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Abstract The orchestration of cloud computing infras-
tructures is challenging, considering the number, het-
erogeneity and dynamicity of the involved resources,
along with the highly distributed nature of the appli-
cations that use them for computation and storage.
Evidently, the volume of relevant monitoring data can
be significant, and the ability to collect, analyze, and
act on this data in real time is critical for the infras-
tructure’s efficient use. In this study, we introduce a
novel methodology that adeptly manages the diverse,
dynamic, and voluminous nature of cloud resources and
the applications that they support. We use knowledge
graphs to represent computing and storage resources
and illustrate the relationships between them and the
applications that utilize them. We then train Graph-
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SAGE to acquire vector-based representations of the
infrastructures’ properties, while preserving the struc-
tural properties of the graph. These are efficiently pro-
vided as input to two unsupervised machine learn-
ing algorithms, namely CBLOF and Isolation Forest,
for the detection of storage and computing overusage
events, where CBLOF demonstrates better perfor-
mance across all our evaluation metrics. Following the
detection of such events, we have also developed appro-
priate re-optimization mechanisms that ensure the per-
formance of the served applications. Evaluated in a sim-
ulated environment, our methods demonstrate a signifi-
cant advancement in anomaly detection and infrastruc-
ture optimization. The results underscore the poten-
tial of this closed-loop operation in dynamically adapt-
ing to the evolving demands of cloud infrastructures.
By integrating data representation and machine learn-
ing methods with proactive management strategies, this
research contributes substantially to the field of cloud
computing, offering a scalable, intelligent solution for
modern cloud infrastructures.

Keywords Cloud computing · Resource allocation ·
Knowledge graphs · Anomaly detection

1 Introduction

Most applications and services utilize centralized com-
puting infrastructures, rendering cloud computing a
crucial component of our digital economy. These appli-
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cations relate to smart cities [1], autonomous driving
[2], augmented reality [3] and Internet of (IoT), in gen-
eral. The aforementioned applications are also recog-
nized as critical data generating sources. The number of
Internet of Things devices in a wide array of domains,
operating in the edge of the network, is forecast to grow
to almost 6.5 billion by 2030, an increase of more than
4 billion compared to 2020 [4].

However, utilizing central cloud to transfer and pro-
cess edge-generated data is deemed impractical due to
economic factors, such as the costs of cloud and net-
working resources, and performance factors, such as
high and fluctuating latency and limited throughput
[5,6]. Moreover, it has been acknowledged that only
a fraction of this data will be actually meaningful or
helpful (the edge could act as a filter on what reaches
the core cloud) and that their size will surpass the stor-
age capacities of today’s cloud data centers [7]. To this
end, edge computing has gained ground as a comput-
ing paradigm to boost application and infrastructure
efficiency by using computing and storage resources
close to where data are generated [8]. Edge resources
can operate in different layers: on-premise, micro, deep
and far edge, providing various levels performance effi-
ciency.

Today, it is recognized that the joint use of edge and
cloud resources, in the form of the so called edge-cloud
continuum, can provide the most benefits for serving
distributed applications while utilizing heterogeneous
computing and storage resources. Also, the complexity
and dynamicity of the applications’ requirements (e.g.,
in terms of resource usage or delay sensitivity) makes
necessary the coupling of resource orchestration mech-
anisms with advanced monitoring capabilities in a con-
tinuous closed-loop control fashion that will run over an
infinite time horizon [9]. Figure 1 portrays such a com-
plex cloud computing infrastructure that spans from
local IoT devices and edge resources to the expansive
core cloud datacenters, conveying the layered approach
to data processing and application support within a dis-
tributed cloud environment. The effective monitoring
of such complex infrastructures can enable proactive
and reactive re-optimization operations for the benefit
of both the running applications and the infrastructures
themselves.

In this work, we use knowledge graphs to repre-
sent computing and storage infrastructures and illus-
trate relationships between the available resources and
the applications that utilize them. Leveraging a Knowl-

edge Graph (KG) to model the computing and stor-
age infrastructure is pivotal towards the integration of
large datasets of monitoring data, from multiple sources
(providers, edge, cloud and network resources, appli-
cations etc). This enables obtaining better insights on
the infrastructure’s status and more efficient decision-
making, by performing machine learning based ana-
lytics, in comparison to other relevant machine learn-
ing applications that only look at the individual nodes’
properties in isolation, without taking into account
their in-between relations. Next, we use graph embed-
dings to transform the graph entities (nodes, edges)
into fixed length vectors, representing in this way the
graph in a low-dimensional space, while preserving
its structural properties. We then employ unsupervised
anomaly detection methods on the generated embed-
dings to identify abnormal resource usage patterns,
which are often indicative of dynamic or unpredictable
application behavior, cybersecurity incidents, and/or
bad allocation decisions. This methodology is cou-
pled with appropriate mechanisms that re-optimize the
infrastructure usage in a timely manner, by reallocating
the applications’ workload to other resources.

The remainder of this work is organized as follows.
In Section 2 we discuss previous work in the context
of automated resource orchestration. In Section 3 we
thoroughly describe the proposed closed-loop method-
ology, discussing the use of knowledge graphs, the
application of machine learning mechanisms for event
detection and the re-optimization methods applied. In
Section 4 we present the experimental setup and the
evaluation results of our evaluation. Finally, in Sec-
tions 5 and 6 we discuss the limitations and the added
value of our approach, and in Section 7 we conclude
our work.

2 Related Work

The orchestration of computing and storage resources
is a key operation for IT organizations to accelerate
service delivery, simplify optimization, and decrease
costs [10]. It is also a challenge, considering the hetero-
geneity and diversity of resource types (CPUs, GPUs,
DPUs, storage, bandwidth), the user access patterns,
and lifecycle activities [11]. Comprehensive resource
allocation techniques capable of spanning across vari-
ous planes of the processing infrastructure are essential.
In particular, AI-based autonomous resource orchestra-
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Fig. 1 The distributed nature of modern cloud-based networks, from local devices and edge computing nodes to centralized cloud
datacenters

tion mechanisms have been widely explored, leverag-
ing many traditional machine learning (ML) schemes
for workload modeling and prediction, load balanc-
ing, application placement and migration, computation
offloading, system autoscaling, and remediation [12].
Recent studies have introduced agent-based models
for cloud simulations, focusing on service placement
and migration strategies in various cloud environments
[13], and the implementation of recurrent neural net-
works for dynamic resource allocation [14].

Anomaly detection in resource allocation has seen
both supervised and unsupervised ML models being
proposed [15–17]. These approaches typically rely on
logs or audit traces, including CPU and memory con-
sumption, disk access, and network activity informa-
tion [18]. Supervised approaches classify anomalous
services by training on a labeled dataset, employing
methods like decision trees, Random Forests [19,20],
and Support Vector Machines (SVM) [21,22]. Ensem-
ble approaches and Self Organizing Maps (SOM) are
also used in this context [23,24]. The recent introduc-
tion of machine learning-based frameworks for channel
bandwidth allocation in distributed computing environ-

ments signifies a shift towards more adaptive resource
management methods [25].

Unsupervised approaches, which do not rely on
annotated data, identify observations that deviate mark-
edly from what is considered normal behavior. Recent
advances include the use of recurrent neural net-
works, autoencoders [26], regression models [27],
and clustering algorithms [28]. Timeseries-based algo-
rithms have been used to identify latent correlations
in resource usage measurements [29], with statisti-
cal correlation analysis used in virtual network func-
tions chains [30]. The introduction of Deep Reinforce-
ment Learning (DRL) approaches in task offloading
and resource allocation in edge-cloud networks [31],
and in device-to-device (D2D)-aided fog radio access
networks (F-RANs) [32], aligns with the trend towards
more autonomous resource management systems.

Recent advancements in artificial intelligence to
IT operations (AIOps) and cloud resource manage-
ment have further expanded the scope of intelligent
resource orchestration. A study on Prometheus and
AIOps highlights their role in automating and opti-
mizing cloud-native applications, pointing towards the
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future of IT automation that combines DevOps, Big
Data, and AI [33]. Another significant development is
the use of AIOps for effective cloud resource man-
agement to maintain service quality and overall sys-
tem availability [34]. The dynamic nature of workloads
in cloud computing has led to innovative approaches
in resource allocation, aiming to ensure Quality-of-
Service while managing resource costs [35]. Workload-
aware resource management strategies, such as War-
Mops, focus on optimizing resource allocation and uti-
lization in IaaS clouds, addressing scalability and cost
issues [36]. Moreover, the application of deep rein-
forcement learning in cloud resource scheduling is a
promising approach to solving complex combinato-
rial optimization problems in cloud management [37].
These recent studies underscore the ongoing evolution
and complexity in cloud resource management tech-
niques.

Autonomous and intelligent knowledge extraction
mechanisms are required to learn and model the
dynamic behavior of computing and storage resources,
capturing the interactions among system components
(e.g., micro-services, edge, cloud, and network resour-
ces). KGs are ideal for integrating multi-modal data
from heterogeneous sources, enabling natural represen-
tation and reasoning about data relationships [38]. They
have been used in several fields, such as health [39],
social networks [40], recommender systems [41], and
cybersecurity [42]. The use of KGs for modeling infras-
tructures and employing ML-based anomaly detection
algorithms, as proposed in our work, remains novel.
This approach, coupled with our focus on inductive rep-
resentation learning for scalable capture of large, com-
plex network topologies, differentiates our methodol-
ogy from existing studies. Additionally, the cloud fail-
ure prediction based on traditional ML and deep learn-
ing algorithms [43], and the resource allocation strate-
gies in collaborative cloud-edge computing systems
[44], provide further context to the evolving landscape
of cloud computing and resource management, affirm-
ing the uniqueness and relevance of our research.

Despite the aforementioned adoption of KG approa-
ches , most optimal resource allocation problems are
typically modeled as graph problems [45,46], and
they are usually solved using queuing theory [47], Q-
learning [48], or traditional ML methods [49]. The
combined use of graph-based representations and ML
techniques towards automated resource allocation is
mostly unexplored, with a few notable exceptions that

leverage edge graph neural networks for the construc-
tion of allocation policies [50] and the prediction of
corresponding Quality of Service (QoS) performance
indicators [51]. To the best of our knowledge, there is
no previous work that combines knowledge graphs and
graph embeddings for the modelling of the infrastruc-
tures with ML-based anomaly detection algorithms.
Moreover, by adopting an inductive representation
learning approach that focuses only on the local neigh-
bourhood of each node to extract meaningful embed-
dings, we can efficiently capture an infrastructure’s
topology without facing scalability issues even in cases
involving large, complex networks.

3 Knowledge Graph-Based Anomaly Detection
and Resource Allocation

The proposed methodology materializes a ML-driven
pipeline composed of five high-level steps, as depicted
in Fig. 2. The pipeline begins by representing the infras-
tructure entities and their interrelationships as a knowl-
edge graph. Topological embeddings are then extracted
from this graph to serve as features for a set of unsu-
pervised methods. This allows us to capitalize on the
ability to learn from both the topological structure of a
node’s neighborhood and the distribution of node fea-
tures within it.

Currently, the two types of events that our frame-
work can detect are computing and storage overusage
events, which are largely identified based on the distri-
bution of node features. More specifically, a computing
overusage event arises when the total computational
power requested by all applications served on a partic-
ular node surpasses the node’s available computational
resources. Similarly, a storage overusage event occurs
when the total storage requested by these applications
exceeds the node’s storage capacity.

The resource overusage events may be due to bad
resource allocation decisions, to malicious behaviour
from applications or other reasons. However, it is worth
noting that our graph-structured embeddings, which
capture the local neighbourhood topology, open up the
possibility of detecting additional types of anomalies.
For example, an application unexpectedly spanning
across multiple resource nodes, potentially indicative
of a spamming event, could be perceived as an anomaly
due to the unusual topological configuration it presents.
While this scenario is beyond the scope of the present
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Fig. 2 Overview of the proposed KG-based modelling and event detection methodology

paper, our framework could be extended to identify
such topology-based anomalies in future work.

Unsupervised algorithms operate autonomously, as
they do not require manual input (e.g., data labelling)
from the user, which would be very difficult to obtain
anyway. Upon detection of an anomaly, a resource
re-optimization algorithm is activated. This algorithm
identifies the affected applications and mitigates the
sources of the anomalies, for instance by migrating
workload to other resources.

Recurring inference, a feature provided by our
implemented pipeline, is also utilized to facilitate peri-
odic retraining and to trigger the resource optimization
mechanism, enabling continuous control. In this way,
we formulate a continuous, autonomous, and closed-
loop control system that serves as an anomaly detec-
tor and re-optimizer within a computing and storage
infrastructure.

3.1 Knowledge-Graph for the Cloud

We consider a computing and storage infrastructure
consisting of four types of entities: region entities,
provider entities, resource entities and application enti-
ties. The following assumptions are made regarding
these entities:

• A provider owns a number of resources and each
resource belongs to a single provider.

• Each region contains many resources from different
providers and each resource is located to a particu-
lar region.

• A resource provides computing or storage capacity
to multiple applications that share the respective
resources.

• The applications consist of multiple components
operating in a distributed manner. Each applica-
tion’s components can be deployed in up to five
different resources based on their requirements and
the resources’ capabilities.

Based on the provided infrastructure a knowledge
graph is populated, which can be queried using the
Cypher query language [52,53]. Each entity of the con-
sidered model is assigned to a different node type. Also,
the relations between the various entities described ear-
lier are represented in the graph as different types of
edges that connect the various types of nodes. A region
entity is connected with a resource entity via an edge
of type ”located in”, if the resource is located to the
particular region. A provider entity is connected with a
resource entity via an edge of type ”belongs to”, if the
resource belongs to that particular provider. Finally, a
resource entity is connected with an application entity
via an edge of type ”runs in”, in case a component of
the application runs in that resource. This edge also
carries a set of weights that represent the percentage of
the resource’s computing and storage capacity utilized
by the application’s component(s).

The knowledge graph that represents all node labels
and relationship types is presented in Fig. 3, while a
snapshot of it is illustrated in Fig. 4.

3.2 Creation of Graph Embeddings

The graph generated at the previous phase provides
an intuitive way to depict the infrastructure. How-
ever, applying ML operations (e.g., anomaly detection)
directly on the graph structure can be a challenging pro-
cess as most ML algorithms are designed to work with
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Fig. 3 Knowledge graph
meta-graph

fixed-size numerical inputs (vectors). To overcome this
limitation, we applied a graph embedding method to
transform the graph entities (nodes, edges) into vec-

tors of a low-dimensional space, while preserving the
graph’s topology. The preservation of graph topology
in the embedded space ensures that the spatial relation-

Fig. 4 Snapshot of the simulated knowledge graph
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ships between the nodes, reflected by the edge structure
in the original graph, are not lost in the transformation.
This approach thus allows us to utilize conventional
ML techniques on the resulting embedding, which is a
fixed-size numerical matrix.

The embedding process is denoted as a function:

f : (V, E) → R
d (1)

where V is the set of nodes, E is the set of edges, Rd

denotes the real-valued vector space where the graph is
embedded, with d being the specified dimension of the
embeddings. The function f (1) is a graph embedding
process that captures the structure and attributes of the
graph in the d-dimensional space.

We used GraphSAGE [54], a neural-based, graph
embedding method to train a model on a sub-graph
of the aforementioned graph. The sub-graph con-
tains nodes of type providers, resources and
applications, as well as their in-between rela-
tionships and any properties attached to them. Graph-
SAGE is capable of generating predictive representa-
tions in a fully unsupervised manner by sampling and
aggregating features from a node’s local neighborhood
using random walks. Hence, instead of training a stand-
alone embedding vector for each node, a set of aggre-
gator functions that combine feature information from
its closest neighbours is trained. By incorporating the
node features in the learning algorithm, the capabil-
ity of learning the topological structure of the node’s

neighborhood and the distribution of the node features
in it, is simultaneously introduced.

For each node v ∈ V of the sub-graph, GraphSAGE
creates a tree that has as root the corresponding node.
The depth of the tree is set to the defined search depth
K inside the graph, and each tree node’s children are its
adjacent nodes in the graph. To keep the computational
footprint of each batch fixed, a fixed-size uniform sam-
pling of the immediate neighbors is used, instead of
using the full immediate neighborhood sets. In Fig. 5,
Step 1 depicts the random tree of depth three (3) cre-
ated for a node of the graph. These trees are then used
by the aggregation functions to create embeddings of
the root node of each tree.

3.2.1 Embedding Process

The graph embedding process involves an iterative
method that is based on the network topology and on
the features of the neighbouring nodes (Fig. 5). Ini-
tially, given a target node and a defined range of search
depths K, for each k ∈ {1, ..., K } the algorithm updates
the representations of the nodes by aggregating the pre-
vious representations of its immediate neighbours (i.e.
the nodes in the (k−1)th depth are updated based on the
features of the nodes in the kth depth). For this purpose,
one of the aggregation mechanisms described in the fol-
lowing subsection are used. Next, this neighbourhood
representation is concatenated with the node’s previ-
ous representation and finally this concatenated vector

Fig. 5 The three-step process of the GraphSAGE inductive representation method
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is fed through a fully connected layer with a nonlin-
ear activation function, which transforms the represen-
tation to a fixed size. Hence, as the process iterates
through search depths, nodes incrementally gain more
and more information from further reaches of the graph
(thus each iteration can be viewed as a layer of depth
influence).

For k = 0, the algorithm initializes by setting as
representations of each node its input node features.
Next, as shown in Step 2 of Fig. 5, for k = 1 the rep-
resentation of the red node will be updated with the
aggregated information derived from its blue neigh-
bour nodes, for k = 2 the representation of the blue
nodes will be updated by that of their pink neighbour
nodes, and so on. Finally, the representation of the tar-
get node (red) is derived by the updated representations
of its immediate neighbours, which are aggregated into
a single vector (Step 3 of Fig. 5). This (fixed) vector
representation comprises the final embeddings for the
target node; this operation is repeated for every node in
our graph.

3.2.2 Aggregation Mechanisms

The aggregation of the neighbor representations can be
performed by a variety of aggregator mechanisms that
operate over an unordered set of vectors; contrary to
most datasets, a node’s neighbors have no natural order-
ing. Therefore, the aggregation function must have the
symmetry property (i.e., to be invariant to permuta-
tions of its inputs). An intuitive choice would be the
mean aggregator, which is a mean operator that pro-
duces the elementwise mean of the input vectors. Other
alternatives include long-short term memory (LSTM)
networks and pooling aggregators [55]. LSTMs are not
inherently symmetric by design, so the LSTM aggre-
gator is based on an adapted LSTM mechanism that
operates on an unordered set by applying the LSTMs to
a random permutation of the node’s neighbors. A pool-
ing aggregator feeds each neighbor’s vector through a
fully-connected single-layer neural network, indepen-
dently and an element-wise max-pooling operation is
applied to aggregate information across the neighbor
set. In any case, thanks to the symmetry property, a
neural network-based aggregator can be trained and
deployed to arbitrarily ordered feature sets.

During training, a graph-based loss function is lever-
aged in a fully unsupervised learning setting to tune
the learnable weight matrices Wk via stochastic gra-

dient descent, as depicted in (2). The loss function L
incorporates a negative sampling term, thus encourag-
ing nearby nodes to have similar vector representations
while at the same time enforcing the representations of
disparate nodes to be highly distinct. The learning rate
α is a hyperparameter that controls the step size in the
gradient descent update.

W (k) := W (k) − α
∂L

∂W (k)
(2)

At inference time, the trained system is used to gen-
erate embeddings for entirely unseen nodes by apply-
ing the learned aggregation functions. GraphSAGE fol-
lows an inductive approach that only exploits local node
attribute information, thus it is inherently generalizable
to unseen data, in contrast to transductive embedding
frameworks that can only generate embeddings from
static graphs.

3.3 Event Prediction

In our experiments, we consider two types of events
within the infrastructure: computing overusage and
storage overusage. The computing overusage event
occurs when the total computing power requested by
the applications served in a node exceeds its capacity.
Similarly, the storage overusage event occurs when the
storage requested by the applications exceeds node’s
capacity. The embeddings described in the previous
subsection were utilized as input for anomaly detec-
tion algorithms that were trained to identify these two
types of events.

The elements of each vector were considered as fea-
tures during the anomaly detection phase and thus the
size of the tabular dataset used for the training of the
algorithms is determined by the number of nodes in the
sub-graph and the length of the vectors.

Anomaly detection algorithms fall under two main
categories, distance-based and density-based. Distance-
based algorithms perform better when the anomalies
at hand are instances with fewer than p neighboring
points within a distance D. On the contrary, density-
based algorithms perform better when the anomalies
are instances in low density regions or low local/relative
density. Given that the embeddings created by the
GraphSAGE algorithm encapsulate topology-related
and feature-related information, we exploited methods
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from both categories to identify the events and com-
pare the results. Specifically, we used two unsupervised
methods to perform multivariate anomaly detection on
the embeddings, Cluster-based Local Outlier Factor
(CBLOF) [56] and Isolation Forest [57]. The former
is density-based and the latter distance-based.

CBLOF calculates the outlier score using the ”cluster-
based local outlier factor” measure. Local outlier factor
[58] is based on the local density of a data point, where
locality is given by its k nearest neighbors and density
is estimated by their distance. By comparing the local
density of a point to the local densities of its nearest
neighbors, regions of similar density can be identified,
as well as points that exhibit a substantially lower den-
sity than their neighbors. These points are considered
to be outliers. Consequently, cluster-based local out-
lier factor is measured by both the size of the cluster to
which the point belongs and by the distance between
the point and its closest large cluster, if it belongs to a
small one.

The algorithm consists of two high-level steps. Ini-
tially, it utilizes a clustering algorithm to partition the
data in disjoint subsets; the choice is irrelevant since
the only requirement is to perform well on the dataset
and produce good clustering results. Subsequently, the
clusters are separated into two categories, small clusters
(SC) and large clusters (LC), with respect to parame-
ters α and β. A boundary b that separates SC and LC is

computed as follows: The clusters are ordered by size,
and the b larger are selected so that either the propor-
tion of number of samples in all LC is greater than α or
the size ratio between the smallest LC and largest SC
is greater than β. Finally, the cluster-based local outlier
factor is calculated for each point based on the size of
the cluster it belongs to, as well as the category it falls
under. If the point belongs to a LC, the score equals to
the size of the cluster multiplied by the distance of the
point from it. If the point belongs to a SC, the score
equals to the size of the nearest LC multiplied by the
distance of the point from it. The measure used for the
computation of the distance between the point and the
respective cluster depends on the clustering algorithm
used in the initial step; the similarity measure must be
the same.

Figure 6 depicts an example of the process, in which
8 clusters have been created (C1−4 are LC, while C5−8

are SC). The centre of some clusters has been denoted
for visualization purposes. As seen, for points belong-
ing to C1 or C2 the distance between them and their
respective cluster is calculated (yellow lines), while for
points belonging toC5 orC8 the distance between them
and the closest LC is calculated (C3 orC2 respectively).

Similarly to Random Forest [59], Isolation Forest is
built on an ensemble of binary (isolation) trees. Their
difference lies in the detection of anomalies using isola-
tion, rather than modelling of the normal points, where

Fig. 6 Example clustering
of the CBLOF algorithm
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isolation is measured in terms of distance between a
data point and the rest of the data. The rational is
that anomalous instances (instances with distinguish-
able attribute-values) are more likely to be separated
in early partitioning, as shown in Fig. 7. Hence, they
tend to be easier to separate from the rest of the sample,
compared to normal points.

In order to isolate observations, the algorithm selects
a set of subsets of the original dataset (of defined size)
and constructs an isolation tree per subset. Each iso-
lation tree is created as follows: a feature is selected
randomly and a random corresponding split threshold,
the value of which lies between the maximum and min-
imum values of the selected feature. This processes
is performed recursively until either the tree reaches
a height limit or all observations are separated. Since
recursive partitioning can be represented by a tree struc-
ture, the number of splits required to isolate a sample
is equivalent to the path length from the root node to
the terminating node, as depicted in Fig. 8. The aver-
age path length, produced by the set of similar random
isolation trees (isolation forest), comprises a measure
of normality and the decision function. Random parti-
tioning produces noticeably shorter paths for anoma-
lies. Hence, when a forest of random isolation trees
collectively produces shorter path lengths for partic-
ular samples, they are highly likely to be anomalies
(in Fig. 8, shortest paths of each tree are denoted with
darker colors).

3.4 Resource Re-Allocation

When an anomaly event is detected, a resource opti-
mization mechanism is required to alleviate the cause
of the event and to maintain optimal performance of
the infrastructure and the running applications. Our
solution sets up a closed loop operation between event
detection and resource allocation, in which the resource
allocation procedure is reactively executed based on
the events received, reallocating application workload
to other unaffected resources.

The event detection mechanism brings an added
layer of interpretability and explainability to our model.
It operates as a filter layer that isolates the subgroup
of the original infrastructure affected by the anoma-
lous behaviors and conveys this information to the
re-allocation mechanisms, specifying not merely the
occurrence of an anomaly but detailed information
about the corresponding nodes.

To actualize this, we developed a simple but efficient
heuristic algorithm (Algorithm 1) based on the Best-Fit
approach, with the objective to minimize the number of
re-allocations required to handle an event. The input of
the proposed mechanism includes the infrastructure’s
topology and characteristics (e.g., resources’ capacity)
and information regarding the current resource alloca-
tion. Upon an anomaly event triggering its execution,
the mechanism first identifies the applications affected
by the overusage event. It then examines the applica-

Fig. 7 Example partitioning of the Isolation Forest algorithm
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Fig. 8 Disparity between
the path lengths of normal
and anomalous samples

tions’ demands in the respective node and calculates
all possible migrations that can alleviate the overusage.
These solutions are subsequently ordered based on the
number of re-allocations required. Finally, each candi-
date solution from the ordered list is evaluated to find
the resources that can serve the application’s demands.

This process thereby ensures an explainable and
interpretable reallocation process that is based on the
detected anomalies, making it a more effective and
understandable tool for managing resources within the
network.

Overall, our methodology significantly addresses
the complexity inherent in monitoring cloud computing
infrastructures, by leveraging KGs and GraphSAGE
embeddings to convert intricate and high-dimensional
monitoring data into a structured and manageable
form. More specifically, the KG represents diverse enti-
ties and their interrelations within the cloud environ-
ment, transforming the otherwise convoluted data into
an intelligible graph structure. Subsequently, Graph-
SAGE embeddings further distill this complexity by
encapsulating both the topological and feature-related
information of these entities into lower-dimensional,
meaningful vector representations. This approach not
only simplifies the complex monitoring process, but
also enhances the effectiveness of our unsupervised
machine learning algorithms in detecting anomalies
and optimizing resource allocation. By reducing the

Algorithm 1 Resource optimization algorithm.
Input: Nodes’ computing/storage utilization profiles, applica-

tion assignments, anomaly events
Output: Allocation of applications to computational resources
1: Sort the nodes based on their utilization profiles in ascending

order
2: for each application related to a resource node where an event

was triggered do
3: Calculate the number of required re-allocations
4: end for
5: Sort the applications based on the required number of re-

allocations in descending order
6: for each candidate for re-allocation application do
7: if node has enough to serve the application then
8: Assign application to node
9: else
10: Search for resource availability among the remaining

nodes
11: end if
12: if a node with enough capacity exists then
13: Assign the application to the first one found
14: else
15: Blocked
16: end if
17: Update the nodes’ resource utilization profiles
18: Update applications’ assignments
19: end for

dimensionality and organizing the data more coher-
ently, our method facilitates a more efficient analysis
and interpretation of the cloud infrastructure’s state,
thus overcoming the challenges posed by the vast and
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multifaceted nature of monitoring data in cloud envi-
ronments.

4 Experimental Setup

We used the NetworkX Python package [60] in order
to simulate an integrated computing and storage infras-
tructure. Neo4j Python Driver [61] was also leveraged
to import the graph to the Neo4j graph database man-
agement system [62] and represent it as a knowledge
graph. Overall, we consider 600 resources belong-
ing to 30 different providers via 600 [:belongs
to] relationships. These resources are allocated
to 60 regions via 600 [:located in] relation-
ships. Finally, 800 applications are connected
with the available resources using 2414 [:runs
in] relationships. Each resource’s parameters
include a computing total usage and a storage total
usage property, while each [:runs in] relationship
contains a computing percentage and storage percent-
age property, denoting the infrastructure needs for the
corresponding application.

Neo4j’s built-in GraphSAGE algorithm was used
to create node embeddings. We built a 3-layer Graph-
SAGE architecture using a pool aggregation strategy,
a random walk search depth of w = 5 and the sigmoid
activation function [63]. In our initial experiments with
the aggregation strategy for GraphSAGE, we explored
the use of an LSTM aggregator. However, we observed
underwhelming results, which can be attributed primar-
ily to the unordered nature of our graph data. LSTM
models, being inherently sequential, rely on the order
of input data to capture temporal or sequential depen-
dencies. In the context of graph data, where nodes and
their connections do not possess a natural or intrinsic
sequence, the LSTM aggregator struggled to effectively
process and leverage this type of data structure, leading
to worse anomaly detection performance. This, com-
bined with the increased complexity and computational
requirements of LSTM, informed our decision to favor
the pooling aggregator for GraphSAGE. The Graph-
SAGE model was trained on a batch size of b = 10
for 30 epochs and a learning rate of l = 0.1 in order
to extract node embeddings of dimension of d = 16.
The trained model was used to induce embeddings for
every node of the sub-graph, which were then added as
additional properties of type embeddingGraphSage.

Finally, we used PyOD’s [64] CBLOF and Isolation
Forest algorithms to detect anomalies. We trained the
CBLOF algorithm to take as input 16 clusters produced
by the trained K-Means clustering algorithm [65].
Euclidean distance was used by K-Means and conse-
quently by CBLOF to calculate the distance between
instances in a feature array. Regarding the coefficients
for determining small and large clusters, we set the
alpha parameter α = 0.839 and the beta parameter
β = 2. We also set the contamination factor of the
dataset to be equal to the default, c = 0.1.

We trained the Isolation Forest with e = 100 base
estimators in the ensemble and f = 1 dataset feature
for each base estimator. Sampling without replacement
was performed and the number of samples drawn from
the dataset to train each base estimator was set to be
equal to min(256, s), where s = number of samples.
We also set the contamination factor of the dataset to
be equal to the default, c = 0.1.

4.1 Anomaly Detection Evaluation

We consider two types of events within the infrastruc-
ture: computing overusage and storage overusage. In
the repetitions of our experiments, the running appli-
cations exceed the provided capacity up to 30%, cre-
ating multiple concurrent events. Each simulation sce-
nario sets up the knowledge graph inducing the vari-
ous events, creates the embeddings and then identifies
the events. The evaluation metrics utilized in order to
showcase the efficiency in identifying the events using
the implemented methodology are Confusion Matrix,
Accuracy, Precision, Recall and finally F1 Score. A
brief description of each is as follows:

ConfusionMatrix:Confusion matrix represents the
error of a classification problem such that value Ci j

of cell (i, j) is equal to the number of observations
belonging to group i but predicted to be in group j .
In a binary classification scenario, value C0,0 (True
Negatives-TN), represents the number of observations
that are negative and are correctly predicted as negative.
On the same note, value C1,1 (True Positives-TP), is the
count of positive observations that are correctly pre-
dicted as positive. On the other hand, value C0,1 (False
Positives-FP), is the number of observations which are
originally negative but are wrongfully predicted as pos-
itive, and value C1,0 (False Negatives-FN), is the count
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of originally positive observations that are wrongfully
predicted as negative.

Accuracy: Accuracy is an intuitive performance
measure that gives a general idea about how well a
model is trained. It computes the ratio between pre-
dicted observations and total observations as:

Accuracy = T P + T N

T P + FP + FN + T N

Precision:Precision explains what percentage of the
correctly predicted cases actually turned out to be pos-
itive and is useful in the cases where False Positive is
a higher concern than False Negatives. It can be calcu-
lated as:

Precision = T P

T P + FP

Recall: Recall explains how many of the actual pos-
itive cases were predicted correctly. Contrary to preci-
sion, recall is useful in cases where False Negative is of
higher concern than False Positive. It can be calculated
as:

Recall = T P

T P + FN

F1 Score: F1 Score gives a combined idea about
Precision and Recall and is maximized when Precision
is equal to Recall. It can be calculated as:

F1 Score = 2 × Precision × Recall

Precision + Recall

We composed a summary comparative table (Table 1)
that includes the model name, as well as the above
described metrics.

From Table 1, we can easily observe that the reported
accuracy of both models is satisfactory as it surpasses
97% mark. However, CBLOF outperforms Isolation
Forest on the rest three metrics. This can be par-
tially attributed to the fact that CBLOF follows a local

Table 1 CBLOF and Isolation Forest evaluation metrics

Accuracy Precision Recall F1 Score

CBLOF 0.990 0.792 0.950 0.864

Isolation Forest 0.978 0.621 0.900 0.735

approach, being capable of identifying outliers in sub-
sets of the dataset (i.e., topology) that may not be
considered outliers in other parts. Due to the vec-
tor representation provided by GraphSAGE, all nodes
can be considered as points in a multidimensional
space. As such, outliers are likely to form less densely
populated areas compared to normal cases, which
enables clustering-based outlier detection approaches
like CBLOF to correctly identify these as potential
anomalies. We also provide a confusion matrix for each
model (Figs. 9 and 10) as an alternative way to evaluate
their performance.

The outcome of the metrics in Table 1, also depicted
by the confusion matrices above, render obvious that
Isolation Forest has a higher number of false posi-
tives and false negatives compared to CBLOF. We can
see that although both models have similar accuracy,
CBLOF has a significantly smaller number of false pos-
itives, which leads to significant difference in precision.
We also provide a qualitative manner of evaluating the
performance of both approaches, via the scatter plots
of Figs. 11 and 12. The x-axis represents the embed-
dings of each simulated network node, while the y-axis
represents their anomaly score (an outlier should have
a higher anomaly score compared to a normal sample).
It is evident that in both cases there is a clear distinc-
tion between anomalous observations (red points) and
normal ones (green points); however, CBLOF appears
to be more confident in data distribution, as the normal
points are more concentrated and have a lower average
anomaly score compared to those of Isolation Forest.
This further points to the fact that the training scheme
of Isolation Forest results in a more accurate approxi-
mation of the underlying data distribution.

These remarks led us to the conclusion that CBLOF
seems to be more sensitive in correctly identifying the
anomaly class, producing better results.

4.2 Evaluation of the Closed-Loop Control

We evaluated the performance of the resource alloca-
tion mechanism that operates in a closed-loop fashion
when events are detected. We assumed that the total
capacity of the infrastructure nodes is 100 computing
units and 200 storage units. Application demands were
generated according to a Poisson process with aver-
age computing and storage requirements in the close
interval of [14,18] computing units and [20,24] stor-
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Fig. 9 CBLOF confusion
matrix

age units, respectively. The performance of the pro-
posed mechanism was compared to the case where
no closed-loop control was implemented, by analyzing
the probability of application blocking due to insuffi-
cient resources (# of affected applications) and average
resource utilization.

The results of the simulations experiments indicate
that the proposed resource re-location procedure, trig-
gered by the event-detection mechanism, reduces sig-
nificantly the number of affected applications (Fig. 13)
in comparison to when such mechanisms are not used.
This is attributed to the improved resource utilization,

Fig. 10 Isolation Forest
confusion matrix
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Fig. 11 Scatter plot of CBLOF. Red points represent overusage events, green points represent normal node states

Fig. 12 Scatter plot of Isolation Forest. Red points represent overusage events, green points represent normal node states
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Fig. 13 Affected applications for different average applications’ computing units requirements

resulting from the migration of applications’ workload
to other infrastructure nodes. In particular, the resource
re-optimization procedure improves the utilization effi-
ciency of the infrastructure, up to 50% higher for all
the examined scenarios than when such mechanisms
are not executed. This is depicted in Fig. 14 where we
present the outcomes of our simulation experiments
to assess the efficacy of the closed-loop resource opti-
mization mechanism. The bars in the figure correspond
to the left vertical axis and represent the number of
events that triggered the re-optimization mechanism in
the closed-loop operation. The lines, contrasting the
bars, correspond to the right vertical axis and denote
the average utilization of computing resources in the
same scenarios.

5 Limitations and Threats to Validity

In the development of our methodology, we initially
sought to employ real-world datasets or benchmarks
to enhance the applicability and robustness of our

findings. However, challenges in finding datasets that
closely aligned with the specific requirements of our
study led us to opt for simulated data. Below, we discuss
why certain datasets, including ones from EURO28 and
US26 topologies, as well as selected datasets from the
Grid Workloads Archive (GWA), were not suitable for
our research needs:

1. Network-Centric Datasets: Datasets based on EU-
RO28 and US26 topologies [66] provide data
on node locations, traffic volumes, and routing
paths. While valuable for network behavior studies,
these datasets do not encompass the broader cloud
orchestration context required for our research,
such as detailed information about cloud-specific
dynamics like virtual machine performance, stor-
age capacity, and real-time scalability [67].

2. Grid Workloads Archive (GWA) Datasets [68]:
Several datasets from the GWA, which offer real-
world workload traces from grid and cloud com-
puting environments, were also considered. How-
ever, these datasets predominantly focus on work-
load patterns and resource usage in grid and cloud
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Fig. 14 Average utilization for different average application
computing units requirements. Red bars denote the number
of events that triggered the re-optimization mechanism in the

closed-loop operation, orange points denote the average utiliza-
tion in the closed-loop operation, blue points denote the average
utilization in no re-optimization scenarios

environments, but lack comprehensive data on
the dynamic interaction between different cloud
resources and applications. Examples of such datasets
include GWA-T-2 Grid5000 [69] and GWA-T-4
AuverGrid [70], which, while providing insights
into workload patterns and basic resource usage,
do not offer the necessary cloud resource interde-
pendencies for our experiments. The most compre-
hensive of them, GWA-T-12 BitBrains [71], does
provide the detailed computing and memory met-
rics, but still lacks wider orchestration context, such
as interactions between various cloud resources and
their collective response to application demands.

Given these limitations, we opted for a simulated
environment tailored to our specific research needs.
This approach allowed us to create scenarios that
closely mimic real-world cloud computing environ-
ments. To comprehensively assess the robustness and
applicability of our study, we delve into the following
key aspects:

1. Generalizability of findings: Our methodology is
designed to be generalizable and not limited to the
specifics of the simulated data. The principles and
mechanisms we developed can be applied broadly
to various cloud computing contexts, ensuring the
relevance and applicability of our findings beyond
the constraints of the available real-world datasets.
We acknowledge, however, that despite our efforts
to accurately reflect real-world cloud computing
environments, there may be complexities and varia-
tions in actual deployments that our simulations do
not capture. The extent to which our results can be
applied to different types of cloud infrastructures or
to cloud systems at varying scales remains an area
for further investigation.

2. Methodological limitations: Our algorithmic choices
for representing our graph structure and detecting
anomalies were driven by the specific nature of
our data and our research objectives. However, this
choice also implies certain limitations. For exam-
ple, different graph embedding techniques or aggre-
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gation methods might yield varied insights, partic-
ularly in handling the complexities of real-world
cloud environments.

3. Internal validity: While our experimental setup was
designed to minimize biases and control for vari-
ables, the inherent limitations of a simulated envi-
ronment may affect the internal validity of our
study. We acknowledge that our control over certain
variables in a simulated environment does not per-
fectly replicate the unpredictability and variability
of real-world settings.

4. External validity: The applicability of our find-
ings to settings outside of the ones we simu-
lated is not fully assured. Factors such as differ-
ent cloud architectures, diverse application require-
ments, and varying scales of infrastructure could
impact the effectiveness of our proposed method-
ologies. Further empirical validation in diverse
real-world environments would enhance the exter-
nal validity of our work.

5. Replicability and transparency : We have strived for
transparency in our methodology and data simula-
tion processes to facilitate the replicability of our
study. Nevertheless, variations in computational
environments and libraries and in the interpreta-
tion of our simulation parameters could impact the
ease of replication. We encourage other researchers
to adapt and modify our approach to suit their spe-
cific contexts and constraints.

6. Future work: Our research opens several avenues
for future exploration. This includes the applica-
tion of our methodology to real-world datasets,
the comparison of our chosen combination of
algorithms (e.g. GraphSAGE, pooling aggrega-
tor, CBLOF) with alternative approaches, and the
extension of our work to encompass a wider
variety of cloud computing scenarios. Contin-
ued research in these areas will help in validat-
ing and refining our approach, contributing fur-
ther to the field of anomaly detection in cloud
computing.

In conclusion, while our study offers valuable insights
into the application of knowledge graphs and machine
learning in cloud computing, we acknowledge a num-
ber of limitations regarding the generalizability and
validity of our approach, highlighting the need for fur-
ther research to build upon and extend our findings.

6 Discussion

In this section, we provide an overview of the added
value that stems from the application of our approach
in the cloud, with regard to the two main stakeholder
groups; service providers and end users.

Our proposed methodology offers a new perspec-
tive for service providers, functioning as a dynamic and
adaptive model of their infrastructure. It significantly
deviates from the traditional rule-based approaches
by proactively discovering usage patterns and predict-
ing resource overusage events. Traditional rule-based
methods adopt additive approaches that are difficult and
time-consuming to sustain, while timing is crucial in
the context of the fast-paced and dynamic environment
of the edge and cloud infrastructures. In contrast, our
approach’s distinct ability, free from predefined rules
and reactive measures, gives it a competitive edge as
it seamlessly and rapidly adapts to the evolving condi-
tions of the network without the need of manual inter-
vention.

Our approach adjusts to the unique characteristics
and patterns of the infrastructure, contrary to the exist-
ing rule-based methodologies that apply static proce-
dures regardless of the network’s peculiarities. This
results in more accurate resource allocation predic-
tions, subsequently leading to fewer Service Level
Agreement violations (availability, response time, reli-
ability, cost limit). Additionally, it enables streamlin-
ing the management of heterogeneous resources across
multiple domains, not only by enhancing the overall
resource efficiency but also by providing a scalable
solution that caters to the rapid fluctuations in resource
demand. This enables the implementation of complex
billing models by forecasting future capacity needs
with enhanced precision and accuracy, further under-
lining the unique benefits of our approach.

From the end-user’s perspective, the user can be
notified in time for potential outlier events regarding
irregular resource consumption, which can be the result
of compromised, malfunctioning or corrupted services,
software integrity violations or configuration anoma-
lies. It should be noted that in the aforementioned cases,
while none of the individual resource usage values
(computing and storage usage in our results) might sur-
pass the maximum allocated value, malicious behavior
can be inferred from the combination of the aforemen-
tioned values, as depicted by the KG-based embed-
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dings of the involved infrastructure slice. Therefore, our
approach adds an additional layer of protection against
adversarial attacks or similar malicious intents that tar-
get the integrity of the virtualized services.

Finally, in response to the challenges presented by
the complexity of monitoring data in cloud comput-
ing environments, our methodology encapsulates a
detailed representation of the infrastructure while also
enabling the efficient processing of vast amounts of
monitoring data. The use of KGs allows for a struc-
tured and relational representation of data, turning com-
plex and heterogeneous monitoring information into
an interpretable and navigable format. This is partic-
ularly crucial in cloud environments, where the sheer
volume and variety of data can be overwhelming. Fur-
thermore, the application of GraphSAGE for creating
node embeddings, aids in distilling the essence of the
monitoring data, thereby facilitating anomaly detec-
tion and resource optimization. As the embeddings
effectively summarize the key attributes and relation-
ships within the infrastructure, they enable unsuper-
vised machine learning algorithms to detect anomalies
more efficiently. This approach reduces the cognitive
load on system administrators and provides a more
streamlined and manageable overview of the cloud
infrastructure.

7 Conclusions

In our work, we have developed an innovative KG-
based event detection methodology tailored for man-
aging cloud computing resources. First, we imple-
ment a KG-based approach to encapsulate the prop-
erties of a computing and storage infrastructure where
applications’ workloads are distributed and transferred
among the available resources. We then employ Graph-
SAGE to efficiently generate node embeddings based
both on sampling and aggregating features from each
node’s local neighbourhood. This inductive approach
enables the generalization of our methodology to evolv-
ing graphs characterized by previously unseen data.
It contrasts with traditional methods by avoiding the
training of individual embeddings for each node and
instead focuses on sampling and aggregating features
from each node’s local neighborhood. The inductive
nature of this methodology not only ensures efficiency
but also guarantees its applicability to dynamic, ever-
changing cloud infrastructures.

The core of our methodology lies in transforming
graph properties into fixed-length vectors, which are
then utilized in executing data-driven machine learning
algorithms. These algorithms are specifically tasked
with detecting instances where the computing and stor-
age requirements of applications surpass the available
capacity. In validating our approach, we employed two
unsupervised anomaly detection algorithms, namely
CBLOF and Isolation Forest, in an event detection
scenario. Our experimental findings clearly demon-
strate the superiority of CBLOF over Isolation Forest
across all evaluation metrics. Furthermore, we integrate
these event detection mechanisms with a resource re-
optimization procedure, forming a closed-loop system.
This integration significantly minimizes the impact of
anomaly events on the cloud infrastructure and the
quality of service provided. It ensures seamless appli-
cation execution even in the face of resource overusage
events. Our methodology stands out as a robust solution
for the efficient orchestration of cloud infrastructures,
adeptly overcoming challenges related to complexity,
size, dynamicity of resources, and the sheer volume of
monitoring data. Ultimately, this work lays the founda-
tion for more intelligent and efficient cloud computing
operations, heralding a new era in cloud resource man-
agement.
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