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Abstract—We present an end-to-end solution to facilitate the
seamless execution of hardware-accelerated compute-intensive
tasks on heterogeneous hardware platforms spanning the Cloud-
Edge continuum. Our approach includes a programming in-
terface, orchestration, application management components, the
vAccel framework, and a library of hardware-accelerated ker-
nels. These components enable a Function-as-a-Service (FaaS)
based operational flow that supports numerous diverse use cases
while minimizing the time required for the developer to integrate
their code and for the vendor to provide hardware acceleration
capabilities to end users. Experimental results showcase the
merits of our approach.

Index Terms—Cloud-Edge Continuum, Serverless, Function-
as-a-Service, Hardware Acceleration

I. INTRODUCTION

The cloud computing paradigm appears ideal to deploy
and manage the Internet of Things and other applications’
execution at scale. However, several use cases require data
processing and decision-making closer to the data sources due
to their mission-critical, low-latency, and near-real-time re-
quirements. To this end, multi-layered computing architectures
are considered, where computing resources and applications
are distributed from the network’s edge to the cloud, realizing
the edge-cloud computing continuum.

Even though edge-cloud architectures expand the computing
capacity of the traditional cloud paradigm by introducing an
additional massive pool of computing resources, the ineffi-
ciency of conventional CPUs to provide fast, near real-time
executions has also led to the introduction of hardware accel-
erators, such as GPUs and FPGAs, that accelerate computation
in applications traditionally handled only by the CPU. Typical
examples of accelerators include power-efficient devices at
the edge (e.g., NVIDIA Jetson and Xilinx MPSoC) to high-
performance, massively-parallel devices in the cloud (e.g.,
NVIDIA Ampere GPUs and Xilinx Alveo).

In addition, in the emerging serverless computing execution
model, the provider takes care of the hardware and software
resources to execute an application or a service [1]. Function
as a service (FaaS) is a form of serverless computing where
a function (a snippet of code) is provided by the user [2],
while the cloud provider facilitates the loading and execution

of the code when triggered by an event. Functions are designed
to be short-lived. To enable execution isolation and minimal
interference in multi-tenant environments, serverless vendors
often execute these functions in containers or virtual machines.

In our work, we present the mechanisms in the SERRANO
platform [3] that enable the seamless execution of accelerated
compute-intensive tasks, referred to as kernels, across the
Edge-Cloud continuum. The proposed solution integrates and
utilizes heterogeneous hardware platforms for the edge and
the cloud in a unified way. More specifically, it includes
(i) the SERRANO orchestration and application deployment
components, (ii) the vAccel [26] framework that enables
workloads to access diverse hardware accelerators securely
and efficiently, and (iii) a library of accelerated kernels that
leverage hardware and software acceleration techniques to
improve the performance and energy consumption. These
mechanisms extend the serverless computing paradigm across
a hardware-accelerated Edge-Cloud continuum that can ac-
commodate numerous demanding use cases.

The rest of this paper is organized as follows. Section II
discusses the programmability of accelerators and serverless
deployments. Section III presents an overview of the SER-
RANO platform. Section IV describes the proposed end-to-end
solution for hardware-accelerated FaaS operation across the
Edge-Cloud continuum. Section V provides an overview of the
vAccel framework, while Section VI outlines the accelerated
kernels. Section VII evaluates the efficiency of the proposed
mechanisms. Finally, Section VIII concludes the work.

II. ACCELERATORS’ PROGRAMMABILITY AND
SERVERLESS DEPLOYMENTS

The advent of micro-services, supporting the trend of
porting monolithic applications to distributed designs, and
the constantly rising popularity of serverless computing have
created the need for finer access granularity to hardware ac-
celerators. Approaches like device passthrough and hardware-
assisted virtualization are extremely restricting for these se-
tups. Interestingly, popular serverless offerings, like AWS
lambda, currently lack support for hardware acceleration due
to flexibility limitations and security implications [4].979-8-3503-0322-3/23/$31.00 ©2023 IEEE



Edge devices are typically resource constrained. Low-power
devices with decent hardware accelerators are already in the
market [5], but, despite impressive recent improvements in
CPU performance, these devices present a challenge for typical
deployments due to limitations in local storage, memory, and
CPU cores. On top of that, they cannot accommodate multiple
isolated tenants, as they only support bare-metal container-
based setups or standard device passthrough for VMs. Contain-
ers are notorious [6], [7] for their security implications, which
could sometimes cause severe incidents, especially when ML
inference is critical [8], [9].

Moreover, the diversity of current accelerator software
stacks hinders the process of writing accelerate-able code
targeting the multitude of the aforementioned environments.
Building generic applications that use diverse hardware accel-
erator types and deploying them efficiently on diverse, multi-
tenant, heterogeneous environments is a challenge, especially
with respect to the software porting effort.

Transparently deploying serverless workloads at the edge
of the network is challenging due to the variety of platforms
available and the different ways they can be programmed.
Hardware development for FPGAs can be performed at dif-
ferent levels of abstraction. The most commonly used are:
(i) the Register Transfer Level (RTL), where circuit-level
programming is done, and (ii) algorithmic-level methods such
as High-Level Synthesis (HLS), which describe designs more
abstractly. In addition, GPU programmability has greatly
improved over the years with high-level languages such as
CUDA and OpenCL, making GPU programming increasingly
common in both academia and industry.

To accommodate multiple tenants on cloud infrastructure,
vendors must address hardware accelerator device sharing. As
isolation is crucial in such environments, vendors often use
virtualization mechanisms to separate the execution environ-
ment between tenants. However, this presents a challenge for
accelerator device sharing. Typical ways to expose hardware
accelerator capabilities inside a virtualized guest involve (i)
device pass-through, (ii) paravirtualization, and (iii) API re-
moting [10]. Device pass-through allows direct access to the
physical device, whereas it achieves performance identical
to running on bare metal. However, problems arise with
sharing a single hardware accelerator across multiple guests
executing on the same host. Another line of research focuses
on implementing para-virtual drivers for GPUs [11] [12] or
even FPGAs [13]. Para-virtual devices uniformly abstract the
physical devices, exposing a single API inside the guest in
the form of specialized kernel modules and guest libraries.
However, it is difficult to efficiently abstract and unify a widely
diverse set of hardware and acceleration framework APIs and
their evolution. Finally, API remoting provides mechanisms to
intercept calls to hardware accelerator drivers inside the guest
and offload them to a host with direct access to the physical
device. Several frameworks have been developed [14]–[17]
that are typically hypervisor-agnostic but tend to suffer from
overhead due to network latencies. AvA [18] identifies these
shortcomings and suggests a framework for automatically

generating hardware-specific and agnostic components through
user-provided descriptions of the acceleration API they con-
sume. Frameworks that provide acceleration functionality to
VMs (or remote clients) tend to abstract operations at the
lowest possible level (e.g., CUDA or OpenCL). Using vAccel,
we can determine the layer of the acceleration stack that
is to be abstracted and, thus, gain greater flexibility in the
development of user code (function) as well as hardware-
specific code (acceleration kernel).

Also, many serverless platforms have been developed and
used by academia and the industry. Authors in [19] evaluated
four known open-source serverless computing frameworks in
an edge environment: Apache Openwhisk, Knative, OpenFaaS,
and Kubeless. These platforms are used to develop serverless
systems for heterogeneous processing units further. Authors
in [20] presented a distributed FPGA sharing system to
accelerate microservices and serverless applications in cloud
environments while including a remote OpenCL library to
access the shared devices transparently. [21] developed a FaaS
deployment service, supporting heterogeneous computing plat-
forms and heterogeneous functions, enabling the delivery of
functions to the right platform. In the evaluation performed,
four different target platforms are considered: (i) Google
Cloud Functions (GCF), (ii) AWS Lambda, (iii) a private-
cloud-cluster consisting of embedded Nvidia Jetson Nano de-
vices and (iv) a hpc-node-cluster representing compute nodes
from HPC systems. The HiveMind platform [22] enables
programmable execution of task workflows in cloud and edge
resources, instantiating serverless functions on shared nodes
and allocating resources appropriately. In [23] authors pre-
sented λ-NIC, an open-source framework, for the development
and deployment of serverless functions in SmartNICs (Data
Processing Units - DPUs). Also, Molecule [24] is a serverless
system supporting heterogeneous processing devices, includ-
ing general-purpose ones (e.g., Nvidia DPU) and domain-
specific accelerators (e.g., Xilinx FPGAs). Molecule abstracts
hardware distribution and heterogeneity with a shim layer
(XPU-Shim) and vectorized sandbox abstraction.

In our work, we use Xilinx Inc. Vitis framework, which
provides a unified OpenCL interface for programming edge
(e.g., MPSoC ZCU104) and cloud (e.g., Alveo U200) Xilinx
FPGAs and the CUDA programming model for using NVIDIA
GPUs. We abstract the acceleration operations to function
granularity using vAccel. This approach may limit flexibility
in terms of generic acceleration primitives, but provides lower
data/operation transport overhead and enables interoperability
when using different accelerators.

III. SERRANO PLATFORM

The SERRANO platform combines seamlessly, au-
tonomously, and efficiently heterogeneous resources from var-
ious technology domains, including (i) edge platforms to bring
adequate resources close to the end users, (ii) multiple clouds
(federated operation) to increase robustness and scaling while
reducing dependencies on a single cloud provider, and (iii)
HPC infrastructures to provide enormous capacity. SERRANO



provides an abstraction layer that fully exploits the available
heterogeneous resources and enables their seamless use.

SERRANO facilitates seamless application deployment and
management across the heterogeneous continuum by imple-
menting a distributed closed-loop control system that main-
tains the desired state through self-driven continuous adap-
tations. The deployment starts with the provision of the
application description along with a high-level infrastructure
agnostic description of deployment requirements (Step A).
Next, SERRANO decomposes the high-level requirements
into specific service goals (Step B).Next cognitive orches-
tration mechanisms assign the application’s microservices to
resources (Step C). SERRANO also automatically coordinates
the application deployment and efficient data movement to
the selected resources. Finally, service assurance mechanisms
based on real-time telemetry and machine reasoning tech-
niques safeguard that applications perform as intended while
triggering any required re-optimization (Step D).

SERRANO implements a robust and flexible platform that
caters to diverse application needs while maximizing resource
utilization and security through a layered architecture (Fig. 1).
The Resource Layer incorporates diverse edge, cloud, and
HPC SERRANO-enhanced resources. The Infrastructure, Plat-
form, and Application Telemetry stack captures and records
telemetry metrics regarding the infrastructure and deployed
applications. The Infrastructure Abstraction Layer abstracts
the intricacies of managing and interacting with individual
resources. The Secure Data Layer provides secure and ef-
ficient data access and transfer across individual platforms.
The Orchestration Layer ensures efficient service orchestration
and resource allocation within the disaggregated SERRANO
infrastructure. Finally, the Service Layer analyses applications
to determine the most suitable platform for deployment.

Fig. 1. SERRANO’s layered architecture.

Moreover, SERRANO offers a comprehensive Service De-
velopment Kit (SDK) that enhances developer productivity
in building, deploying, and managing applications that fully
leverage the provided functionalities. The SERRANO SDK is
developed in Python and includes a set of well-defined APIs.

IV. TRANSPARENT EXECUTION OF ACCELERATED
KERNELS

The SERRANO platform supports two deployment methods
for executing the available kernels on heterogeneous edge,
cloud, and HPC resources. The first method involves deploying
the kernels alongside the application services. This method is
suitable when the application services have a specific set of
kernels that must be executed repeatedly. The second method
is based on the FaaS execution model, which allows on-
demand deployment and scaling of accelerated kernels. In
this case, an application service running in the SERRANO
platform through the SERRANO SDK can request from
the SERRANO platform the execution of a specific kernel.
The SERRANO orchestration and deployment mechanisms
promptly handle all required operations and provide results.
The on-demand (FaaS-like) deployment in SERRANO ensures
that users receive transparent access to accelerated kernels
without the need to manage the deployment and execution
process. This approach also optimizes the use of resources,
allowing kernels to be executed on the most appropriate
resources only when required by the application services.

To use either deployment method, data provisioning must
be automated and abstracted into kernels, and results must be
seamlessly delivered to users. From an end-user perspective,
the overall process involves the following three steps (Fig. 2):

• Step 1: Push input data to SERRANO secure storage
services and obtain the corresponding description for
the execution request. This description includes a set
of identifiers for SERRANO deployment mechanisms,
enabling data retrieval and kernel execution preparation.

• Step 2: Submit the execution request to the SERRANO
platform, specifying the desired kernel, and providing the
input data description from Step 1.

• Step 3: Retrieve the results using the SERRANO SDK
provided methods.

Fig. 2. Hardware-accelerated kernel execution from the end user’s perspective,
common approach for all supported modes and platforms

The SERRANO SDK provides appropriate APIs abstract-
ing the interaction with the various SERRANO platform
services to facilitate these operations. Through the SDK,



it is possible to push the required input data for ker-
nel execution in the SERRANO platform. For instance, in
Fig. 2, providing the data input is abstracted as a generic
pack_data() function, which, in turn, is translated to
pack_data_ss() or pack_data_db(), depending on
the kind of data and the application requirements. All ar-
guments are grouped into a generic structure, provided as
JSON dicts, to facilitate portability. Then, the user requests
the on-demand execution of the accelerated kernel using the
serrano_faas_kernel() method with the appropriate
arguments. Finally, the user retrieves results by invoking the
serrano_kernel_results() method with the corre-
sponding identifier from the first step as a parameter.

V. VACCEL: HARDWARE ACCELERATION VIRTUALIZATION

The edge-cloud computing paradigm of application exe-
cution has favoured CPU-intensive applications, shifting the
ownership of the hardware resources on which applications
are being deployed to large providers (e.g., Google, Microsoft,
Amazon, etc.). In these environments, applications run inside
Virtual Machines or containerized systems providing increas-
ing flexibility in resource allocation, security, and isolation
for multi-tenant operation in the shared edge-cloud resources.
However, neither of those systems can control the access to
hardware acceleration devices with the same granularity or
isolation guarantees as they can with other resources such as
CPU, network, or storage.

The problem is exacerbated by the way we program hard-
ware accelerators nowadays. Such devices typically provide
hardware drivers and expose APIs to application developers.
These APIs are device-specific, and sometimes they are in-
compatible even across devices of the same vendor. This has
two significant side effects. On the one hand, user applica-
tion implementations end up being device-specific, hindering
portability and programmability, whereas, on the other hand,
the lack of uniform APIs across devices renders it extremely
difficult to virtualize them abstractly and efficiently.

In SERRANO, we use and extend vAccel [26] framework
that enables virtualized workloads to access hardware acceler-
ators securely and efficiently while running on environments
that do not have direct access to acceleration devices.

The core idea of vAccel is decoupling the user application
from hardware-specific code. To this end, it exposes to a user
applications functions that can be accelerated. The hardware-
specific code implementing these functions for a particular
hardware accelerator device is provided as a plugin, loaded at
runtime. This way, the development of hardware-independent
applications is enabled, logically separating an application into
two parts (i) the user code, which is part of the application
logic itself, and (ii) the hardware-specific code, which is part
of the application that runs on a hardware accelerator. At
the same time, vAccel’s modular design (Fig. 3) eliminates
user code running on shared accelerators. Only the code in a
vAccel plugin executes on the hardware accelerator, reducing
the effective attack surface. Moreover, vAccel enables hard-
ware acceleration within virtualized guests by employing an

efficient API remoting approach at the granularity of function
calls to delegate ”accelerate-able code” to the host system.

Fig. 3. High-level view of the modular vAccel software stack

To facilitate the deployment of vAccel-enabled applications,
we integrate vAccel into a popular container runtime, Kata
Containers [25]. Kata Containers enable containers to be
executed in a Virtual Machine sandbox. They are as light and
fast as containers and integrate with the container management
layers while also delivering the security advantages of VMs.
vAccel offers bindings for C, Python, and Rust. In SERRANO,
the serverless implementation for all kernels uses the vAccel
Python bindings. Additionally, we have implemented a subset
of Tensorflow and PyTorch APIs so that the user can execute
an application written for those frameworks over vAccel with
minimal and/or no changes.

One of the key merits of the vAccel framework is the
fact that users write their code using the vAccel API and
the underlying plugin executes this code in the respective
accelerator device. This enables hardware interoperability as
the user does not need to rewrite, or even re-compile their
code if they want to run on a different hardware accelerator.
This greatly facilitates the scaling of hardware-accelerated
applications across the cloud-edge continuum, as the user
builds a container image with their vAccel API code, deploy
it in the SERRANO platform and this code can use hardware
accelerators in the Cloud (Generic, NVIDIA GPUs), at the
Edge (Jetson GPUs, Orin/Xavier/Nano), or even CPUs when
there is no hardware accelerator available (eg. on a RPi4).

Fig. 4. Example of a Serverless function spawned in the SERRANO platform,
with OpenFaaS, containerd, kata-containers and vAccel



VI. HARDWARE ACCELERATED KERNELS

SERRANO has identified computationally intensive func-
tions [27] that can be executed much faster, utilizing their
inherent parallelism and implementing them in hardware ac-
celerators such as FPGAs and GPUs. Compared to traditional
software implementations running on CPUs, these implemen-
tations can provide significant performance improvements and
power efficiency gains. The accelerated kernels include the
Savitzky-Golay filter, the Discrete-Time Wavelet Transform,
and the K-Nearest Neighbor algorithm.

The Savitzky-Golay (SAVGOL) filter is a powerful tool in
digital signal processing utilised for smoothing experimental
data sets and reducing signal noise. By applying polyno-
mial functions and considering neighbouring data points, it
effectively removes high-frequency components from signals
while preserving their overall shape and features. Different
accelerators for the execution of the Savitzky-Golay filter were
implemented for its deployment at cloud and edge FPGA and
GPU devices, along with a design methodology [28].

The K-Means is a clustering algorithm that can classify
time series signals. The basic idea of K-Means is to group
data points into a specified number of clusters based on their
similarity. The signals are classified into clusters that are
close to each other. Typically, the Euclidean metric is used
to measure distance in K-Means. However, we use Dynamic
Time Warping (DTW) as it offers greater flexibility when
matching time series signals with varying shapes, lengths, and
alignments. Different accelerators were implemented for its
deployment at cloud and edge FPGA and GPU devices.

The K-Nearest Neighbor (k-NN) algorithm is a supervised
machine learning technique used for classification, with ap-
plications in image processing and generative models. In
SERRANO, k-NN is employed to classify time series signals
based on labelled training datasets. The k-NN method for time
series signals calculates the distance between the inference
and training signals using the Dynamic Time Warping (DTW)
metric and identifies the k-nearest neighbors. The majority
label of these k-nearest neighbors determines the class label of
the inference signal. Different accelerators were implemented
for its deployment at cloud and edge FPGA and GPU devices.

VII. EVALUATION EXPERIMENTS

A. Kernels and vAccel

To evaluate the overhead imposed by integrating the com-
ponents mentioned in the previous sections, we performed an
initial evaluation on a Jetson Xavier AGX system (CPU and
GPU execution). We measured the execution time of individual
kernel execution as well as end-to-end function execution, with
input provided by the partners that developed the kernels.

Fig. 5 illustrates the absolute execution time (in ms) for the
GPU version of the three studied kernels: k-NN, k-Means, and
SAVGOL. The blue bars represent the execution time of the
stock kernels provided by the partners, and the red vAccel-
ported ones. We can observe that running the kernels through
vAccel on the same host imposes negligible overhead.

Fig. 5. vAccel - GPU execution

Fig. 6 shows the normalised execution time of the k-Means
kernel to the respective native execution when running on a
microVM, deployed using the process described in Section V.
Specifically, we perform this experiment using two versions
of the time-series data, k-Means-110 and k-Means-770.
The difference lies in the time spent processing each case
(either on the CPU or the GPU). For instance, the execution
time of k-Means-110 on the CPU is almost 4.340 s per
iteration, whereas, on the GPU, it is less than 160 ms. The
same stands for k-Means-770: on the CPU, each iteration
takes almost 30 s, whereas on, the GPU, each iteration takes
almost 1 s.

Moreover, Fig. 6 shows the overhead associated with
vAccel execution for the k-Means algorithm: for the GPU
execution (red bars), where time spent processing is not
significantly much, vAccel exhibits high overhead (almost
25% for k-Means-110 and 8% for k-Means-110). For
CPU execution, vAccel exhibits less than 3% overhead, as
time spent during processing alleviates transport and control
overheads.

Fig. 6. vAccel - GPU execution

B. SERRANO Kernels to Serverless Functions

Fig. 7 provides a detailed breakdown of the end-to-end
execution time (in ms) for k-NN when executed as a FaaS
function. The vertical axis shows the execution time of each
step, normalized to the respective CPU-only execution (rep-
resenting a generic serverless function without vAccel or



acceleration functionality, e.g., CPU only). On the horizontal
axis, each step is depicted, whereas the bars (red and orange)
represent the GPU and CPU execution when using vAccel1.

Fig. 7. FaaS Execution

The breakdown of the time spent includes the following
basic steps during the function execution:

• instantiating the software stack (load binaries, libraries
etc.) (load)

• fetching and parsing the input (parse input)
• running the compute-intensive operation (run)
• pushing the output to the relevant storage backend

(output)
Fig. 7 shows that compared to the current approach of

serverless computing, where each function is instantiated as
an isolated microVM instance (e.g., AWS lambda) without
access to acceleration functionality, our approach presents
significant benefits with almost a 75% reduction in execution
time compared to a non-accelerated function instance.

VIII. CONCLUSIONS

In this paper, we present our work on enhancing the
Cloud- Edge continuum by enabling interoperable hardware
acceleration for workloads deployed in such environments. We
present our design of the SERRANO architecture, focusing
on hardware acceleration merits brought into the context of
serverless computing in the Cloud-Edge continuum. We focus
on optimizing the end-to-end execution process, enhancing the
SERRANO SDK and deployment mechanisms with additional
acceleration options. Our work also includes optimizations
in the low-level parts of the software stack to facilitate the
seamless execution of hardware-accelerated kernels across
the continuum and achieve even faster execution times for
compute-intensive workloads from numerous demanding use
cases.
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