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A B S T R A C T

Electricity market equilibrium analysis is becoming increasingly important within the today’s liberalized
electricity market and regulatory context for both market participants and policy makers. The former ones
want to make informed business decisions to optimize their market position, while the latter need to promote
efficient equilibria that satisfy both supply and demand-side requirements and optimize social welfare. In this
paper, we focus on modeling the strategic demand aggregators’ (DA) behavior via an Equilibrium Problem with
Equilibrium Constraints (EPEC) formulation. We model typical demand flexibility portfolios that comprise of
several types of distributed flexibility assets and renewable energy resources. We then quantify the value of
demand flexibility portfolios’ mix and respective value of market power that a strategic DA may exercise with
respect to each DA’s cost decrease and social welfare as a function of time for a day-ahead market use case.
Simulation results show that: (i) there is an optimal equilibrium point where overall DAs’ costs decrease, while
social welfare’s deteriorates negligibly, (ii) there may be a trade-off between the rate of a certain DA’s cost
decrease and the rate of market power (or else % share of total demand flexibility) that this DA possesses,
so the strategic DA should take this into account in order to find its optimal CAPEX/OPEX balance for its
portfolio, (iii) competition among strategic DAs at the demand-side can mitigate grid congestion problems and
serve as a counter-balance to the strategic behavior of the supply-side market participants.
1. Introduction

Demand-side flexibility (DSF) is becoming increasingly valuable
in today’s liberalized electricity markets, because it can be exploited
for many novel applications by several market actors in the context
of energy transition goals [1]. Indicatively, DSF can be used to: (i)
decrease the overall system cost by flattening the demand curve, (ii)
provide ancillary services to the transmission grid, (iii) decrease sys-
tem’s balancing/re-dispatch costs in close-to-real-time markets, (iv)
provide flexibility services to the distribution grid to deal with local
congestion and over/under-voltage issues avoiding/postponing thus
grid reinforcement costs, (v) support the political goals for higher
renewable energy (RES) penetration levels, (vi) mitigate the increasing
volatility of wholesale market prices, etc.

The Demand Aggregator (DA) is a key market actor for all above-
mentioned applications. A DA represents a portfolio of numerous
small-scale Distributed Flexibility Assets (DFAs) and Distributed Energy
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Resources (DERs) in the wholesale electricity market by bidding on
the portfolio’s behalf and scheduling the portfolio’s flexibility activa-
tion [2]. Recent regulatory frameworks (e.g. [3]) promote a level-
playing field for DAs and provide market incentives to them in order to
make their business economically sustainable and also incentivize end
prosumers to invest in new DER and DFA technologies in collaboration
with the grid operators (see more details in [4] and references therein).
At the same time, new digital technologies facilitate those DER/DFA
investments. For example, smart buildings, being a major source of DSF,
are equipped with sophisticated Home/Building Energy Management
Systems (HEMS/BEMS), while Internet-of-Things (IoT) technologies
enable remote monitoring and control of heavy-load electric appliances
such as Thermostatically Controlled Loads (TCLs), Shiftable Loads
(SLs), etc. (see more details in [5] and references therein). Another
emerging DSF source are Electric Vehicles (EVs), which may use a smart
charging infrastructure with vehicle-to-grid (V2G) capabilities in order
vailable online 26 April 2024
352-4677/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.segan.2024.101399
Received 4 December 2023; Received in revised form 22 March 2024; Accepted 23
 April 2024

https://www.elsevier.com/locate/segan
https://www.elsevier.com/locate/segan
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
https://github.com/FlexGrid/DA_EPEC
mailto:alirezakfz@mail.ntua.gr
mailto:konsteriotis@mail.ntua.gr
mailto:prodromosmakris@mail.ntua.gr
mailto:geots@dtu.dk
mailto:nikoseft@mail.ntua.gr
mailto:vmanos@mail.ntua.gr
https://doi.org/10.1016/j.segan.2024.101399
https://doi.org/10.1016/j.segan.2024.101399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segan.2024.101399&domain=pdf


Sustainable Energy, Grids and Networks 38 (2024) 101399A. Khaksari et al.
Nomenclature

Sets

𝑁 Set of transmission buses
𝐻𝐸𝑉
𝑖 Operating horizon of prosumer 𝑖’s EV,

𝐻𝐸𝑉
𝑖 = [𝑡𝑎𝑟𝑟𝑖 , 𝑡𝑑𝑒𝑝𝑖 ]

𝐿𝐸𝑉𝑛 Set of prosumers with EVs located at bus 𝑛
𝐺 Set of generators’ buses, 𝐺 ⊆ 𝑁
𝐻 Set of timeslots in the scheduling horizon,

indexed by 𝑡.
𝐿𝐼𝑁𝐿𝑛 Set of prosumers with inflexible loads

located at bus 𝑛
𝐿 Set of transmission lines
𝐿𝑅𝐸𝑆𝑛 Set of prosumers with RES units located at

bus 𝑛
𝐷𝑐 Set of buses with competing DAs’ assets,

𝐷𝑐 ⊆ 𝑁
𝐿𝑆𝐿𝑛 Set of prosumers with SLs located at bus 𝑛
𝐻𝑇𝐶𝐿
𝑖 Operating horizon of prosumer 𝑖’s TCL

𝐿𝑇𝐶𝐿𝑛 Set of prosumers with TCLs located at bus
𝑛

𝑋𝑈∕𝐿 Set of upper/lower-level problem variables

Decision Variables

𝑏𝑛𝑡∕𝑜𝑛𝑡 Strategic DA’s quantity bid/offer (MW)
𝑝↑𝑛𝑡∕𝑝

↓
𝑛𝑡 Power the DA sells/buys to/from the

market at time 𝑡 (MW)
𝜆𝑛𝑡 Locational marginal price at bus 𝑛 and time

𝑡 (AC/MW)
𝜙𝑖𝑡 Binary variable indicating the operation

mode of prosumer 𝑖’s EV battery at time 𝑡
𝑝𝐸𝑉 ,↓𝑖𝑡 ∕𝑝𝐸𝑉 ,↑𝑖𝑡 Charging/Discharging power of prosumer

𝑖’s EV battery at bus 𝑛 and time 𝑡 (MW)
𝑆𝑂𝐶𝑖𝑡 State-of-Charge of prosumer 𝑖’s EV battery

at bus 𝑛 and time 𝑡
𝑔𝑛𝑡 Power produced by generator 𝑖 at bus 𝑛 and

time 𝑡 (MW)
𝑝𝐼𝑁𝐿𝑖𝑡 Power consumed by prosumer 𝑖’s inflexible

load (MW)
ℎ𝑛𝑡 Binary variable indicating whether strate-

gic DA submits a demand bid or a supply
offer at time 𝑡

𝑝𝑅𝐸𝑆𝑖𝑡 Power produced by prosumer 𝑖’s RES unit
(MW)

𝑑
𝑜
𝑛𝑡∕ Quantity offer/bid submitted by competing

DA at bus 𝑛 and time 𝑡 (MW)
𝜓𝑖𝑡 Binary variable indicating the On/Off sta-

tus of prosumer 𝑖’s SL at time 𝑡
𝑝𝑆𝐿𝑖𝑡 Power consumption of prosumer 𝑖’s SL at

bus 𝑛 and time 𝑡 (MW)
𝑝𝑇𝐶𝐿𝑖𝑡 Power consumption of prosumer 𝑖’s TCL at

bus 𝑛 and time 𝑡 (MW)
𝜃𝑖𝑡 Indoors temperature of prosumer 𝑖 at time

𝑡 (◦ C)
𝜃𝑛𝑡 Voltage phase angle of bus 𝑖

Parameters

𝜃0𝑖𝑡 Outdoor (ambient) temperature of pro-
sumer 𝑖 at time 𝑡 (◦ C)
2

 Large positive constant value.
𝜂↓𝑖 ∕𝜂

↑
𝑖 Charging/discharging efficiency of

prosumer 𝑖’s EV battery
𝐶𝑂𝑃𝑖 Coefficient of performance of prosumer 𝑖’s

TCL
𝐶𝑖 Thermal capacitance of prosumer 𝑖’s TCL

(kWh∕◦C)
𝑇 𝑖𝑗 Capacity limit of transmission line 𝑖𝑗 (MW)
𝑐𝑔𝑛𝑡 Marginal production cost of generator 𝑖 at

bus 𝑛 and time 𝑡 (AC/MW)
𝐺𝑛 Maximum production of generator 𝑖 (MW)
𝑃𝑟𝐼𝑁𝐿𝑖𝑡 Forecasted inflexible load profile of pro-

sumer 𝑖’s inflexible load
𝑆𝑂𝐶𝑖0 Initial state-of-charge of prosumer 𝑖’s EV

battery
𝑆𝑂𝐶 𝑡𝑎𝑟𝑔𝑒𝑡 Requested state-of-charge level of prosumer

𝑖’ EV battery at the end of the scheduling
horizon

𝑃
𝐸𝑉 ,↓
𝑖 ∕𝑃

𝐸𝑉 ,↑
𝑖 Maximum charging/discharging power

limit of prosumer 𝑖’s EV battery (MW)
𝑐𝐷𝐴,↓𝑛𝑡 Marginal utility of the strategic DA for

consuming power at bus 𝑛 and time 𝑡
(AC/MW)

𝑐𝐷𝐴,↑𝑛𝑡 Marginal cost of the strategic DA for
producing power at bus 𝑛 and time 𝑡
(AC/MW)

𝑦𝑛𝑗 Admittance of transmission line 𝑖𝑗
𝑃 𝑟𝑅𝐸𝑆𝑖𝑡 Forecasted power production profile of

prosumer 𝑖’s RES unit
𝑑𝑏𝑛𝑡 Demand bids submitted by competing DA at

bus 𝑛 and time 𝑡 (MW)
𝑑𝑜𝑛𝑡 Supply offer submitted by competing DA at

bus 𝑛 and time 𝑡 (MW)
𝑐𝑑,𝑏𝑛𝑡 Marginal utility for consuming power of

competing DA at bus 𝑛 and time 𝑡 (AC/MW)
𝑐𝑑,𝑜𝑛𝑡 Marginal cost for supplying power of com-

peting DA at bus 𝑛 and time 𝑡 (AC/MW)
𝑅𝑖 Thermal resistance of prosumer 𝑖’s TCL

(◦C∕kW)
𝑃𝑟𝑆𝐿𝑖𝑡 Power consumption profile of prosumer 𝑖’s

SL for each working cycle (MW)
𝑆𝑂𝐶 𝑖∕SOC𝑖 Upper/Lower limits on state-of-charge of

prosumer 𝑖’s EV battery
𝑃
𝑇𝐶𝐿
𝑖 TCL consumption power limit (MW)

𝜃𝑖∕𝜃𝑖 Maximum/minimum desired indoors tem-
perature of prosumer 𝑖 (◦ C)

𝜃𝑟𝑒𝑓 Voltage phase angle of the reference bus
𝐷𝑖 The non-interruptible work cycle duration

of prosumer 𝑖’s SL

Dual Variables

𝜙 Dual variables of the lower-level problem

to intelligently schedule their charging/discharging towards meeting
the QoS requirements of the end users (see more details in [6] and
references therein).

Despite the afore-mentioned advancements, there are also important
economic and technological barriers for DA’s business, namely [2]:
(i) large initial capital expenditures (CAPEX) are required by DFA
owners, (ii) inadequate subsidization of DSF-related assets, (iii) high
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penalization for DA’s portfolio imbalances, (iv) lack of a widespread,
standardized and interoperable ICT infrastructure as well as smart grid-
ready electric appliances/buildings. Hence, despite the efforts towards
reducing the barriers to entry, in today’s markets there is an appar-
ent tendency of concentrating large portfolios under only a few DAs,
constituting the electricity market oligopolistic. Indeed, historical ex-
perience from the supply-side oligopolistic markets documented in [7],
coincides with this tendency. In these so-called imperfect competi-
tion markets, market power is concentrated within the hands of few
strategic participants, who aim at maximizing their individual profits.
Market manipulation problems are amplified in systems heavy in non-
dispatchable renewable supply and in energy crisis cases, because a
relatively small number of dispatchable generators become critical for
fulfilling the system’s operational needs [8].

Within this context, it is easy to understand that DAs’ strategic
behavior affects the supply-side profits, too. Although this is desirable
(to the extent that the most expensive and environment-unfriendly
generation assets are phased out), there is a need to analyze the new
electricity market equilibria that emerge. Indeed, there is a need for
digital tools and regulatory sandboxes for energy market equilibria
analysis to act as an enabler for a fair energy transition for both
supply-side and demand-side market actors.

In this paper, we propose an Equilibrium Analysis with Equilibrium
Constraints (EPEC) model that consists of several Mathematical Prob-
lems with Equilibrium Constraints (MPEC), one for each one of the four
strategic DAs that are assumed.

• We compare EPEC vs. MPEC vs. competitive market settings with
respect to the social welfare and strategic DAs’ cost.

• We quantify the impact of a single DA’s portfolio mix (i.e. quan-
tify DA’s market power as a function of time within a typical
day-ahead market participation use case).

• We quantify the impact of competing DAs’ portfolio mixes (i.e.
quantify each DA’s market power according to the strategic in-
vestments of other competing DAs, too)

• We quantify the impact of grid congestion on EPEC results show-
ing that the congestion cost (i.e. DAs’ payments minus generators’
revenues) is decreased because of the increased ability of the
demand side to lower the prices acting thus as a counter-balance
to the strategic behavior of the supply-side generation assets.

The remainder of the paper is organized as follows: Section 2
ummarizes the related works from the international literature ending
p with explicitly stating this paper’s novel contributions. In Section 3:
i) the system model is described together with all the mathematical
ormulation of the proposed bi-level problem (cf. Section 3.1), (ii) this
i-level problem is converted into a tractable Mixed Integer Linear
rogram (MILP) in Section 3.2, and (iii) in Section 3.3, the EPEC
ormualtion is explained. In Section 4, the performance evaluation
esults are demonstrated and explained. Finally, concluding remarks
nd future work is provided in Section 5.

. Related works and paper’s contributions

There are three main related research threads in the recent in-
ernational literature: (i) MPEC-related works for strategic DAs with
arge-scale centralized FAs, (ii) MPEC-related works for strategic DAs
ith many distributed FAs, and (iii) EPEC-related works for modeling

ompetition among several strategic market participants.

.1. MPEC-related works for a strategic DA with large-scale centralized FAs

All papers that fall within this research thread consider MPEC
odels in which a strategic DA (or a strategic energy storage operator)

ompetes with conventional generation. They all assume a generic
odel for their strategic demand-side management or storage portfolio,
3

while all other demand-side participants are price takers. [9] considers
a strategic large consumer that seeks to derive bidding curves to
manipulate the energy-only day-ahead market for its own benefit. [10]
is a similar work that assumes a more complex market participation
model (i.e. day-ahead and real-time balancing market) to optimally
exploit wind power production uncertainty. In both papers, only one
large consumer is modeled without explicitly modeling the various
types of FAs that may belong to its portfolio. [11–14] are all works that
assume an MPEC model tailored to a strategic large-scale energy stor-
age operator. [11,12] consider market participation in the day-ahead
market only, while [13,14] assume co-optimized participation in both
day-ahead (energy and reserve) and real-time balancing markets. [15]
is the most relevant paper with our work. It considers an MPEC model
for a strategic generator incorporating a generic model for demand-side
flexibility, too. However, the focus is on the impact of demand shifting
on the market power potential of the generation side, and not on the
market power potential of the demand side through the modeling of
strategic DAs.

2.2. MPEC-related works for a strategic DA with many distributed FAs

All papers of this category assume an MPEC model for a strategic
DA that operates a vast number of distributed FAs (either of the same
type or of several types of DFAs). [16] assumes a price-maker EV ag-
gregator that operates a fleet of distributed EVs with no vehicle-to-grid
(V2G) capabilities. [17] assumes a strategic DA that operates a port-
folio of distributed curtailable loads taking into account wind power
uncertainties, too, but without modeling any other type of DFA or
distributed energy resource (DER). Authors in [18–21] assume a price-
maker energy storage aggregator that operates many distributed battery
storage units (BSUs) across the entire grid and is thus able to exploit
spatio-temporal arbitrage to maximize its total revenues. In particular,
our work in [21] extends the pre-mentioned works by considering
co-optimized participation in four different markets (i.e. day-ahead,
reserve, balancing, and a novel distribution-level flexibility market).
Other recent works assume a strategic DA [22,23] or Virtual Power
Plant (VPP) operator [24–26] or distribution company (DISCO) [27]
which operate several types of DFAs, DERs, BSUs and conventional
generation units. [22] quantifies the negative impact on social welfare
and operational expenditures’ (OPEX) increase in other price-taker
DAs. [23] considers a DA, whose DFAs’ modeling is quite similar
with our work. However, it neither models the competition among
several DAs nor focuses on the quantification of DAs’ market power for
various portfolio mixes of the strategic DAs. Instead, [23] focuses on
quantifying the market power impact due to the DA’s participation in
various markets. Similarly, all other papers assume only one strategic
DA, while all other competing DAs are assumed to be price-takers,
which is a rather strong assumption, which does not enable a thorough
electricity market equilibria analysis.

2.3. EPEC-related works for modeling competition among several strategic
market participants

This research thread includes papers that explicitly model sev-
eral strategic market participants and their respective interaction/
competition in the electricity markets. Similarly to our work, they all
use an EPEC model, but none of them considers market interaction
among several strategic DAs. [28] was the first related EPEC work
that models several strategic conventional generators by using the
diagonalization method in order to find Nash equilibria in an imper-
fect electricity market. Several papers like [29–31] followed up by
proposing specific enhancements. For example, [29] considers more
realistic step-wise offer curves for the strategic generators, authors
in [30] were the first to consider a multi-period market as well as
multi-block bidding, while [31] deals with a slightly different use case
(other than the classical day-ahead market participation), which is
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the yearly maintenance scheduling problem of strategic generators.
More recently, EPEC modeling has also been applied for strategic
large-scale RES generators (mostly wind power producers) given the
fact that their market share has significantly grown and even be-
come dominant in specific geographical regions around the globe
(e.g. northern Europe and several mid-west states in USA) [32–34].
These works include market uncertainties (i.e. various wind power
penetration scenarios) and take into account grid constraints, but the
demand is assumed to be totally inelastic. Some other works such
as [35,36] focus on small-scale DERs that usually reside at the distri-
bution grid and are represented by a Distribution Company (DISCO)
in the wholesale day-ahead electricity market. This DISCO should
also respect distribution-level grid constraints. However, these works
only consider inelastic and/or interruptible loads that are not price-
responsive and thus flexible. Other interesting works focus on the
interaction between strategic conventional generators’, RES generators’
and storage operators’ business portfolios [37] or interaction between
a strategic storage operator and a strategic DA [38]. However, they
only assume a generic model of a flexibility portfolio and do not
model explicitly the various types of DFAs that belong to the DA’s
portfolio. [39,40] focus on equilibrium analysis for strategic storage
operators that exploit their spatio-temporal arbitrage capability of their
portfolios. Various types of storage assets and generators (i.e. thermal
units, hydro units, RES units, lithium-ion batteries, etc.) are considered
and various generation portfolio mixes are simulated to showcase the
impact that each individual type of generation/storage asset has on the
market equilibrium. To the best of our knowledge, the first paper that
deals with the interaction among several strategic DAs is our recent
work in [41]. The current paper extends this conference paper’s work
by providing more extensive mathematical formulation and perfor-
mance evaluation results. We claim that this work is the first one that
explicitly models various types of DFAs (i.e. shiftable/curtailable loads,
TCLs, EVs, PVs) and the impact that each individual DFA type has on
both the market equilibrium as well as on the market power that each
strategic DA can potentially exercise.

2.4. Paper’s novel contributions

In this paper, we consider an oligopolistic day-ahead wholesale
electricity market comprising of a few strategic DAs that compete with
each other. We pursue a market equilibrium analysis by quantifying the
value that various aggregated demand flexibility portfolio mixes can
offer to each DA’s business profits as well as the corresponding impact
to the social welfare. Similarly, we also quantify each DA’s market
power in various market contexts to intuitively derive respective policy
implications. The paper’s contributions can be summarized as follows:

• In contrast to existing MPEC-related works (cf. Sections Sec-
tion 2.1, 2.2 above), which model strategic DAs with large-scale
FAs or small-scale DFAs of a certain type (e.g. EVs only, shiftable
loads only, etc.), we explicitly model several types of hetero-
geneous DFAs and we quantify the impact of a single DA’s or
multiple DAs’ portfolio mixes on each DA costs’ decrease and
social welfare’s decrease. We showcase that when a certain type
of DFA prevails, this entails different results on DAs’ costs and
social welfare.

• In contrast to existing EPEC-related works (cf. Section 2.3 above),
that focus on modeling equilibria for oligopolistic supply-side
market (i.e. strategic generators’/storage operators’ EPEC prob-
lem), we focus on the oligopolistic demand-side market (i.e. strate-
gic DAs’ EPEC problem). Interestingly, the DAs’ portfolio mix can
exercise dynamic market power as a function of time within a
typical day-ahead market.

• By studying the impact of various competing DAs portfolios’
mixes, we interestingly found that, in some of them, there may
4

be a trade-off between the rate of a certain DA’s cost decrease
and the rate of market power (or else % share of total demand
flexibility) that this DA possesses. This means that even though a
future investment of a specific DFA type may be more beneficial
for a DA in terms of its OPEX decrease, it may be less beneficial
for the same DA in the long term, because of its decreased future
ability to influence the prices in the long-term.

3. System model

In this section, we formulate a Nash-Cournot equilibrium problem
between a set of competing strategic Demand Aggregators (DAs). Each
DA operates a portfolio of diverse distributed assets, representing them
into the day-ahead electricity market. Our primary objective is to
cultivate a comprehensive understanding of the market interactions
between the DAs in an oligopolistic market setting. To achieve this, we
have consciously opted for a rather deterministic framework, wherein
we deliberately neglect the uncertainties associated with the renewable
energy production or the demand patterns. However, this assump-
tion can be readily relaxed, but at the cost of increasing the model’s
complexity.

In the following Section 3.1, we describe the bilevel model that
characterizes the bidding decision problem of a single price-maker DA.
Next, in Section 3.2, we focus on the process of converting the for-
mulated bilevel problem into a solvable Mixed Integer Linear Problem
(MILP). Finally, in Section 3.3, we focus on the formulation of the
EPEC problem, that we use to calculate the Nash-Cournot equilibrium
between several competing strategic DAs.

3.1. Bilevel problem of a single DA

As mentioned above, in this paper, we consider a day-ahead nodal
network-constrained electricity pool market with a 24-h time horizon
(𝐻), that governs the operation of a transmission system, which is
characterized by a set of buses 𝑁 and a set of transmission lines 𝐿.
Generators and demand aggregators participate in the market, with the
latter representing the interests of a set of prosumers. These prosumers
own and operate various assets, with the DAs being responsible for
their feasible operation, based on the prosumers’ preferences. The set of
transmission grid buses which generators are connected to is denoted
by 𝐺 ⊆ 𝑁 , while the set of buses where the assets of DAs are located is
denoted by 𝐷𝑐 ⊆ 𝑁 . In this subsection, we focus on the bilevel problem
of a single strategic DA, which can represent prosumers in the market,
whose assets can be located at a set of transmission buses (𝑁𝑚 ⊆ 𝑁).
The DA’s portfolio consists of EVs (𝐿𝐸𝑉𝑛 ), TCLs (𝐿𝑇𝐶𝐿𝑛 ), shiftable loads
(𝐿𝑇𝐶𝐿𝑛 ), generic inflexible loads (𝐿𝐼𝑁𝐿𝑛 ) and RES unts (𝐿𝑅𝐸𝑆𝑛 ), each
located at a specific bus indexed by 𝑛 ∈ 𝑁𝑚. The DA aims to leverage
the assets’ flexibility so as to strategically participate in the market and
maximize financial gains.

Upper-Level Problem
In the upper-level problem, the DA seeks to minimize its daily

costs that result from its participation in a nodal electricity pool mar-
ket, while respecting the operational constraints of its portfolio’s as-
sets. Hence, the objective function of the upper-level problem is the
following:

min
X𝑈

∑

𝑛∈𝑁𝑚

∑

𝑡∈𝐻
𝜆𝑛𝑡 ⋅ (𝑝

↓
𝑛𝑡 − 𝑝

↑
𝑛𝑡) (a.1)

In (a.1), 𝜆𝑛𝑡 denotes the market price of bus 𝑛 ∈ 𝑁𝑚 of the
transmission network at hour 𝑡, while 𝑝↓𝑛𝑡 and 𝑝↑𝑛𝑡 denote the power that
DA buys and sells respectively from/to the pool market at hour 𝑡. Both
the market price (𝜆𝑛𝑡) and the power traded by the DA (𝑝↓𝑛𝑡, 𝑝

↑
𝑛𝑡) are

obtained endogenously from the lower-level problem, i.e. the market
clearing process.

𝐸𝑉 ,↓ 𝑃
𝐸𝑉 ,↓

, ∀𝑖 ∈ 𝐿𝐸𝑉 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉 , (a.2)
0 ≤ 𝑝𝑖𝑡 ≤ 𝜙𝑖𝑡 ⋅ 𝑖 𝑛 𝑖
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0 ≤ 𝑝𝐸𝑉 ,↑𝑖𝑡 ≤ (1 − 𝜙𝑖𝑡) ⋅ 𝑃
𝐸𝑉 ,↑
𝑖 , ∀𝑖 ∈ 𝐿𝐸𝑉𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉

𝑖 (a.3)

𝜙𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝐿𝐸𝑉𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉
𝑖 (a.4)

𝑆𝑂𝐶𝑖(𝑡+1) = 𝑆𝑂𝐶𝑖𝑡 + 𝜂
↓
𝑖 ⋅ 𝑝

𝐸𝑉 ,↓
𝑖𝑡 −

𝑝𝐸𝑉 ,↑𝑖𝑡

𝜂↑𝑖
,

∀𝑖 ∈ 𝐿𝐸𝑉𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉
𝑖 (a.5)

𝑆𝑂𝐶𝑖𝑡 = 𝑆𝑂𝐶𝑖0, ∀𝑖 ∈ 𝐿𝐸𝑉𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉
𝑖 (a.6)

𝑆𝑂𝐶𝑖𝑡 = 𝑆𝑂𝐶 𝑡𝑎𝑟𝑔𝑒𝑡, ∀𝑖 ∈ 𝐿𝐸𝑉𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉
𝑖 (a.7)

SOC𝑖 ≤ 𝑆𝑂𝐶𝑖𝑡 ≤ 𝑆𝑂𝐶 𝑖, ∀𝑖 ∈ 𝐿𝐸𝑉𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝐸𝑉
𝑖 (a.8)

Constraints (a.2)–(a.8) concern the operation of the DA portfolio’s
EVs. We assume that each EV 𝑖 owner has specifically set a pre-
ferred plug-in (𝑡𝑎𝑟𝑟𝑖 ) and departure time (𝑡𝑑𝑒𝑝𝑖 ), along with a desired
battery State-of-Charge (SoC) at the end of the plug-in period (𝐻𝐸𝑉

𝑖 =
[𝑡𝑎𝑟𝑟𝑖 , 𝑡𝑑𝑒𝑝𝑖 ]). The EV charging/discharging power limits (𝑃

𝐸𝑉 ,↓
𝑖 , 𝑃

𝐸𝑉 ,↑
𝑖 )

re set in (a.2) and (a.3), with binary variable 𝜙𝑖𝑡 preventing simultane-
ous charging and discharging. Constraint (a.5) defines the current SoC
of EV 𝑖 (𝑆𝑂𝐶𝑖𝑡), which is calculated based on its value in the previous
timeslot, as well as charging/discharging amounts (𝑝𝐸𝑉 ,↓𝑖𝑡 , 𝑝𝐸𝑉 ,↑𝑖𝑡 ) and
efficiencies (𝜂↓𝑖 , 𝜂

↑
𝑖 ). Each EV’s SoC is initialized in constraint (a.6),

where 𝑆𝑂𝐶𝑖0 denotes the EV SoC at the beginning of the charging
process. Constraint (a.7) dictates that the SoC of EV 𝑖 must reach the
demanded by its owner level (𝑆𝑂𝐶 𝑡𝑎𝑟𝑔𝑒𝑡) at its departure time. Lastly,
SoC is bounded in (a.8) by its lower and upper limits (SOC𝑖, 𝑆𝑂𝐶 𝑖).

0 ≤ 𝑝𝑇𝐶𝐿𝑖𝑡 ≤ 𝑃
𝑇𝐶𝐿
𝑖 , ∀𝑖 ∈ 𝐿𝑇𝐶𝐿𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝑇𝐶𝐿

𝑖 (a.9)
𝜃𝑖(𝑡+1) = 𝛽𝑖 ⋅ 𝜃𝑖𝑡 + (1 − 𝛽𝑖) ⋅ (𝜃0𝑖𝑡 + 𝐶𝑂𝑃𝑖 ⋅ 𝑅𝑖 ⋅ 𝑝

𝑇𝐶𝐿
𝑖𝑡 ),

𝛽𝑖 = 𝑒−
𝛥𝑡

𝐶𝑖 ⋅𝑅𝑖 , ∀𝑖 ∈ 𝐿𝑇𝐶𝐿𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝑇𝐶𝐿
𝑖 (a.10)

𝜃𝑖 ≤ 𝜃𝑖𝑡 ≤ 𝜃𝑖, ∀𝑖 ∈ 𝐿𝑇𝐶𝐿𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻𝑇𝐶𝐿
𝑖 (a.11)

Constraints (a.9)–(a.11) represent the operating constraints of each
TCL 𝑖 ∈ 𝐿𝑇𝐶𝐿𝑛 , which operates within a time interval 𝐻𝑇𝐶𝐿

𝑖 ⊆ 𝑇 that has
been set by its owner. The upper bound of TCL’s power consumption
(𝑃

𝑇𝐶𝐿
𝑖 ) is set in Eq. (a.9). The indoor temperature in each household

with a TCL dynamically evolves according to Eq. (a.10), based on
parameters such as the thermal resistance 𝑅𝑖 (◦𝐶∕𝑘𝑊 ), capacitance 𝐶𝑖
𝑘𝑊 ℎ∕◦C) of the room, coefficient of performance 𝐶𝑂𝑃𝑖 and outdoors
emperature 𝜃0𝑖𝑡. Moreover, Eq. (a.11) expresses that each TCL owner
stablishes temperature preferences, setting both the lowest (𝜃𝑖) and
ighest (𝜃𝑖) indoor temperatures for her/his house.

𝑝𝑆𝐿𝑖𝑡 =
𝑡

∑

𝜏=𝑡−𝐷𝑖+1
(𝜓𝑖𝜏 ⋅ 𝑃𝑟𝑖𝑘), ∀𝑖 ∈ 𝐿𝑆𝐿𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ≥ 𝑇 𝑆𝐿,𝑎𝑖 ,

𝑘 = (𝑡 − 𝜏) mod 𝐷𝑖 (a.12)

𝜓𝑖𝑡 = 0, ∀𝑖 ∈ 𝐿𝑆𝐿𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 < 𝑇 𝑆𝐿,𝑎𝑖 , 𝑡 > 𝑇 𝑆𝐿,𝑏𝑖 −𝐷𝑖 + 2 (a.13)
𝑇𝑆𝐿,𝑏𝑖
∑

𝑡=𝑇𝑆𝐿,𝑎𝑖

𝜓𝑖𝑡 = 1, ∀𝑖 ∈ 𝐿𝑆𝐿𝑛 , 𝑛 ∈ 𝑁𝑚 (a.14)

The non-interruptible operation of each SL 𝑖 ∈ 𝐿𝑆𝐿𝑛 is characterized
by a consumption profile 𝐏𝐫𝐢 and a working cycle with duration 𝐷𝑖.
For example, let the task of a SL lasting 2 h and within each hour
the SL consumes 2 kW. Then, its consumption profile would be [2 kW
(hour 1), 2 kW (hour 2)]. Each SL owner sets its preferences, regarding
the earliest hour that the SL can start its task (𝑇 𝑆𝐿,𝑎𝑖 ) and the hour
until which the SL must have completed its corresponding task (𝑇 𝑆𝐿,𝑏𝑖 ).
Constraint (a.12) defines the electric power consumption of the SL 𝑖
t each hour 𝑡 ∈ [𝑇 𝑆𝐿,𝑎𝑖 , 𝑇 𝑆𝐿,𝑏𝑖 ], with binary variable 𝜓𝑖𝑡 determining
hether SL 𝑖 starts operating at hour 𝑡. Eq. (a.13) states that the SL

annot start neither outside the period set by its owner ([𝑇 𝑆𝐿,𝑎𝑖 , 𝑇 𝑆𝐿,𝑏𝑖 ]),
nor at an hour that would not allow the completion of the SL’s task
5

before 𝑇 𝑆𝐿,𝑏𝑖 . Lastly, Eq. (a.14) expresses that the SL can only begin
once its working cycle within the scheduling horizon.

0 ≤ 𝑝𝑅𝐸𝑆𝑖𝑡 ≤ 𝑃𝑟𝑅𝐸𝑆𝑖𝑡 , ∀𝑖 ∈ 𝐿𝑅𝐸𝑆𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (a.15)

𝑝𝐼𝑁𝐿𝑖𝑡 = 𝑃𝑟𝐼𝑁𝐿𝑖𝑡 , ∀𝑖 ∈ 𝐿𝐼𝑁𝐿𝑛 , 𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (a.16)

The renewable energy produced by each RES unit 𝑖 ∈ 𝐿𝑅𝐸𝑆𝑛 is con-
strained by the forecasted RES profile (𝑃𝑟𝑅𝐸𝑆𝑖𝑡 ) as shown in Eq. (a.15).
It is important to note that we allow for renewable energy to be spilled
by the DA. Furthermore, Eq. (a.16) specifies that the power consumed
by each inflexible load 𝑖 ∈ 𝐿𝐼𝑁𝐿𝑛 should match its forecasted power
profile (𝑃𝑟𝐼𝑁𝐿𝑖𝑡 ).

𝑝↓𝑛𝑡 − 𝑝
↑
𝑛𝑡 =

∑

𝑖∈𝐿𝐸𝑉𝑛

(𝑝𝐸𝑉 ,↓𝑖𝑡 − 𝑝𝐸𝑉 ,↑𝑖𝑡 ) +
∑

𝑖∈𝐿𝑇𝐶𝐿𝑛

𝑝𝑇𝐶𝐿𝑖𝑡 +

+
∑

𝑖∈𝐿𝑆𝐿𝑛

𝑝𝑆𝐿𝑖𝑡 +
∑

𝑖∈𝐿𝐼𝑁𝐿𝑛

𝑝𝐼𝑁𝐿𝑖𝑡 −
∑

𝑖∈𝐿𝑅𝐸𝑆𝑛

𝑝𝑅𝐸𝑆𝑖𝑡 , ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (a.17)

0 ≤ 𝑏𝑛𝑡 ≤ ℎ𝑛𝑡 ⋅ , ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (a.18)

0 ≤ 𝑜𝑛𝑡 ≤ (1 − ℎ𝑛𝑡) ⋅ , ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (a.19)

ℎ𝑛𝑡 ∈ {0, 1}, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (a.20)

Eq. (a.17) establishes that the final DA dispatch at each hour 𝑡 and
bus 𝑛 ∈ 𝑁𝑚 must be equal with the combined power output of its
constituent assets that are located at this specific bus. Constraints (a.18)
and (a.19) serve to prohibit the simultaneous submission of demand
(𝑏𝑛𝑡) and supply (𝑜𝑛𝑡) bids in the market. Within these constraints, 
is a large constant value. Lastly, Eq. (a.20) defines the binary nature of
the auxiliary variable ℎ𝑛𝑡. Finally, the optimization variable vector of
the upper-level problem is
X𝑈 = {𝑜𝑛𝑡, 𝑏𝑛𝑡, ℎ𝑛𝑡, 𝑝

𝐸𝑉 ,↓
𝑖𝑡 , 𝑝𝐸𝑉 ,↑𝑖𝑡 , 𝜙𝑖𝑡, 𝑆𝑂𝐶𝑖𝑡, 𝑝𝑇𝐶𝐿𝑖𝑡 , 𝜃𝑖𝑡, 𝑝𝑆𝐿𝑖𝑡 , 𝜓𝑖𝑡,

𝑝𝑅𝐸𝑆𝑖𝑡 , 𝑝𝐼𝑁𝐿𝑖𝑡 }.
Lower-Level Problem
The lower-level problem represents the day-ahead electricity market

clearing process, which determines the participants’ operating points
and the market clearing nodal prices based on the submitted offer/bids.
Note that we use a DC approximation of the transmission system.

min
X𝐿

∑

𝑡∈𝐻

{

∑

𝑛∈𝐺
𝑐𝑔𝑛𝑡 ⋅ 𝑔𝑛𝑡 +

∑

𝑛∈𝐷𝑐

(

𝑐𝑑,𝑜𝑛𝑡 ⋅ 𝑑𝑜𝑛𝑡 − 𝑐
𝑑,𝑏
𝑛𝑡 ⋅ 𝑑𝑏𝑛𝑡

)

+
∑

𝑛∈𝑁𝑚

(

𝑐𝐷𝐴,↑𝑛𝑡 ⋅ 𝑝↑𝑛𝑡 − 𝑐
𝐷𝐴,↓
𝑛𝑡 ⋅ 𝑝↓𝑛𝑡

)

}

(b.1)

Subject to

− 𝑔𝑛𝑡 + 𝑑𝑏𝑛𝑡 − 𝑑
𝑜
𝑛𝑡 + 𝑝

↓
𝑛𝑡 − 𝑝

↑
𝑛𝑡 +

∑

𝑗≠𝑖
𝑦𝑛𝑗 ⋅ (𝜃𝑛𝑡 − 𝜃𝑗𝑡) = 0; (𝜆𝑛𝑡)

∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝐻 (b.2)

≤ 𝑔𝑛𝑡 ≤ 𝐺𝑛; (𝜙𝑔
𝑛𝑡
, 𝜙

𝑔
𝑛𝑡) ∀𝑛 ∈ 𝐺, 𝑡 ∈ 𝐻 (b.3)

≤ 𝑝↑𝑛𝑡 ≤ 𝑜𝑛𝑡; (𝜙𝐷𝐴𝑜
𝑛𝑡

, 𝜙
𝐷𝐴𝑜
𝑛𝑡 ) ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (b.4)

0 ≤ 𝑝↓𝑛𝑡 ≤ 𝑏𝑛𝑡; (𝜙𝐷𝐴𝑏
𝑛𝑡

, 𝜙
𝐷𝐴𝑏
𝑛𝑡 ) ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (b.5)

0 ≤ 𝑑𝑜𝑛𝑡 ≤ 𝑑
𝑜
𝑛𝑡; (𝜙𝑑𝑜

𝑛𝑡
, 𝜙

𝑑𝑜
𝑛𝑡 ) ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (b.6)

≤ 𝑑𝑏𝑛𝑡 ≤ 𝑑
𝑏
𝑛𝑡; (𝜙𝑑𝑏

𝑛𝑡
, 𝜙

𝑑𝑏
𝑛𝑡 ) ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (b.7)

− 𝑇 𝑖𝑗 ≤ 𝑦𝑛𝑗 ⋅ (𝜃𝑛𝑡 − 𝜃𝑗𝑡) ≤ 𝑇 𝑖𝑗 ; (𝜙𝑙
(𝑛𝑗)𝑡

, 𝜙
𝑙
(𝑛𝑗)𝑡) ∀(𝑛, 𝑗) ∈ 𝐿, 𝑡 ∈ 𝐻 (b.8)

The objective of the Market Operator (MO) is to maximize Social
elfare, or in other words minimize Social Cost, i.e. the cost of energy

enerated minus the willingness of the demand to pay for that energy
Eq. (b.1)), which is calculated based on the generators’ marginal costs
𝑐𝑔𝑛𝑡) and the DAs’ marginal cost/utility (𝑐𝐷𝐴,↑𝑛𝑡 , 𝑐𝑑,𝑜𝑛𝑡 ∕𝑐

𝐷𝐴,↓
𝑛𝑡 , 𝑐𝑑,𝑏𝑛𝑡 ). Power

alance at each bus 𝑛 ∈ 𝑁 and hour 𝑡 ∈ 𝐻 is expressed in Eq. (b.2),
with the respective dual variables representing the nodal LMPs (𝜆 ).
𝑛𝑡
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The maximum available generation capacity of each generator 𝑛 ∈ 𝐺
is set in Eq. (b.3). The dispatch (sold or bought power) of the strategic
DA (𝑝↑𝑛𝑡 or 𝑝↓𝑛𝑡) is bounded in Eqs. (b.4) and (b.5) based on the DA’s
submitted offers and bids. Eqs. (b.6) and (b.7) concern the competing
DAs (𝐷𝑐) and limit the power that they offer (𝑑𝑜𝑛𝑡) or draw (𝑑𝑏𝑛𝑡)
from the transmission grid based on their respective quantity offers
(𝑑
𝑜
𝑛𝑡, 𝑑

𝑏
𝑛𝑡). Finally, Eq. (b.8) constraints power flow to the transmis-

ion lines’ capacity limits (𝑇 𝑖𝑗). The dual variables pertaining to each
onstraint of the lower-level problem are specified at each constraint
ollowing a semicolon. The voltage phase angle of the reference bus
s set to zero throughout the whole scheduling period (𝜃𝑟𝑒𝑓 = 0).
he set of decision variables of the optimization problem (b) is X𝐿 =
𝑔𝑛𝑡, 𝑑𝑜𝑛𝑡, 𝑑

𝑏
𝑛𝑡, 𝑝

↑
𝑛𝑡, 𝑝

↓
𝑛𝑡, 𝜃𝑛𝑡}.

.2. Converting the bi-level problem into a tractable MILP

The formulated non-convex bi-level problem can be recast into
Mathematical Program with Equilibrium Constraints (MPEC). To

his end, we replace problem (b) with its Karush-Kun-Tucker (KKT)
onditions. Note that problem (b) is a continuous linear optimization
roblem, and hence its KKT conditions are necessary and sufficient
ptimality conditions [42]. Therefore, solving the following nonlinear
ystem of equations is equivalent to solving problem (b):

− 𝑔𝑛𝑡 + 𝑑𝑏𝑛𝑡 − 𝑑
𝑜
𝑛𝑡 + 𝑝

↓
𝑛𝑡 − 𝑝

↑
𝑛𝑡 +

∑

𝑗≠𝑖
𝑦𝑛𝑗 ⋅ (𝜃𝑛𝑡 − 𝜃𝑗𝑡) = 0; (𝜆𝑛𝑡)

∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝐻 (b.2)
𝑔
𝑛𝑡 − 𝜆𝑛𝑡 − 𝜙

𝑔
𝑛𝑡
+ 𝜙

𝑔
𝑛𝑡 = 0, ∀𝑛 ∈ 𝐺, 𝑡 ∈ 𝐻 (c.1)

𝑐𝑑,𝑜𝑛𝑡 − 𝜆𝑛𝑡 − 𝜙𝑑𝑜𝑛𝑡 + 𝜙
𝑑𝑜
𝑛𝑡 = 0, ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (c.2)

− 𝑐𝑑,𝑏𝑛𝑡 + 𝜆𝑛𝑡 − 𝜙𝑑𝑏𝑛𝑡 + 𝜙
𝑑𝑏
𝑛𝑡 = 0 ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (c.3)

𝑐𝐷𝐴,↑𝑛𝑡 − 𝜆𝑛𝑡 − 𝜙𝐷𝐴𝑜𝑛𝑡
+ 𝜙

𝐷𝐴𝑜
𝑛𝑡 = 0, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (c.4)

− 𝑐𝐷𝐴,↓𝑛𝑡 + 𝜆𝑛𝑡 − 𝜙𝐷𝐴𝑏𝑛𝑡
+ 𝜙

𝐷𝐴𝑏
𝑛𝑡 = 0, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (c.5)

∑

𝑗≠𝑛,(𝑛,𝑗)∈𝐿
𝑦𝑛𝑗 ⋅ (𝜆𝑛𝑡 − 𝜆𝑗,𝑡) −

∑

𝑗>𝑛
𝑦𝑛𝑗 ⋅ (𝜙𝑙(𝑛𝑗)𝑡 − 𝜙

𝑙
(𝑛𝑗)𝑡)+

+
∑

𝑗<𝑛
𝑦𝑛𝑗 ⋅ (𝜙𝑙(𝑛𝑗)𝑡 − 𝜙

𝑙
(𝑛𝑗)𝑡) = 0, ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝐻 (c.6)

0 ≤ 𝜙𝑔
𝑛𝑡
⟂ 𝑔𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝐺, 𝑡 ∈ 𝐻 (c.7)

≤ 𝜙
𝑔
𝑛𝑡 ⟂ −𝑔𝑛𝑡 + 𝐺𝑛 ≥ 0, ∀𝑛 ∈ 𝐺, 𝑡 ∈ 𝐻 (c.8)

0 ≤ 𝜙𝑑𝑜
𝑛𝑡

⟂ 𝑑𝑜𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (c.9)

≤ 𝜙
𝑑𝑜
𝑛𝑡 ⟂ −𝑑𝑜𝑛𝑡 + 𝑑

𝑜
𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (c.10)

0 ≤ 𝜙𝑑𝑏
𝑛𝑡

⟂ 𝑑𝑏𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (c.11)

≤ 𝜙
𝑑𝑏
𝑛𝑡 ⟂ −𝑑𝑏𝑛𝑡 + 𝑑

𝑏
𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 (c.12)

0 ≤ 𝜙𝐷𝐴𝑜
𝑛𝑡

⟂ 𝑝↑𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (c.13)

0 ≤ 𝜙
𝐷𝐴𝑜
𝑛𝑡 ⟂ −𝑝↑𝑛𝑡 + 𝑜𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (c.14)

0 ≤ 𝜙𝐷𝐴𝑏
𝑛𝑡

⟂ 𝑝↓𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (c.15)

0 ≤ 𝜙
𝐷𝐴𝑏
𝑛𝑡 ⟂ −𝑝↓𝑛𝑡 + 𝑏𝑛𝑡 ≥ 0, ∀𝑛 ∈ 𝑁𝑚, 𝑡 ∈ 𝐻 (c.16)

0 ≤ 𝜙𝑙
(𝑛𝑗)𝑡

⟂ 𝑦𝑛𝑗 ⋅ (𝜃𝑛𝑡 − 𝜃𝑗𝑡) + 𝑇 𝑖𝑗 ≥ 0, ∀(𝑛, 𝑗) ∈ 𝐿, 𝑛 < 𝑗, 𝑡 ∈ 𝐻 (c.17)

≤ 𝜙
𝑙
(𝑛𝑗)𝑡 ⟂ −𝑦𝑛𝑗 ⋅ (𝜃𝑛𝑡 − 𝜃𝑗𝑡) + 𝑇 𝑖𝑗 ≥ 0, ∀(𝑛, 𝑗) ∈ 𝐿, 𝑛 < 𝑗, 𝑡 ∈ 𝐻 (c.18)

Eqs. (b.2), (c.1)–(c.18) are the KKT conditions of problem (b). The
formulated MPEC problem contains the following non-linearities:

• The multiplication of the dual variable 𝜆𝑛𝑡 by the primal variables
𝑝↑𝑛𝑡 and 𝑝↓𝑛𝑡 in the objective function,

• The complementarity conditions (c.7)–(c.18).
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In order to convert the non-linear MPEC into a tractable MILP,
at first we deal with the non-linear complementarity conditions using
the well-known Big-M approach [43], replacing the complementarity
conditions 0 ≤ 𝛼 ⟂ 𝛽 ≥ 0 by the following set of linear equations:

0 ≤ 𝛼 ≤ 𝑦 ⋅𝑀

0 ≤ 𝛽 ≤ (1 − 𝑦) ⋅𝑀

where 𝑦 is a binary variable and M is a large enough constant. The
computational time increases with the value of M, while infeasibility
problems might occur with low values of M. Thus, in our model, we
carefully select a proper constant to achieve a good balance M.

In addition, towards linearizing the objective function, multiplying
Eqs. (c.4) and (c.5) by 𝑝↑𝑛𝑡 and 𝑝↓𝑛𝑡 respectively, adding them up and
using the complementarity conditions (c.13)–(c.16), we have:

𝜆𝑛𝑡 ⋅ (𝑝
↓
𝑛𝑡 − 𝑝

↑
𝑛𝑡) = 𝑐𝐷𝐴,↓𝑛𝑡 ⋅ 𝑝↓𝑛𝑡 − 𝑐

𝐷𝐴,↑
𝑛𝑡 ⋅ 𝑝↑𝑛𝑡 + 𝜙

𝐷𝐴𝑏
𝑛𝑡 ⋅ 𝑏𝑛𝑡 + 𝜙

𝐷𝐴𝑜
𝑛𝑡 ⋅ 𝑜𝑛𝑡

Then, making use of the Strong Duality Theorem for problem (b),
we obtain the final linear objective function:

min
∑

𝑡∈𝐻

(

∑

𝑛∈𝐺

(

𝑐𝑔𝑛𝑡 ⋅ 𝑔𝑛𝑡
)

+
∑

𝑛∈𝐷𝑐

(

𝑐𝑑,𝑜𝑛𝑡 ⋅ 𝑑𝑜𝑛𝑡 − 𝑐
𝑑,𝑏
𝑛𝑡 ⋅ 𝑑𝑏𝑛𝑡

)

+
∑

𝑛∈𝐺

(

𝜙
𝑔
𝑛𝑡 ⋅ 𝐺𝑛

)

+

∑

𝑛∈𝐷𝑐

(

𝜙
𝑑𝑜
𝑛𝑡 ⋅ 𝑑

𝑜
𝑛𝑡 + 𝜙

𝑑𝑏
𝑛𝑡 ⋅ 𝑑

𝑏
𝑛𝑡
)

+
∑

𝑛<𝑗,(𝑛,𝑗)∈𝐿

(

𝑇 𝑖𝑗 ⋅ 𝜙
𝑙
(𝑛𝑗)𝑡

+ 𝑇 𝑖𝑗 ⋅ 𝜙
𝑙
(𝑛𝑗)𝑡

)

)

3.3. EPEC formulation

In the previous subsection, we formulated the bi-level bidding prob-
lem of a single strategic DA, assuming that the rest of them form a
competitive fringe. In this subsection, we break the above assumption,
as we consider several strategic DAs. To this end, we formulate an EPEC
structure, in which each DA solves its own MPEC problem.

An EPEC corresponds to a multiple-leader-common-follower game
[44]. The goal of this game is to find a Nash equilibrium, if one exists,
such that none of the players is able to increase its payoff unilaterally by
changing its decision. In general, EPECs present challenges regarding
the existence and uniqueness of equilibrium solutions, primarily due
to their non-convex and nonlinear nature [45]. As discussed in several
relevant studies, Nash equilibrium is not guaranteed to exist or to be
unique [46–48].

In this work, in order to determine the oligopolistic market equi-
librium stemming from the interactions of multiple strategic DAs, the
iterative diagonalization algorithm, which was introduced in [49] and
employed in various studies (e.g. [28,32–34,36,48] among others). The
diagonalization algorithm involves iteratively solving each DA’s MPEC
problem by fixing the other DAs’ bidding decisions to their current
optimal solutions. The vector of all DAs’ bidding variables at iteration 𝑖
is compared to the one at iteration 𝑖− 1. If their distance is lower than
𝜖, the iterative procedure terminates (see Algorithm 1). In other words,
the optimal solution determined by each DA should be identical to the
value that the other DAs assume as a model parameter of their own
MPEC problems.

The diagonalization method is not generally guaranteed to con-
verge, even if equilibrium exists [45,46,50], since the feasible region
of each DA’s MPEC is non-convex. Therefore, a cycling behavior may
be encountered [38]. In the context of this work, however, the DAs’
bidding decisions can oscillate usually among different values within a
relatively small range, as shown in Fig. 4. For more information on the
EPEC structure and its solution method, the interested reader is referred
to [51].

4. Performance evaluation

4.1. Simulation setup

For our market equilibrium analysis, we simulate an IEEE 6-bus

transmission system topology. Four large generators (i.e. G1-G4) and
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Fig. 1. IEEE 6-bus transmission topology: DA 3 at bus 5 is assumed to be the strategic player in the MPEC model.
Algorithm 1 Diagonalization algorithm
1: Initialization:

• Set convergence criterion 𝜖.
• Set maximum number of iterations 𝐾.
• Set iteration counter 𝜅 ← 1.
• DAs’ offers/bids (𝑑𝑜𝑛,𝑡/𝑑

𝑏
𝑛,𝑡) are initialized.

2: For 𝑗 = 1, ..., |𝐷𝑐
| + 1

• DA 𝑗 solves its MPEC problem, considering the offers/bids of
the other DAs as fixed parameters (𝑑𝑜𝑗′ ,𝑡/𝑑

𝑏,
𝑗′ ,𝑡 where 𝑗′ ∈ 𝐷𝑐),

equal to their values at iteration 𝜅 − 1.
• DA 𝑗 obtains 𝑜(𝜅)𝑛,𝑡 , 𝑏

(𝜅)
𝑛,𝑡 , where 𝑛 ∈ 𝑁𝑚

𝑗 .

3: If |𝑜(𝜅)𝑛,𝑡 − 𝑜
(𝜅−1)
𝑛,𝑡 | ≤ 𝜖 and |𝑏(𝜅)𝑛,𝑡 − 𝑏

(𝜅−1)
𝑛,𝑡 | ≤ 𝜖 for all 𝑗 ∈ {1, .., |𝐷𝑐

| + 1},
𝑛 ∈ 𝐷𝑐 , 𝑡 ∈ 𝐻 then quit and report the last solution from Step 2.

4: if 𝜅 = 𝐾 quit and report that the algorithm has failed to converge.
Report the last solution from Step 2.

5: Set 𝜅 ← 𝜅 + 1 and return to Step 2.

four large Demand Aggregators (DAs) reside at the various buses shown
in Fig. 1. Without a lack of generality, we assume that all the end
energy prosumers that are a given DA’s customers reside at one specific
bus (e.g. all end prosumers that belong to DA 3’s portfolio reside at
bus 5). As already analyzed in Section 3 above, each DA consists of
EVs, TCLs, SLs, INLs, and PV units and participates in a typical day-
ahead electricity market, where it should place its hourly bids (i.e. 1-24
timeslots denote 1:00 am to 12:00 pm). In scenario 1 (also called
baseline scenario from now on), we assume that:

• Total inflexible loads are 1013.19 MW for DA 1, 1015.37 MW for
DA 2, 1013.97 MW for DA 3 and 993.22 MW for DA 4. We have
deliberately chosen the total loads to be similar for each one of
the four competing DAs and for each one of the DFA categories in
order to make fair comparisons (cf. market power) in the various
simulation scenarios described below.

• All EVs have no vehicle-to-grid (V2G) capability. EVs’ arrival
takes place between 1-10 am and departure time is between 6-12
am. EVs’ maximum flexibility is 2-4 h (randomly), which means
that the departure time can be 2-4 h after the time when the task
of EV charging would end if it was uninterruptedly charged at full
rate. Total EV loads are 65.5 MW for DA 1, 66.5 MW for DA 2,
66.89 MW for DA 3, and 67.87 MW for DA4.

• SLs have no flexibility (i.e. cycles are equal to the distance be-
tween start and stop times). SLs’ start time is distributed between
1-11 am and 15-22 am, while SLs’ finish time based on the cycle
are distributed between 2-13 and 16−24 pm. Total shiftable loads
are 127.54 MW for DA 1, 130.03 MW for DA 2, 125.39 MW for
DA 3, and 129.26 MW for DA 4.
7

• Regarding TCLs, the indoor temperature’s lower and upper bounds
are randomly selected to be 19-23 ◦C and 26-30 ◦C correspond-
ingly to reflect the end user’s preferences with respect to the TCLs’
operation.

• Each DA manages PV units with an installed capacity that equals
to the 20% of its peak load demand.

• DAs’ marginal utility values are set to 150€/MW for energy
purchase from the grid and 0€/MW for selling energy back to the
grid. Thus, we avoid the cases in which DAs’ bids are not cleared
(i.e. rejected) in the market.

All the input data (i.e. transmission grid, conventional/PV genera-
tion, load data, etc.) as well as the technical specifications of all types
of DFAs together with all simulation results incorporated in this paper
can be found in [52].

4.2. EPEC vs. MPEC vs. competitive market settings

As a first step, we compare the three main market settings, namely:
(i) competitive market, (ii) MPEC market, and (iii) EPEC market. In the
first market setting, all DAs act as price takers in a perfect competition
market context. This means that every DA must accept the equilibrium
price at which it purchases the net electricity from the grid (or else
if a price taker DA attempts to bid even a tiny amount less than the
equilibrium price, then it will be unable to purchase the respective
quantity of electricity). In the MPEC market setting, we assume that
DA 3 acts strategically (see the outlined area in Fig. 1) by solving the
bi-level problem formulated in Section 3.1 above, while the other 3 DAs
are price takers. In other words, the price maker DA 3 is able to lower
the market equilibrium price in specific day-ahead hourly timeslots
by exploiting its DSF portfolio. Finally, in the proposed EPEC market
setting, we assume that all DAs are price makers by solving the EPEC
problem (via the diagonalization algorithm) described in Section 3.3.

The DAs’ market costs and the market’s social welfare (SW) in
each one of the above-mentioned market settings are presented in
Table 1. First of all, we see that market costs for every DA in the
competitive market setting are very similar and this is explained by our
deliberate choice to assume similar DSF portfolios for all DAs in order
to ensure a fair comparison. In the MPEC setting, the strategic DA 3
achieves a 9.1% decrease in its market costs. As shown in Fig. 2(a),
this happens because DA 3’s strategic bidding lowers the market price
in timeslots 2-5 and 15. Fig. 3 explains even further this cost decrease.
For instance, we can see that DA 3’s net loads (i.e. inflexible loads
minus PV generation) are decreased in several early morning timeslots
as well as at 15:00 mainly due to the increase of PV generation during
mid-day. TCLs are also decreased in early morning timeslots as well
as at 15:00, while EV charging is appropriately scheduled, too. SLs
remain the same in both competitive and MPEC settings, because in the
baseline scenario, SL flexibility is assumed to be zero. It is interesting to
observe that the other price taker DAs realize cost decrease of around
7%, too, which is explained by the fact that they take advantage of the
DA 3’s strategic behavior that lowers the market prices for the whole
system.
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Fig. 2. LMPs at bus 5 in the 3 market settings for scenario 1 (baseline scenario).

Fig. 3. MPEC load scheduling in baseline scenario for strategic DA 3.

Fig. 4. Evolution of the episodic average market social welfare.
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Fig. 5. EPEC load scheduling per type of DFA in baseline scenario.
Table 1
DA Costs & Electricity Market Social Welfare.

DA Competitive
market costs
(€)

Strategic DA
3 - market
costs
(€)

EPEC -
market costs
(€)

Competitive
market SW
(€)

Strategic DA
3 - SW
(€)

EPEC - SW
(€)

1 84 403.36 78 305.04 75 390.93
615042.92 605556.17 575603.552 84 876.10 78 892.74 75 906.92

3 984 697.27 76 970.55 75 813.42

4 83 445.27 77 341.76 74 889.55
In the EPEC market setting, the costs of all strategic DAs decrease
even more (10.5% compared to the competitive market setting). As
shown in Fig. 2(b), this happens because there is one more hourly
timeslot (i.e. 11:00 am) compared to the MPEC setting, in which the
market price decreases due to the increased demand-side flexibility that
is available from all strategic DAs. In Fig. 5, one may see the greater
load decrease of net loads and TCLs at 11:00, while EV and SL schedules
remain the same.

On the other hand, we observe that DAs’ cost decrease comes at the
expense of social welfare (SW) decrease. In the EPEC setting, the SW
is 6.4% lower than the competitive market setting, while in MPEC the
decrease is 1.5%. This implies that generators’ revenues are decreased
at the supply side of the market. This market equilibrium may be
acceptable (to the extent that most expensive and environmentally-
unfriendly generators are gradually phased out), but it could also raise
policy-related concerns about the incentivization for new generation
investments.

Finally, concerning the convergence of the diagonalization algo-
rithm, Fig. 4 demonstrates the evolution of the episodic average market
social welfare. Note that the algorithm was forced to terminate after
20 iterations. As the algorithm progresses, the average social wel-
fare oscillates, before stabilizing after a modest number of iterations.
More specifically, in the last few iterations, the fluctuations in the
9

DAs’ bidding decisions diminish, leading to the average social welfare
to oscillate within a small range (0.07%–0.14%). Hence, a market
equilibrium has been reached.

4.3. Impact of a single da’s portfolio mix

In this section, we focus on DA 3 considering various DSF portfolio
mixes. In particular, we compare the baseline scenario (i.e. scenario 1)
of the previous subsection with three more scenarios, namely:

1. Scenario 2: DA 3 invests in V2G technology. As a result, 50%
of its end prosumers have EVs that can inject (discharge) power
back to the grid (the prosumers are chosen randomly).

2. Scenario 3: DA 3 invests in Demand Side Management (DSM)
technology (i.e. ICT to monitor and control shiftable electric
appliances). Hence, the maximum flexibility for EV charging is
now increased to 12 h and for SL cycles is 10 h.

3. Scenario 4: DA 3 invests in PV. Hence, the percentage of end
prosumers that have on-site installed PVs has now increased
from 20% to 50%.

Fig. 6 demonstrates the increased market power that the strategic
DA 3 can exercise as a result of its above-mentioned DFA/DER in-
vestment scenarios assuming that the other competing DAs’ portfolios
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Fig. 6. LMPs (bus 5) in scenarios 1 to 4 when only DA3 plays strategically its MPEC.
remain the same. More specifically, in scenario 2, we can see that the
equilibrium price is decreased in two consecutive morning timeslots
(i.e. 06:00-08:00). Indeed, DA 3 exploits the V2G capability of the EVs
in the morning in order to discharge a portion of the available EVs’
power upon their arrival in the charging station (e.g. at work) without
violating the end users’ preference constraints about their EVs’ state-
of-charge upon their departure from the charging station later within
the day (e.g. when leaving from workplace). Regarding 06:00-08:00
period, we can see a similar situation in scenario 3, while there is also
an LMP decrease in timeslot 20, too. This is explained by the fact that in
scenario 3, we not only have V2G capability and SLs in the morning,
but also SLs, whose evening start time is 15:00-22:00 and their end
time is 16:00-24:00. Finally, when we compare scenario 1 with scenario
4, we can see that at 11:00-12:00, the LMP is decreased from 60
€/MW to 30 €/MW. Indeed, in this timeslot, DA 3 realizes a higher
PV production, which lowers its need for net load in order to serve
its customer portfolio. Thus, DA 3 is able to strategically decrease its
demand bid quantity in timeslot 11 by optimally exploiting its available
flexibility within the whole day, too.

From now on, we focus on the EPEC case. Similarly to Table 1
above, Table 2 compares EPEC vs. competitive market setting with
respect to the DAs’ market participation costs and the social welfare
for the three DA 3’s investment scenarios. First of all, we observe that
in the EPEC setting, all DAs’ costs are significantly decreased (12% on
average for all scenarios), while social welfare is also decreased (7%
on average for all scenarios). In scenario 3, we observe the greatest
DA costs’ decrease (14.8%), which is explained by the fact that the
overall available DSF is greater (across time and space) than all other
scenarios. Scenario 3 also achieves the best trade-off between all DA
costs’ decreases and social welfare decreases (6.3%), so it is the best
market equilibrium from a policy maker’s perspective.

Fig. 7 elaborates even more on the impact of DA 3’s portfolio mix on
LMPs at bus 5. Regarding scenario 2, we can observe that in timeslots
8 and 11, the price is decreased compared to the MPEC market setting
(cf. Fig. 6), while in timeslot 7 the price is increased. This explains the
fact that DA 3 has not only more market power due to its available
V2G flexibility, but also takes advantage of the other competing DAs’
strategic behavior, too. In scenario 3, we see that in timeslot 11, the
price is decreased compared to the same scenario in the MPEC setting.
10
Similarly, in scenario 4, we see one price increase in timeslot 5 and
one price decrease in timeslot 6. Even in this situation, DA 3 achieves
a greater cost decrease, because the net load demand quantity of its
portfolio is greater at 06:00-07:00 in comparison to 05:00-06:00.

In the next figures, the dispatch decisions for the various types of
DFAs are illustrated. In scenario 2 (cf. Fig. 8), we can clearly see the
changes in the EV charging schedule and TCL decrease compared to
Fig. 5 (EPEC load scheduling for scenario 1). No changes in SL dispatch
schedule take place, which is rational as no SL changes take place in
scenario 2. However, as shown in Fig. 9, the SL dispatch schedule
is significantly modified in scenario 3 for EPEC setting, because DA
3 exploits the added value of its DSM-related investment in order
to decrease its market participation costs (see also Table 2 above).
Finally, in Fig. 10, the new PV investment made by DA 3 changes
significantly the EV charging/discharging schedule (compared to the
other scenarios), because DA 3 has even more degrees of freedom for
its multi-period scheduling within the day-ahead period.

4.4. Impact of competing das’ portfolio mixes

Elaborating on the results of the previous subsection, we now
assume that DA 3 makes an investment on a specific type of DFA and we
investigate several scenarios in which the other competing DAs invest
in the same or in another type of DFA. In particular, we consider the
following scenarios:

1. Scenario 5: DA 3 invests in PV technology and other rivals
invest in PVs, too.

2. Scenario 6: DA 3 invests in PV technology and other rivals
invest in V2G technology.

3. Scenario 7: DA 3 invests in PV technology and other rivals
invest in DSM technology.

From Table 3, we can see that in scenarios 5-7, the sum of DAs’ costs
are considerably lowered (up to 17.5%), which is rational because now
the aggregated DSF portfolios’ size is increased; hence the DAs can exer-
cise more market power by acting as a coalition. Interestingly, this does
not have much negative impact on social welfare, which is explained by
the fact that DSF can both decrease the DAs’ costs and also decrease the
overall supply-side costs by flattening the demand curve. This happens
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Fig. 7. EPEC vs. competitive market LMPs (bus 5) for scenarios 1 to 4.
Fig. 8. EPEC load scheduling per type of DFA in scenario 2.
especially in scenario 7, in which the SW is slightly increased by 0.7%
(compared to scenario 4), while in scenario 6 remains the same. In
scenario 5, the SW is slightly decreased by 2.1%, because all the new
investments are non-dispatchable PVs that decrease the overall DSF.
From a policy maker’s/regulator’s perspective, scenario 7 seems the
most beneficial one, because it has the highest SW, while the DAs’
costs are the lowest. This ensures that profit-oriented DA companies
are incentivized to make DSF/DER-related investments without disin-
centivizing large-scale supply-side investments on generation assets at
11
the transmission grid. At the same time, scenario 7 seems to be the best
for DA 3, too, even though it cannot control its rivals’ investments.

Fig. 11 depicts the EPEC equilibrium prices for scenarios 4-7. As
expected from Table 3 results, in scenario 7, we have the most times-
lots, in which the LMP has decreased compared to scenario 4. More
specifically, within 17:00-21:00 period, SLs are scheduled to consume
less by shifting their demand in preceding or next timeslots. In the early
morning (i.e. timeslots 5 and 7), we also observe the same context.
In scenario 5, we also have several timeslots of LMP decrease during
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Fig. 9. EPEC load scheduling per type of DFA in scenario 3.

Fig. 10. EPEC load scheduling per type of DFA in scenario 4.
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Table 2
DA Costs & Electricity Market Social Welfare per Scenario 1–4.

Competitive market EPEC

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 1 Scen. 2 Scen. 3 Scen. 4

DA 1 Costs (€) 84 403.36 84 403.792 86 021.21 83 935.46 75 390.93 75 249.18 73 064.33 75 392.61
DA 2 Costs (€) 84 876.10 84 876.108 86 502.71 84 381.78 75 906.92 75 987.74 74 220.56 76 069.14
DA 3 Costs (€) 84 697.27 85 017.312 84 324.35 81 258.81 75 813.42 76 892.98 71 685.50 73 167.26
DA 4 Costs (€) 83 445.27 83 445.276 85 064.36 82 982.35 74 889.55 74 459.03 72 455.33 74 899.45
Total Costs (€) 337 422 337 742.5 341 912.6 332 558.4 302 000.8 302 588.9 291 425.7 299 528.5

SW (€) 615 042.92 621 565.31 617 292.12 618 057.24 575 603.55 575 339.85 578 120.96 571 431.84
Fig. 11. EPEC LMPs (bus 5) for scenarios 4 to 7.
Table 3
DA Costs & Electricity Market Social Welfare per Scenario 4 to 7.

EPEC

Scen. 4 Scen. 5 Scen. 6 Scen. 7

DA 1 Costs (€) 75 392.61 66 743.47 72 475.12 62 235.77
DA 2 Costs (€) 76 069.14 67 581.65 73 430.85 63 785.76
DA 3 Costs (€) 73 167.25 67 590.13 69 940.76 61 032.73
DA 4 Costs (€) 74 899.45 66 654.66 71 941.56 62 631.64
Total Costs (€) 299 528.5 268 569.9 287 788.3 249 685.9

SW (€) 571 431.84 559 007.32 571 278.94 575 444.29

day-time when the PVs are generating energy reducing thus the net
load of the DAs (cf. timeslots 5, 7, 10, 11 and 14). Finally, in scenario
6, we only see one timeslot of LMP decrease (i.e. timeslot 5), which
explains the relatively small difference in DAs’ cost decrease compared
to scenario 4 as shown in Table 3.

For complementarity reasons, we also consider three more scenar-
ios, in which DA 3 invests in V2G technology and its rivals invest in:
(1) PVs (cf. scenario 8), (2) V2G (cf. scenario 9), (3) DSM (cf. scenario
10). As shown in Table 4, scenario 10 seems to be the most beneficial
for a policy maker, because it achieves the best SW, while total DA
costs are considerably decreased, too. Actually, scenario 10 has the
best SW across all scenarios 5-10. Scenario 8 is the best from the DAs’
perspective, but also causes the lowest SW (only scenario 5 is worse
than 8 for the reasons mentioned above). Interestingly, scenario 9, in
which all DAs invest in V2G technology, experiences the lowest DA
costs’ decrease, even though the size of the total DSF capacity increases
a lot. This can be explained because each strategic DA’s bidding cancels
13
Table 4
DA Costs & Electricity Market Social Welfare per Scenario 2, 8, 9, 10.

EPEC

Scen. 2 Scen. 8 Scen. 9 Scen. 10

DA 1 Costs (€) 75 249.18 66 563.05 75 078.77 70 531.63
DA 2 Costs (€) 75 987.73 66 918.58 76 141.08 72 373.30
DA 3 Costs (€) 76 892.98 69 705.65 76 037.33 71 294.30
DA 4 Costs (€) 74 459.03 66 448.83 74 413.76 70 976.55
Total Costs (€) 302 588.9 269 636.1 301 671 285 175.8

SW (€) 575 339.85 563 238.71 574 494.26 577 737.28

the potential market power of its rivals given the fact that we assumed
similar EV operational preferences and constraints for all DAs. This led
to a situation, in which the DAs compete with each other during the
morning timeslots without being able to act as a coalition. This can also
be verified via Fig. 12, which depicts that there are two early morning
timeslots (i.e. 4 and 6), in which the equilibrium price of scenario 9
increases compared to scenario 2. On the other hand, LMP figures of
scenarios 8 and 10 confirm the results of Table 4.

4.5. Impact of network congestion on the market equilibria

In this subsection, we quantify the impact of possible grid conges-
tion contexts on market equilibria results. For testing purposes, we
changed the capacity of the line between bus 2 and 3 (i.e. from 150MW
to 90MW) in order to incur a grid congestion event. In Table 5, we
can see all locational marginal prices (LMPs) per timeslot for baseline
scenario #1. As a result of the grid congestion, there are several
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Fig. 12. EPEC LMPs (bus 5) for scenarios 2, 8, 9, 10.
Table 5
Baseline Scenario (#1) prices in congested network case per bus and per timeslot.

Bus1 Price Bus2 Price Bus3 Price Bus4 Price Bus5 Price Bus6 Price
Time Comp EPEC Comp EPEC Comp EPEC Comp EPEC Comp EPEC Comp EPEC

1 30 30 30 30 30 30 30 30 30 30 30 30
2 35.15 30 30 30 61.73 30 42.97 30 46.53 30 60 30
3 35.15 30 30 30 61.73 30 42.97 30 46.53 30 60 30
4 35.15 35.15 30 30 61.73 61.73 42.97 42.97 46.53 46.53 60 60
5 35.15 30 30 30 61.73 30 42.97 30 46.53 30 60 30
6 35.15 30 30 30 61.73 30 42.97 30 46.53 30 60 30
7 90 90 90 90 90 90 90 90 90 90 90 90
8 90 90 90 90 90 90 90 90 90 90 90 90
9 90 90 90 90 90 90 90 90 90 90 90 90
10 90 90 90 90 90 90 90 90 90 90 90 90
11 60 60 60 60 60 60 60 60 60 60 60 60
12 60 60 60 60 60 60 60 60 60 60 60 60
13 60 60 60 60 60 60 60 60 60 60 60 60
14 60 60 60 60 60 60 60 60 60 60 60 60
15 37.18 30 32.44 30 61.59 30 44.36 30 47.63 30 60 30
16 60 60 60 60 60 60 60 60 60 60 60 60
17 90 90 90 90 90 90 90 90 90 90 90 90
18 90 90 90 90 90 90 90 90 90 90 90 90
19 90 90 90 90 90 90 90 90 90 90 90 90
20 90 90 90 90 90 90 90 90 90 90 90 90
21 60 60 60 60 60 60 60 60 60 60 60 60
22 60 60 60 60 60 60 60 60 60 60 60 60
23 60 60 60 60 60 60 60 60 60 60 60 60
24 30 30 30 30 30 30 30 30 30 30 30 30
timeslots within the day (i.e. 2:00-7:00 and 15:00-16:00), when the
LMPs differ among the six buses. The gray-highlighted cells indicate
the buses and timeslots at which the EPEC prices are lower than the
competitive market setting. This happens because of the increased
aggregated market power of DAs in the EPEC case compared to the
competitive market setting, where all DAs are price-takers and thus
potentially vulnerable to the strategic behavior of generators.

Table 6 depicts the whole network’s congestion cost, which is calcu-
lated as the total DAs’ payments minus the total generators’ revenues.
We can see that the EPEC market setting achieves a considerable
decrease in congestion costs ranging from 39% (cf. scenario #4) to
83% (cf. scenario #1). Moreover, congestion costs are much higher in
14

scenario #4 (compared to scenarios #1-3) because of the higher PV
Table 6
Network’s congestion cost (DAs’ payments minus generators’ revenues).

Scenario # Competitive
market cost
(€)

EPEC market
cost (€)

% decrease

1 20 051.05 3387.84 83.10%
2 20 051.05 6775.69 66.20%
3 21 137.27 6775.69 67.94%
4 27 806.55 16 939.23 39.08%

penetration, which decreases the available DSF capabilities across time

as well as the market power capability of DAs.
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Fig. 13. Congestion case: Average price (across all 6 buses) for Scenarios 2, 3 and 4.
Fig. 13 illustrates the average price (across all 6 buses) for scenarios
#2-4. Again, in all subfigures, we clearly see how the strategic behavior
of all DAs can lower the average prices. Interestingly, the aggregated
DSF portfolio mix directly affects the market power exercised by the
demand-side of the market. For example, in scenario #2, most of the
price decreases happen in the early morning hours when the V2G
capability of the aggregated DSF portfolio is exploited. Scenario #3
demonstrates a similar trend; however, we also see a price change in
the evening (20:00-21:00), when flexibility from SLs is exploited, too.
Finally, in scenario #4, we can see the relatively limited capability of
the aggregated DSF portfolio to change the prices within the whole day.
However, the increased distributed PV generation in scenario #4 lowers
the net load, and this in turn lowers the average price and aggregated
DA costs during midday hours (11:00-16:00), when the greatest PV
generation takes place.

5. Conclusion, policy implications and future work

In this paper, we conducted a thorough market equilibria analysis
considering an oligopolistic demand-side electricity market comprising
of a few strategic DAs. We formulated the relevant EPEC problem, using
the diagonalization algorithm, i.e. an iterative best-response algorithm
where each DA solves its own MPEC problem as if the bids of other
rival DAs were fixed in their latest update. Simulation results demon-
strate the impact that the proposed tool may have for both a DA’s
business as well as for a policy maker/regulator. Policy makers may
incentivize new DSF investments in order to both support the DA’s
business and smoothly support the phasing out of the most expensive
and environmentally-unfriendly generators. Furthermore, policy mak-
ers may also provide appropriate market signals to the DAs so as the
latter can invest in the most profitable type of DSF investments, which
can in turn lower the total system’s cost. These market signals could
be continuously updated in a way that the competition among several
strategic DAs is effectively coordinated in a seamless manner and grid’s
congestion phenomena are proactively encountered deferring thus the
need for costly grid reinforcements by the system operators.

Regarding our future work, we elaborate on one strong assumption
that we have made in this paper, that is a DA myopically best-responds
15
to the latest update of the other participants’ bids (cf. diagonalization
algorithm). A more realistic assumption would be that a DA observes
the market participation strategies of other participants and gradually
learns to anticipate their bidding strategies. As a result, our future work
focuses on the interaction of strategic DAs with learning capabilities
introducing the class of Coarse Correlated Equilibria (CCE) by using
the Fictitious Play and the Smooth Fictitious Play algorithms to model
the DAs’ learning dynamics. Finally, our study can be extended by
exploring the interactions between strategic Demand Aggregators and
conventional generators. Investigating these interactions would offer
deeper insights into the complex dynamics of electricity markets and
contribute to the development of more comprehensive models for op-
timizing renewable energy integration and demand-side management
strategies.
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