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A B S T R A C T

Modern distribution systems with high penetration of distributed energy resources face multiple sources of
uncertainty. This transforms the traditional Optimal Power Flow problem into a problem of sequential decision-
making under uncertainty. In this framework, the solution concept takes the form of a policy, i.e., a method of
making dispatch decisions when presented with a real-time system state. Reasoning over the future uncertainty
realization and the optimal online dispatch decisions is especially challenging when the number of resources
increases and only a small dataset is available for the system’s random variables. In this paper, we present
a data-driven distributed policy for making dispatch decisions online and under uncertainty. The policy is
assisted by a Graph Neural Network but is constructed in such a way that the resulting dispatch is guaranteed
to satisfy the system’s constraints. The proposed policy is experimentally shown to achieve a performance close
to the optimal-in-hindsight solution, significantly outperforming state-of-the-art policies based on stochastic
programming and plain machine-learning approaches.
1. Introduction

1.1. Motivation

The growing penetration of distributed energy resources (DERs)
constitutes a cornerstone development of modern power systems to-
wards supporting higher levels of renewable energy and system flex-
ibility. This development creates, however, significant challenges for
Distribution System Operators (DSOs) — the entities responsible for
maintaining the system’s operation within safe technical limits in an
economically efficient way. This predominantly refers to solving the
renowned Optimal Power Flow (OPF) problem.

An important challenge refers to the increasingly high levels of
uncertainty which motivates solving the OPF problem in a stochastic
and adaptive fashion. This brings the standard OPF problem into the
realm of sequential decision-making under uncertainty. At the same
time, the diversity of DERs impedes solutions based on comprehen-
sive modeling approaches, while their multitude and their distributed
nature makes it difficult to manage them centrally. These challenges
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motivate data-driven and distributed decision-making approaches, as
elaborated in [1,2], respectively.

1.2. Related work

The previous subsection motivated the consideration of a data-
driven, distributed, sequential, and uncertainty-aware solution to the
OPF problem. In this subsection, we discuss the related literature with
respect to these requirements.

Considering the constraint-aware economic dispatch of DERs for a
look-ahead horizon, the simplest approach is to model uncertain param-
eters using point-forecast estimations of their future values and solve
a deterministic OPF problem for the horizon. Such an optimization
problem can be readily extended to a distributed optimization coun-
terpart [2], using decomposition (e.g. [3]) approaches. The distributed
optimization approach for the second-order cone (SOCP) formulation
in particular, is analyzed in [4]. Such deterministic-optimization-based
approaches can readily form the component of an adaptive (rolling-
horizon) algorithm, where the deterministic look-ahead optimization is
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Nomenclature

A. Sets

 Set of energy resources.
 Set of operating timeslots.
 Set of distribution network nodes/buses.
𝑏 Set of descendant (children) nodes of node 𝑏.
 Index and set of operating timeslots.
𝑛 Set of EV’s (random) characteristics.
 Set of decision/control variables.
𝑡 Set of random variables for timeslot 𝑡.
𝑡 Set of state variables for timeslot 𝑡.
𝑡 Set of belief-state parameters for timeslot 𝑡.
 Set of scenarios for the stochastic program.
 Set of neural network inputs.
 Set of neural network outputs.

B. Parameters

P𝑛,P𝑛 Resource’s upper/lower bounds on energy
generation or consumption.

RU𝑛,RD𝑛 Generator’s ramp up/down.
g𝑛 Generator’s per-unit fuel cost.
E𝑛,E𝑛 Battery’s upper/lower bound on energy con-

tainment.
V,V Upper/lower bound on voltages.
I𝜁𝑏𝑏 Upper bound on line’s current.
𝜆𝑏,𝑡 Lagrange multiplier of the active power bal-

ance constraint.
𝜇𝑏,𝑡 Lagrange multiplier of the reactive power

balance constraint.
𝜌 Tuning parameter of the ADMM algorithm.

C. Decision Variables

𝑥𝑛,𝑡 Resource’s dispatch control variable.
𝑄𝑛,𝑡 Resource’s reactive power injection at 𝑡.
𝑦𝑛 Energy not delivered to an EV.
𝑃𝑖𝑗,𝑡 Active power flow between nodes 𝑖 and 𝑗 at 𝑡.
𝑄𝑖𝑗,𝑡 Reactive power flow between nodes 𝑖 and 𝑗 at

𝑡.
𝐼 sqr𝑏𝑐,𝑡 Squared magnitude of current flowing between

nodes 𝑏 and 𝑐 at 𝑡.
𝑉 sqr
𝑏,𝑡 Squared magnitude of node voltage at 𝑡.

C. Random Variables

G̃𝑛,𝑡 RES generation at 𝑡.
t̃arr𝑛 EV’s arrival time.
t̃dep𝑛 EV’s departure time.
Ẽarr
𝑛 EV’s initial state of charge.

C̃𝑛 EV’s battery capacity.
Ẽdes
𝑛 EV’s desired state of charge at departure.

p̃𝑡 Wholesale electricity price at 𝑡.
D̃𝑛,𝑡 Consumer demand at 𝑡.

re-solved at each decision stage using updated estimations for uncertain
parameters, as in [5].

Naturally, the point-forecast optimization reduces all the statistical
knowledge about an uncertain parameter to a single value (namely,
2

the parameter’s expected value). Such a simplistic approach can have
detrimental effects to the solution’s efficiency and recent literature has
proposed more sophisticated methods for solving the OPF problem un-
der uncertainty. Indicatively, [6] proposed a distributed scenario-based
stochastic programming approach for the SOCP model. Furthermore,
the authors in [7] used the Markov Decision Process (MDP) framework
to model the problem of minimizing the distribution system’s expected
operational cost under network constraints and presented an approx-
imate dynamic programming approach for approximating the optimal
solution. The authors in [8] presented distributed solutions where each
resource solves its local MDP and the DSO receives the responses and
updates a set of Lagrange multipliers, similarly to the above-mentioned
distributed optimization techniques.

Notably, the methods reviewed so far are model-based, in the
sense that the system’s uncertain parameters are assumed to follow
known statistical models and/or their temporal dynamics are assumed
to follow known transition functions, while some of the methods can
also be computationally intensive which puts their suitability for the
online adaptive OPF problem into question. In contrast, data-driven
approaches refrain from making distributional assumptions about the
system’s random variables while the relevant Machine Learning (ML)
techniques are able to make fast dispatch decisions online, once pre-
sented with the information about the system’s current state; this is
also referred to as the ‘‘learn-to-optimize’’ concept (see [9] for an
extensive analysis, and [10] for its application to a AC-OPF). Re-
cently introduced methodological enhancements, tailored to the OPF
problem, include the co-called physics-informed neural networks [11]
and sensitivity-informed neural networks [12]. The main issue with
ML-based methods, however, is that they generally lack constraint-
satisfaction guarantees.

1.3. Research gap & contributions

The literature review reveals a number of requirements for an op-
erational policy that makes dispatch decisions in an active distribution
network. Namely, the decisions are to be made:

(1) stochastically, i.e., in an uncertainty-aware manner;
(2) adaptively, i.e. in a sequential manner, each time accounting for

the updated information;
(3) in a data-driven manner to avoid making statistical assumptions

about the uncertainties;
(4) distributedly, for scalability and privacy preservation;
(5) reliably, i.e., in a way that guarantees the satisfaction of network

constraints.

In this paper, we first formulate the relevant problem of construct-
ing an optimal policy, using the unified framework for sequential
decisions proposed in [13] and the SOCP-relaxation of the OPF. After
presenting two benchmark policies, one based on stochastic program-
ming and one based on the learning-to-optimize approach, we proceed
to construct the proposed policy by training a Graph Neural Net-
work to estimate the optimal dual variables of the system’s power
balance constraints for the future stages of the look-ahead horizon.
The Graph Neural Network is able to leverage the spatial dependencies
of the distribution system to optimize its estimation for the system’s
optimal duals. Using these estimations as uncertainty-capturing sig-
nals, we employ a distributed optimization algorithm that converges
to constraint-satisfying here-and-now dispatch decisions. Thereby, the
paper’s contributions can be summarized as follows:

• A data-driven, distributed policy is presented for the stochastic
sequential OPF problem, which makes sure that the system’s
constraints are respected.

• The proposed policy is shown to compare favorably against

stochastic programming and plain ML methods.
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2. System model

2.1. Distributed energy resources

We consider a set  of flexible electricity consuming/producing
resources. Each resource belongs to a particular set 𝜃 of type 𝜃 ∈ 𝛩,

here

= {Generators,RES,Consumers,Storage,EVs}

s the set of types. It is  =
⋃

𝜃∈𝛩𝜃 . Continuous time is divided into
imeslots of equal duration for a time horizon  . Each resource 𝑛 ∈ 
s characterized by upper and lower bounds P𝑛,P𝑛 over its active power
njection, where P𝑛,P𝑛 can be negative for resources that only consume
nergy. A resource can be dispatched at any level 𝑥𝑛,𝑡P𝑛, such that

≤ 𝑥𝑛,𝑡P𝑛 ≤ P𝑛, ∀𝑛 ∈  , 𝑡 ∈  , (1)

here 𝑥𝑛,𝑡 ∈ [0, 1] is a decision variable. For a RES facility in particular,
he (maximum) power generation at 𝑡 is a random variable G̃𝑛,𝑡, further
onstraining its dispatch to

𝑛,𝑡P𝑛 ≤ G̃𝑛,𝑡, ∀𝑛 ∈ 𝚁𝙴𝚂, 𝑡 ∈  . (2)

Ramp-up and ramp-down constraints for generators read

RD𝑛 ≤ 𝑥𝑛,𝑡P𝑛 − 𝑥𝑛,𝑡−1P𝑛,𝑡−1 ≤ RU𝑛,

𝑛 ∈ 𝙶𝚎𝚗, 𝑡 ∈  . (3)

eactive power injections from consumers and RES are assumed to
ollow a constant power factor, as in

𝑛,𝑡 = 𝑥𝑛,𝑡P𝑛 tan
(

cos−1
(

pf𝑛
))

,∀𝑛 ∈ 𝙲𝚘𝚗𝚜 ∪𝚁𝙴𝚂. (4)

n the other hand, for EVs, storage units, and generators, it is assumed
hat the reactive power can vary within an operational power factor,
s in

𝑄𝑛,𝑡| ≤ 𝑥𝑛,𝑡P𝑛 tan
(

cos−1
(

pf𝑛
))

,

∀𝑛 ∈ 𝙴𝚅𝚜 ∪𝚂𝚝𝚘 ∪𝙶𝚎𝚗, (5)

Storage units and EVs have the ability to charge or discharge (both
ith an assumed efficiency of 1 in this paper), thus it is P𝑛 ≤ 0 and

P𝑛 ≥ 0. A storage unit is characterized by limits E𝑛,E𝑛 on its battery’s
nergy containment, as in

𝑛 ≤ E𝑛,0 +
∑

𝜏∈[1,𝑡]
𝑥𝑛,𝜏P𝑛 ≤ E𝑛, ∀𝑡 ∈  , 𝑛 ∈ 𝚂𝚝𝚘, (6)

here E𝑛,0 is the battery’s initial energy. We also impose that the
attery’s state of charge at the end of the horizon is equal to the
attery’s initial state of charge, by setting
∑

𝑡∈
𝑥𝑛,𝑡P𝑛 = 0, ∀𝑛 ∈ 𝚂𝚝𝚘. (7)

An EV, on the other hand, is characterized by its arrival and depar-
ure times t̃arr𝑛 , t̃dep𝑛 , its initial state of charge Ẽarr

𝑛 , its battery capacity
̃
𝑛, and a desired state of charge Ẽdes

𝑛 at its departure time. All of these
haracteristics are random variables, constituting the EV’s type 𝑛, and
re revealed only once the EV arrives in the system. The EV’s energy
onstraint takes the form

≤ Ẽarr
𝑛 +

∑

𝜏∈[1,𝑡]
𝑥𝑛,𝜏P𝑛 ≤ C̃𝑛, ∀𝑡 ∈  , 𝑛 ∈ 𝙴𝚅𝚜, (8)

and the difference between the EV’s desired state of charge and the
actual state of charge at departure is defined as

𝑦𝑛 = Ẽdes
𝑛 −

(

Ẽarr
𝑛 +

∑

𝑡∈[̃tarr𝑛 ,̃tdep𝑛 ]

𝑥𝑛,𝑡P𝑛
)

, ∀𝑛 ∈ 𝙴𝚅𝚜. (9)

Moreover, for exactness, we write:

𝑥 = 0, ∀𝑛 ∈  , 𝑡 ∉ [̃tarr , t̃dep]. (10)
3

𝑛,𝑡 𝙴𝚅𝚜 𝑛 𝑛
Each resource can control its dispatch profile 𝒙𝑛 ≜ (𝑥𝑛,𝑡)𝑡∈ over the
orizon  , at a cost given by the resource’s cost function 𝑐𝑛(𝒙𝑛). In this
aper, we model the resources’ cost functions as convex functions of
𝑛. In particular, the cost functions for generators take the form

𝑛∶𝑛∈𝙶𝚎𝚗
(𝒙𝑛) =

∑

𝑡∈
g𝑛 ⋅ (𝑥𝑛,𝑡P𝑛)2 − p̃𝑡 ⋅ 𝑥𝑛,𝑡P𝑛, (11)

where g𝑛 relates to the fuel cost, and p̃𝑡 is the wholesale market price
a random variable), yielding generation revenues.

A RES facility, gains wholesale market revenues with virtually zero
perational cost. Thus, its cost function is decreasing in 𝑥𝑛,𝑡, as in

𝑛∶𝑛∈𝚁𝙴𝚂
(𝒙𝑛) = −

∑

𝑡∈
(p̃𝑡) ⋅ 𝑥𝑛,𝑡P𝑛. (12)

Storage units are also subject to wholesale market revenues (or
payments for 𝑥𝑛,𝑡P𝑛 < 0), and additionally bear a battery degradation
cost, as in

𝑐𝑛∶𝑛∈𝚂𝚝𝚘
(𝒙𝑛) =

∑

𝑡∈

(

d ⋅
(𝑥𝑛,𝑡P𝑛

E𝑛

)2
− p̃𝑡 ⋅ 𝑥𝑛,𝑡P𝑛

)

, (13)

where d is a battery degradation factor, and
∑

𝑡∈ 𝑥𝑛,𝑡P𝑛
E𝑛

is the number of
full charge–discharge cycles.

EVs bear the same costs as storage units, and an additional penalty/
disutility cost 𝑢(𝑦𝑛) (e.g. quadratic in 𝑦𝑛) for not having their battery
charged at their desired level upon departure:

𝑐𝑛∶𝑛∈𝙴𝚅𝚜
(𝒙𝑛) =

∑

𝑡∈

(

d ⋅
(𝑥𝑛,𝑡P𝑛

C̃𝑛

)2
− p̃𝑡 ⋅ 𝑥𝑛,𝑡P𝑛

)

+ 𝑢(𝑦𝑛). (14)

Finally, a consumer has an energy demand level D̃𝑛,𝑡 at each times-
lot. In addition to its retail cost ∑𝑡∈ p̃𝑡 ⋅𝑥𝑛,𝑡P𝑛, it bears an instantaneous

cost w2 ⋅
(

D̃𝑛,𝑡 − 𝑥𝑛,𝑡P𝑛
)2

for having its load shifted from (or to) timeslot

𝑡, as well as an extra cost w3 ⋅
(

∑

𝑡∈ D̃𝑛,𝑡 −
∑

𝑡∈ 𝑥𝑛,𝑡P𝑛
)2

for having part
of its demand unsatisfied:

𝑐𝑛∶𝑛∈𝙲𝚘𝚗𝚜
(𝒙𝑛) =

∑

𝑡∈

(

p̃𝑡 ⋅ 𝑥𝑛,𝑡P𝑛 + w2 ⋅ (D̃𝑛,𝑡 − 𝑥𝑛,𝑡P𝑛)2
)

w3 ⋅

(

∑

𝑡∈
D̃𝑛,𝑡 −

∑

𝑡∈
𝑥𝑛,𝑡P𝑛

)2

. (15)

2.2. Distribution system

The resources are connected via a radial distribution network de-
fined by the set of nodes/buses  and their interconnecting lines. For
a bus 𝑏 ∈ , we denote the set of resources connected to it by 𝑏, its
parent node by 𝜁𝑏 and the set of its children nodes by 𝑏. The active
and reactive power flows from node 𝑖 to node 𝑗, at 𝑡, are denoted as
𝑃𝑖𝑗,𝑡 and 𝑄𝑖𝑗,𝑡 respectively. A node’s active power balance is ensured by

𝑃𝜁𝑏𝑏,𝑡 +
∑

𝑛∈𝑏

𝑥𝑛,𝑡P𝑛 −
∑

𝑐∈𝑏

(

𝑃𝑏𝑐,𝑡 + R𝑏𝑐𝐼
sqr
𝑏𝑐,𝑡

)

= 0

∀ 𝑏 ∈ , 𝑡 ∈  , (16)

where 𝐼 sqr𝑏𝑐,𝑡 is the squared magnitude of the current flowing through
the line connecting 𝑏 to 𝑐, and R𝑏𝑐 is the line’s resistance. Similarly, the
reactive power balance is written as

𝑄𝜁𝑏𝑏,𝑡 +
∑

𝑛∈𝑏

𝑄𝑛,𝑡 −
∑

𝑐∈𝑏

(

𝑄𝑏𝑐,𝑡 + X𝑏𝑐𝐼
sqr
𝑏𝑐,𝑡

)

= 0

∀ 𝑏 ∈ , 𝑡 ∈  , (17)

where X𝑏𝑐 is the line’s reactance. The voltage magnitude drop between
nodes 𝜁𝑏 and 𝑏 is represented by:

𝑉 sqr − 2
(

R 𝑃 + X 𝑄
)

−
(

R2 + X2
)

𝐼 sqr
𝜁𝑏 ,𝑡 𝜁𝑏𝑏 𝜁𝑏𝑏,𝑡 𝜁𝑏𝑏 𝜁𝑏𝑏,𝑡 𝜁𝑏𝑏 𝜁𝑏𝑏 𝜁𝑏𝑏,𝑡
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= 𝑉 sqr
𝑏,𝑡 , ∀𝑏 ∈ , 𝑡 ∈  , (18)

while branch power flows are calculated using the (SOCP-relaxed)
inequality

𝑉𝑏,𝑡𝐼𝜁𝑏𝑏,𝑡 ≤ 𝑃 2
𝜁𝑏𝑏,𝑡

+𝑄2
𝜁𝑏𝑏,𝑡

, ∀𝑏 ∈ , 𝑡 ∈  . (19)

Finally, the upper and lower bounds on nodal voltage magnitudes and
current magnitudes are enforced by

V ≤ 𝑉𝑏,𝑡 ≤ V ∀𝑏 ∈ , 𝑡 ∈  , (20)

0 ≤ 𝐼𝜁𝑏𝑏,𝑡 ≤ I𝜁𝑏𝑏 ∀𝑏 ∈ , 𝑡 ∈  . (21)

.3. Problem formulation

Under no uncertainties over the system’s parameters (e.g. demand
nd RES output), the optimal-in-hindsight solution is given by the
ollowing OPF problem:

𝐢𝐧
∑

𝑛∈
𝑐𝑛(𝒙𝑛)

s.t. (1)–(21),
(22)

here the set of decision variables is

=
{

(𝑥𝑛,𝑡,𝑄𝑛,𝑡)𝑛∈ ,𝑡∈ , (𝑦𝑛)𝑛∈ ,

(𝑉𝑏,𝑡, 𝑃𝜁𝑏𝑏,𝑡, 𝑄𝜁𝑏𝑏,𝑡, 𝐼𝜁𝑏𝑏,𝑡)𝑏∈,𝑡∈
}

.

owever, the problem’s parameters include a set

𝑡 = {(G̃𝑛,𝑡)𝑛∈𝚁𝙴𝚂
, (D̃𝑛,𝑡)𝑛∈𝙲𝚘𝚗𝚜

, p̃𝑡} ∪ (𝑛)𝑛∈𝙴𝚅𝚜 ∶̃tarr𝑛 =𝑡 (23)

f random variables for each 𝑡 (i.e. the RES generation, consumer
emand, prices, and EV characteristics) rendering the tracking of the
ptimal dispatch a problem of sequential decision making under un-
ertainty. Using the general modeling framework for such problems, as
ntroduced in [13], our problem is defined by:

• The set of decision stages  .
• The set of action variables at each stage:

𝑡 =
{

(𝑥𝑛,𝑡, 𝑄𝑛,𝑡)𝑛∈ , (𝑉𝑏,𝑡, 𝑃𝜁𝑏𝑏,𝑡, 𝑄𝜁𝑏𝑏,𝑡, 𝐼𝜁𝑏𝑏,𝑡)𝑏∈
}

.

• The system’s state at 𝑡:

𝑡 =
{

(𝑥𝑛,𝑡−1)𝑛∈𝙶𝚎𝚗
, (𝐸𝑛,𝑡−1)𝑛∈𝙴𝚅𝚜∪𝚂𝚝𝚘∪𝙲𝚘𝚗𝚜

,𝑡,𝑡
}

which represents all the information relevant for making a deci-
sion; this includes each generator’s previous output level 𝑥𝑛,𝑡−1, a
state-of-energy variable

𝐸𝑛,𝑡−1 =
𝑡−1
∑

𝑡′=1
𝑥𝑛,𝑡′ (24)

for storage, EVs and consumers, the currently revealed infor-
mation 𝑡, and a belief-state 𝑡 which encompasses all the
parameters relevant for reasoning over the future realizations
(𝑡′ )𝑡′∈[𝑡+1,| |] of the system’s random variables.

• The system’s stage cost 𝐶𝑡(𝑡,𝑡) defined as the sum of the
resources’ cost functions.

• A transition function 𝐻 that maps (𝑡,𝑡) to a next state 𝑡+1;
this comprises the deterministic transition functions of state com-
ponents 𝑥𝑛,𝑡−1, 𝐸𝑛,𝑡−1, the unknown dynamics of the random vari-
ables 𝑡, and the method-specific dynamics that define the up-
date rules for the parameters of the belief-state 𝑡.

The solution concept for our problem takes the form of a policy 𝜋, i.e. a
method 𝑡 = 𝜋(𝑡) for deciding feasible actions 𝑡 at any realization of
4

the state 𝑡. Based on these definitions, our objective can be defined as i
the minimization (over policies) of the expected system’s accumulated
cost:

min
𝜋

{

∑

𝑡∈
E𝜓∼𝜋

[

𝐶𝑡( 𝜋
𝑡 ,𝑡)

]

}

(25)

s.t. 𝑡+1 = 𝐻𝜋 ( 𝜋
𝑡 ,𝑡)

where the expectation is over the system’s possible state–action trajec-
tories 𝜓 conditioned on the adopted policy 𝜋.

In the next section, we present two benchmark policies for problem
(25): a receding horizon stochastic program and a learn-to-optimize
approach. These policies serve as building blocks for the proposed
policy (to be presented later in Section 4) and also as benchmarks
against which the proposed policy will be evaluated in Section 5.

3. Benchmark policies

This section presents two benchmark policies for problem (25)
before presenting the proposed policy in the next Section.

3.1. Receding-horizon stochastic programming

Let us consider a given decision stage and denote it by 𝜏. Given the
revealed information 𝜏 , a stochastic programming approach considers
a set  of scenarios for future realizations (𝑡,𝑘)𝑡∈[𝜏+1,| |] of the system’s
random variables. These scenarios constitute the policy’s belief-state 𝜏
at 𝜏 and are generated by drawing on the statistical properties of past
observations. The program uses a duplicate set 𝑡,𝑘 of decision variables
for each scenario and timeslot, and makes a decision  𝚂𝙿

𝜏 at 𝜏 by solving
the following optimization problem:

𝐦𝐢𝐧
(𝑡,𝑘)𝑡∈ ,𝑘∈

∑

𝑘∈

∑

𝑛∈
𝑐𝑛(𝒙𝑛,𝑘) (26)

s.t. (1)–(21), ∀𝑘 ∈  (27)

(𝑡,𝑘)𝑡∈[1,𝜏−1],𝑘∈ = ( 𝚂𝙿
𝑡 )𝑡∈[1,𝜏−1], (28)

(𝜏,𝑘)𝑘∈ = (𝜏,𝑘′ )𝑘′∈, ∀𝑘, 𝑘′ ∈ , (29)

here (27) enforces the system’s operational constraints for each sce-
ario, constraint (28) fixes the decisions made before current stage
to the applied actions (ensuring that the algorithm cannot change

he past), and constraint (29) enforces the so-called non-anticipativity
onstraints. At stage 𝜏, and given an optimal solution to the above
roblem, the receding-horizon algorithm applies the decision for the
urrent stage and re-solves the optimization in the next stage 𝜏 + 1
hen the belief-state is updated by considering the newly revealed

nformation 𝜏+1.

.2. Learn to optimize

The learn-to-optimize approach avoids the need to solve a stochastic
PF problem in online operation, by feeding the observed state to
ML algorithm, namely a neural network (NN), which provides an

stimation of the optimal dispatch in negligible time. More specifically,
t stage 𝜏 of online operation, the NN is provided with the input

𝜏 =

𝜏, (𝑥𝑛,𝜏−1)𝑛∈𝙶𝚎𝚗
, (𝐸𝑛,𝜏−1)𝑛∈𝙴𝚅𝚜∪𝚂𝚝𝚘∪𝙲𝚘𝚗𝚜

, (𝑡)𝑡∈[1,𝜏]
}

, (30)

.e., all the relevant information currently available, and provides as
utput an estimation 𝜏 = (𝑥𝙻𝚝𝙾𝑛,𝜏 , 𝑄

𝙻𝚝𝙾
𝑛,𝜏 )𝑛∈ of the optimal dispatch

where the 𝙻𝚝𝙾 superscript specifies that this the solution prescribed
y the Learn-to-Optimize approach. The NN is trained offline, using
appings of the form
𝑑
𝑡 =

(

𝑑𝑡 ,
𝑑
𝑡

)

. (31)

o create a mapping 𝑚𝑑𝑡 , an instance 𝑑 =
(

𝑑
𝑡
)

𝑡∈ for a whole day
𝑑
s considered and the respective optimal-in-hindsight solution  is
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calculated by solving problem (22) (under a perfect forecast). Thus, for
each 𝑡 of day 𝑑, the input feature 𝑥𝑑𝑛,𝑡−1 is the ‘‘(𝑛, 𝑡 − 1)’’ component of
the optimal solution  𝑑 and 𝐸𝑑𝑛,𝑡−1 is calculated using (24). The output
art 𝑑𝑡 of 𝑚𝑑𝑡 is simply the optimal value of variables 𝑥𝑛,𝑡, 𝑄𝑛,𝑡 ∈  𝑑 .

One shortcoming of this policy is that, for a large number | | of
esources, the dimension of the NN’s output also grows, which obstructs
he NN’s efficient training and performance. A second shortcoming
efers to the inability of the policy to guarantee the feasibility of the
ontrol actions. The next Section presents the proposed policy which
emedies these issues.

. Proposed policy

In this Section, we present the proposed distributed policy for prob-
em (25). Let us first consider a distributed algorithm for the perfect
orecast case (refer to problem (22)) before we address uncertainty. Let
s consider the active and reactive power balance residuals, for each
ode and timeslot, as
𝚙

𝑏,𝑡 = 𝑃𝜁𝑏𝑏,𝑡 +
∑

𝑛∈𝑏

𝑥𝑛,𝑡P𝑛 −
∑

𝑐∈𝑏

(

𝑃𝑏𝑐,𝑡 + R𝑏𝑐𝐼
sqr
𝑏𝑐,𝑡

)

, (32)

𝛿𝚚𝑏,𝑡 = 𝑄𝜁𝑏𝑏,𝑡 +
∑

𝑛∈𝑏

𝑄𝑛,𝑡 −
∑

𝑐∈𝑏

(

𝑄𝑏𝑐,𝑡 + X𝑏𝑐𝐼
sqr
𝑏𝑐,𝑡

)

. (33)

By relaxing the respective active and reactive power balance constraints
(16), (17), we can write the augmented Lagrangian of problem (22) as:

𝐿 =
∑

𝑛∈
𝑐𝑛(𝒙𝑛) −

∑

𝑡∈

∑

𝑏∈

(

𝜆𝑏,𝑡 ⋅ 𝛿
𝚙

𝑏,𝑡 −
𝜌
2
(

𝛿𝚙𝑏,𝑡
)2
)

−

∑

𝑡∈

∑

𝑏∈

(

𝜇𝑏,𝑡 ⋅ 𝛿
𝚚

𝑏,𝑡 −
𝜌
2
(

𝛿𝚚𝑏,𝑡
)2
)

, (34)

where 𝜆𝑏,𝑡, 𝜇𝑏,𝑡 are the Lagrange multipliers of the active and reactive
ower balance constraints for 𝑏, 𝑡. Given that the Lagrangian is per-
ode separable, the optimal-in-hindsight problem (22) lends itself to
distributed solution where, at iteration 𝑖, each node updates its

ecisions 𝑏 =
(

(𝑥𝑛,𝑡, 𝑄𝑛,𝑡)𝑛∈𝑏 ,𝑡∈ , (𝑦𝑛)𝑛∈𝑏

)

as

(𝑖)
𝑏 ∈ 𝐚𝐫𝐠𝐦𝐢𝐧 {𝐿}

𝐬.𝐭. (1)–(15),

𝙳𝚂𝙾 =  (𝑖−1)
𝙳𝚂𝙾

(35)

nd the DSO updates its variables

𝙳𝚂𝙾 =
(

𝑉𝑏,𝑡, 𝑃𝜁𝑏𝑏,𝑡, 𝑄𝜁𝑏𝑏,𝑡, 𝐼𝜁𝑏𝑏,𝑡
)

𝑏∈,𝑡∈

s
(𝑖)
𝙳𝚂𝙾

∈ 𝐚𝐫𝐠𝐦𝐢𝐧 {𝐿}

𝐬.𝐭. (18)–(21),

𝑏 =  (𝑖−1)
𝑏 , ∀𝑏 ∈ .

(36)

iven the simultaneous variables’ updates (35), (36), the Lagrange
ultipliers can be updated using the Alternate Direction Method of
ultipliers (ADMM), as:

𝜆(𝑖)𝑏,𝑡 = 𝜆(𝑖−1)𝑏,𝑡 + 𝜌𝛿𝚙𝑏,𝑡
(

 (𝑖)
𝑏 , (𝑖)

𝙳𝚂𝙾

)

, ∀𝑏 ∈ , 𝑡 ∈  , (37)
(𝑖)
𝑏,𝑡 = 𝜇(𝑖−1)𝑏,𝑡 + 𝜌𝛿𝚚𝑏,𝑡

(

 (𝑖)
𝑏 , (𝑖)

𝙳𝚂𝙾

)

∀𝑏 ∈ , 𝑡 ∈  . (38)

We now turn to constructing the proposed policy for the sequential
ecision-making problem under uncertainty. Similarly to the learn-to-
ptimize policy of Section 3.2, the proposed policy is assisted by a
N trained on instances of the problem’s optimal-in-hindsight solution.
owever, instead of training the NN to estimate the optimal dispatch at
urrent stage 𝜏, it is trained to return an estimation (𝜆∗𝑏,𝑡, 𝜇

∗
𝑏,𝑡)𝑡∈[𝜏+1,| |]

f the problem’s optimal dual variables that correspond to constraints
5

16), (17) of problem (22). Thus, at stage 𝜏 of online operation, the NN
Algorithm 1 The proposed policy for the data-driven, distributed
sequential OPF problem at stage 𝜏.
1: Feed the input (Eq. (30)) to the NN, and obtain the predicted

multipliers 𝜆∗𝑏,𝑡, 𝜇
∗
𝑏,𝑡, for each node 𝑏 ∈ , and future stage 𝑡 ∈

[𝜏 + 1, | |]
2: Fix the multipliers for future stages to the ones predicted by the

NN: 𝜆𝑏,𝑡, 𝜇𝑏,𝑡 = 𝜆∗𝑏,𝑡, 𝜇
∗
𝑏,𝑡, ∀𝑏 ∈ , 𝑡 ∈ [𝜏 + 1, | |].

3: Initialize the iteration number and the multipliers for the current
stage 𝑖 = 0, 𝜆(0)𝑏,𝜏 , 𝜇

(0)
𝑏,𝜏 = 0, ∀𝑏 ∈ .

4: repeat:
5: 𝑖 = 𝑖 + 1
6: for 𝑏 ∈ :
7: Update node’s decisions  (𝑖)

𝑏 by solving (35)
8: Update DSO decisions  (𝑖)

DSO by solving (36)
9: Update the multipliers for the current stage, as:

𝜆(𝑖)𝑏,𝜏 = 𝜆(𝑖−1)𝑏,𝜏 + 𝜌𝛿p𝑏,𝜏
(

 (𝑖)
𝑏 , (𝑖)

DSO
)

, ∀𝑏 ∈ ,
𝜇(𝑖)𝑏,𝜏 = 𝜇(𝑖−1)𝑏,𝜏 + 𝜌𝛿q𝑏,𝜏

(

 (𝑖)
𝑏 , (𝑖)

DSO
)

∀𝑏 ∈ .
10: until max𝑏∈{𝜆

(𝑖)
𝑏,𝜏 − 𝜆

(𝑖−1)
𝑏,𝜏 } < 𝜀

AND
max𝑏∈{𝜇

(𝑖)
𝑏,𝜏 − 𝜇

(𝑖−1)
𝑏,𝜏 } < 𝜀

11: apply: (𝑥(𝑖)𝑛,𝜏 , 𝑄
(𝑖)
𝑛,𝜏 )𝑛∈𝑏

is fed with the same input 𝜏 as defined in (30), plus the dual variables
in which the ADMM algorithm converged in the previous timeslot,
and predicts the optimal dual variables for future stages. Then, the
ADMM algorithm is executed, where only the multipliers for the current
timeslot 𝜏 are iteratively updated, while the multipliers for future
timeslots are kept fixed to the estimated values (𝜆∗𝑏,𝑡, 𝜇

∗
𝑏,𝑡)𝑡∈[𝜏+1,| |]. The

exact policy at decision stage 𝜏, reads as in Algorithm 1.

Remark 1. Notice that the proposed policy of Algorithm 1 converges
to an uncertainty-informed dispatch that always respects the system’s
constraints (by construction).

5. Experimental evaluation

5.1. Evaluation setup

The presented policies are evaluated for a 24-timeslots horizon on
the 11 kV MV-distribution network of [14]. The substation voltage was
set to 1.0 p.u. on the secondary side and voltage magnitude limits to
V = 1.05 p.u. and V = 0.95 p.u.

The dataset from [15] was used for the consumers’ consumption. For
EVs, we assumed that each user wants to charge his/her EV as much
as possible within the given deadline and the disutility cost is linear in
the amount of energy not charged. The dataset from [16] was used for
EVs’ characteristics. Wholesale market prices were drawn from [17],
and RES generation was drawn from [18]. For the proposed policy, a
Graph Neural Network was used to predict the dual variables. The NN
consists of two graph convolution layers and 3 linear layers. The layers
use the Relu activation function. Each bus/node 𝑛 is represented with
its local state variable which contains only the variables that refer to
that bus/node.

5.2. Evaluation results

Our main result is the comparison of the proposed policy of Algo-
rithm 1 against the optimal in hindsight solution (oracle) of problem
(22) and against the two benchmark policies (the receding-horizon
stochastic program and the learn-to-optimize policy). Naturally, the
optimal-in-hindsight solution provides us with the ideal objective value

that could only be reached if all information was known beforehand
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Fig. 1. Comparison of the three policies with the optimal-in-hindsight solution.

Fig. 2. Convergence behavior of the proposed policy.

and it is not attainable in practice. Nevertheless, it serves as a the-
oretical benchmark against which we can assess the performance of
the three policies. In Fig. 1, we present each policy’s system cost
accumulated along the horizon, where the value at the last timeslot (𝑡 =
24) expresses the policy’s overall performance as a percentage of the
optimal-in-hindsight solution’s cost. As can be observed, the proposed
policy significantly outperforms the two benchmarks by achieving a
cost that is only 15% higher than the one of the perfect information
case.

The performance documented in Fig. 1 for the proposed policy was
achieved by setting 𝜌 equal to 1. Higher values of 𝜌 can provide faster
convergence times as can be seen in Fig. 2, although at the expense
of higher system cost (loss of efficiency) which can be significant as
shown in Fig. 3. However, for the near-optimal choice of 𝜌 = 1, the
computational time required to make a decision was in the order of only
one minute, which is already fast enough for the intended application
and validates the policy’s suitability for real-time decisions. Further
simulation results, including e.g. a sensitivity analysis to biased data
are included in the extended online version of the paper [19].

6. Conclusion and future work

This paper motivated the need to solve the distribution-level OPF
problem in a stochastic, sequential, distributed and data-driven man-
ner. The problem was formulated as a problem of sequential decision-
making under uncertainty and the notion of a policy was identified
as the relevant solution concept. A policy was proposed which uses a
Graph Neural Network to predict the problem’s optimal dual variables
for future intervals combined with an iterative distributed optimization
6

Fig. 3. Efficiency loss for different values of parameter 𝜌.

algorithm for making coordinated real-time decisions that, by con-
struction, respect the system’s operational constraints. The proposed
policy was compared to two policies commonly used in the literature
(a stochastic programming and a direct machine-learning approach)
demonstrating a significant difference in the achieved efficiency. The
simulation results indicated the ability of the proposed policy to make
fast online decisions while approaching the objective value of the
optimal (perfect information) solution. The proposed methodology is
not confined by the distribution network’s (radial) structure and can
also work for meshed networks in principle. However, how well it
would performed in meshed networks is an open question that can be
empirically evaluated in future work.
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