t:state/t:receiver[t:pre-fec-ber<0.000000001]
 </xpath-filter>
 </filter>
 </filters>
 <reaction>
 <operation>
 <id>1</id>
 <type>SIMPLE_OP</type>
 <simple>
 <execute>
 <rpc xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 <edit-config
xmlns:nc=’urn:ietf:params:xml:ns:netconf:base:1.0’>
 <remote-address>192.168.1.1</remote-address>
 <config>
 <transponder xmlns=”sssup/transponder”>
 <subcarrier-module>
 <subcarrier-id>1</subcarrier-id>
 <config>
 <baud-rate>28</baud-rate>
 <fec-in-use>
 <name xmlns:fec=”sssup/fec- types”>fec:1dpc</name>
 <rate>
 <message-length>14</message-length>
 <block-length>15</block-length>
 </rate>
 </fec-in-use>
 </config>
 </subcarrier-module>
 </transponder>
 </config>
 </edit-config>
 </rpc>
 <rpc>

 </rpc>
 </execute>
 <next-state>1</next-state>
 </simple>
 </operation>
 </reaction>
 </event>
 </state>
</states>

(a)

(b)

OSNR penalty [dB]

1
2
3

Average number of affected
lightpaths

9.14
16.42
22.52

Operations at the controller upon failure
(traditional approach)

1) Receiving notifications about failure
 detection and involved lightpaths
2) Computation of recovery strategy per
 lightpath (e.g., FEC adaptation)
3) Sending messages for reconfigurations

Operations at the controller upon failure if FSM
YANG is exploited

1) Receiving notifications about failure detection,
 involved/ recovered lightpaths
 (e.g., FEC adaptation)

“Steady” state

Event BER increase
with “Filter” expressing
a threshold on the BER

Reaction consists in
increasing redundancy,
thus also the baud rate

It is the state
after FEC adaptation

Event describing if
BER returns to be lower

than the threshold

Reaction consists in
decreasing redundancy,
thus also the baud rate

The system passes in
a new state

The system returns
to the “Steady” state

IEEE Communications Magazine • August 2017178

In the future, efforts in data modeling among
vendors and operators will follow up to find
common standard solutions. Moreover, func-
tional models, such as finite state machines, can
be enriched by adding new constructs besides
“simple” and “conditional” operations (e.g., error
checking, and loops such as “for” and “while”).

Acknowledgment

This work was supported by the EC through the
Horizon 2020 ORCHESTRA project (grant agree-
ment 645360).

References
[1] M. Gunkel et al., “Vendor-Interoperable Elastic Optical Inter-

faces: Standards, Experiments, and Challenges,” IEEE/OSA
J. Optical Commun. Networking, vol. 7, no. 12, Dec. 2015,
pp. B184–93.

[2] A. Shaikh et al., “Vendor-Neutral Network Representations
for Transport SDN” Proc. 2016 OFC, Anaheim, CA, Mar.
2016, pp. 1–3.

[3] M. Bjorklund, “YANG — A Data Modeling Language for the
Network Configuration Protocol (NETCONF),” IETF RFC
6020, Oct. 2010.

[4] J. Vergara et al., IETF draft-vergara-ccamp-flexigrid-yang-03,
July 2016.

[5] J. Schonwalder, M. Bjorklund, and P. Shafer, “Net-
work Configuration Management Using NETCONF and
YANG,” IEEE Commun. Mag., vol. 48, no. 9, Sept 2010,
pp. 166–73.

[6] M. Jinno et al., “Distance-Adaptive Spectrum Resource Allo-
cation in Spectrum-Sliced Elastic Optical Path Network,”
IEEE Commun. Mag., Topics in Optical Communications, vol.
48, no. 8, Aug. 2010, pp. 138–45.

[7] L. Liu et al., “OpenSlice: An OpenFlow-Based Control Plane
for Spectrum Sliced Elastic Optical Path Networks,” Optics
Express, vol. 21, no. 4, Feb. 2013, pp. 4194–4204.

[8] https://github.com/openconfig/public/tree/master/release/
models/optical-transport’ accessed Dec. 2016

[9] M. Dallaglio et al., “YANG Model and NETCONF Protocol
for Control and Management of Elastic Optical Networks,”
Proc. 2016 OFC, Anaheim, CA, 2016, pp. 1–3.

[10] https://github.com/OpenROADM/OpenROADM_MSA_
Public/tree/master/Version percent201.2, accessed Oct. 2016.

[11] N. Sambo et al., “Next Generation Sliceable Bandwidth
Variable Transponders,” IEEE Commun. Mag., vol. 53, no. 2,
Feb. 2015, pp. 163–71.

[12] R. Enns et al., “Network Configuration Protocol (NET-
CONF),” IETF RFC 6241, June 2011.

[13] X. Liu et al., IETF draft-ietf-teas-YANG-te-topo-06, Oct. 2016.
[14] https://github.com/mattedallo/sssa/blob/master/yang-

models/transponder.yang, accessed Mar. 2016
[15] N. Sambo et al., “Monitoring Plane Architecture and OAM

Handler,” J. Lightwave Technology, vol. 34, no. 8, April
2016, pp. 1939–45.

Biographies
Matteo Dallaglio received his Master’s degree cum laude in
telecommunication engineering from the University of Trento
together with a Diploma in communication network engineering
from Scuola Superiore Sant’Anna, Pisa, in 2013. He is currently
pursuing a Ph.D. in photonic technologies from Scuola Superiore
Sant’Anna. His research interests include software defined net-
working, network functions virtualization, WDM network planning
and modeling, PCE, and GMPLS protocols for traffic engineering.

Nicola Sambo is an assistant professor at Scuola Superiore
Sant’Anna. He was a visiting student at France Télécom, Lan-
nion. He is also collaborating with CNIT, Pisa, Italy. His research
interests include optical network architecture, transmission per-
formance modeling, and control plane. He is an author of about
100 publications including international journals, conference
proceedings, and patents.

Filippo Cugini is with CNIT. His main research interests include
theoretical and experimental studies in the field of optical com-
munications and networking. He is a co-author of 12 patents
and more than 200 international publications.

Piero Castoldi [SM] has been an associate professor at Scuola
Superiore Sant’Anna since 2001, where he leads the area of
Networks and Services. He had leading roles in the following
EU projects: BONE, STRONGEST, IDEALIST, OFELIA, FED4FIRE,
and 5GEx. His research interests cover network architectures,
control, and data center architectures for grids and clouds. He
is an author of more than 300 publications in international jour-
nals, conference proceedings, and patents.

In the future, efforts in

data modeling among

vendors and operators

will follow up to find

common standard solu-

tions. Moreover, func-

tional models, such as

finite state machine, can

be enriched by adding

new constructs

besides “simple” and

“conditional” operations.

