

Security-Aware Resource Allocation in the Edge-
Cloud Continuum

Polyzois Soumplis1,2, Georgios Kontos1,2, Aristotelis Kretsis1,2, Panagiotis Kokkinos2,3, Anastassios Nanos4 and Emmanouel
Varvarigos1,2

1 School of Electrical & Computer Engineering. National Technical University of Athens, Greece
2 Institute of Communication and Computer Systems, Athens, Greece

3 Department of Digital Systems, University of Peloponnese, Sparta, Greece
4 Nubificus LTD, Sheffield, United Kingdom

Abstract—Cloud-native applications, comprised of multiple
services, optimize their execution on the edge cloud continuum,
by leveraging both edge for time-critical computations and the
more distant (but abundant) cloud resources for not time-driven
computations. The infrastructure is controlled by a hierarchical
orchestrator logic, with sub-modules at each level managing a
specific set of resources. A crucial challenge in deploying
applications over such a distributed infrastructure is the
allocation of resources, considering jointly application-specific
security requirements and computing and networking
constraints, that increase significantly the complexity of the
decision-making process. In this work, we assume varying levels
of workload isolation achievable through lightweight
virtualization mechanisms, establishing distinct tiers of security
and trustworthiness, each with its own quantified computational
and storage requirements. We model the respective resource
allocation problem, i.e., of provisioning edge-cloud continuum
resources for cloud-native applications subject to applications’
performance and security requirements, as a Mixed Integer
Linear Program. Additionally, a best-fit heuristic is introduced
to reduce the execution time for real-size scenarios, performing
a fast allocation of resources for the applications while
maintaining a tolerable optimality gap. Finally, a Multi-agent
Rollout Mechanism is proposed that trades off execution time
with performance leveraging the greedy heuristic for the
approximation of future decisions in a Reinforcement Learning
manner. Several simulation experiments were performed to
showcase the effectiveness of the developed mechanisms, while
simultaneously addressing the needs of conflicting objectives.

Keywords— resource allocation, cloud-native applications,
cloud edge continuum, security, workload isolation

I. INTRODUCTION
We are witnessing a wave of emerging cloud computing

technologies and services that empower advanced
applications from different vertical sectors with diverse
requirements. Centralized cloud computing infrastructures
and respective services currently handle most of these
applications’ processing and storage requirements. However,
it has been recognized that only a fragment of the data
generated will be truly useful, while their size will exceed the
storage capabilities of today’s cloud datacenters [1], [2]. At
the same time, the application’s performance requirements
become increasingly strict, e.g., in terms of latency,
geographic density, security and energy consumption.

To address these requirements, computation and storage
resources are placed at the network periphery in a concept
known as edge computing. The realization of an edge-cloud
continuum has been recognized as key to overcoming the
bottlenecks in data collection and transmission present in
centralized processing, as it can improve manifold the
applications’ execution latency, the use of networking, and the

efficiency in the infrastructures’ utilization [3], [4], reducing
also networking congestion.

Cloud-native applications, characterized by their
modularity and scalability, operate in dynamic, multi-
technology environments. They consist of loosely coupled
small, independent components known as microservices.
These components offer increased flexibility and auto-
scalability, but present unique computing and security
requirements. Their independent deployment across the edge-
cloud continuum adds complexity to the application rollout
process. Deployment challenges include managing
microservice communication and service chain embedding,
necessitating secure execution amongst concurrently running
microservices on identical resources.

As a potential solution to the demanding requirements of
deploying microservices in a cloud-edge environment, the
concept of virtualization has emerged. Virtualization can
facilitate isolated execution, but it can also increase the
overhead and reduce the already limited computing and
storage capacity of edge devices. Instead of using a full
virtualization stack with a hypervisor and virtual machines,
OS-level virtualization through containers can be a better
option [5]. It significantly reduces the overhead associated
with the traditional Virtual Machine stack: VMM (e.g.,
QEMU), hardware extensions (KVM). However, this
approach has a drawback, containers share the same OS kernel
and a malicious application running in a container can
compromise the entire system. A solution is to provide edge
resources with security and trustworthiness tiers.

Allocating resources in a distributed multi-tenant
infrastructure poses challenges for a centralized orchestrator.
In order to address these challenges, hierarchical orchestrator
architectures are employed to enable a more efficient resource
allocation. SERRANO [6] adopts a similar approach, with
high-level decision taken, by the Resource Orchestrator, on
the edge-cloud continuum layer, and low-level scheduling
performed by each platform’s orchestration mechanisms (i.e.,
Local Orchestrator). This provides several degrees of freedom
to the Local Orchestrator for serving in an optimal manner the
“request”, satisfying both the central orchestrator and the
resource’s requirements.

In this work, our primary focus is on the efficient
allocation of resources for cloud-native applications within
multitenant edge and cloud infrastructures. Our approach
encompasses both the intricacies involved in orchestrating
inter-communicating microservices and the necessity of
fulfilling their security execution requirements. We evaluate
different degrees of workload isolation and trusted execution,
exploring cutting-edge technologies such as sandboxing and
unikernels and we quantify the resulting trade-offs in the
computing and storage requirements. Then we develop three

different security-aware resource allocation mechanisms,
initially modelling the respective resource allocation problem
as a Mixed Integer Linear Program (MILP). Recognizing the
vast search space for real-sized application deployment and its
long execution time, we propose a greedy heuristic and a
multi-agent rollout approach. The latter mechanism is based
on the principles of the approximate dynamic programming
and reinforcement learning in order to exploit efficiently the
trade-off between execution time and resource allocation
efficiency. The rest of this paper is organized as follows. In
section II, we report on related work. Section III presents the
considered infrastructure. Section IV describes the resource
allocation mechanisms. Section V evaluates the efficiency of
these mechanisms and finally Section VI concludes our work.

II. RELATED WORK
Numerous studies have explored the resource allocation

problem for the placement of applications over computing and
networking infrastructures. The authors in [7] examine the
placement of virtual machines on top of physical systems in a
cloud data center to perform big-data analytics from IoT
devices, targeting to optimize the utilization of network
resources. In [8], the authors develop an algorithm based on
Gaussian Process Regression in order to predict future traffic
and minimize request blocking, especially in the case of time
critical requests. They consider a hierarchical infrastructure,
and the algorithm is used to ensure the lower layer resource
sufficiency for future time-sensitive demands. The authors in
[9] present Foggy, an architectural framework based on open-
source tools that handles requests from end users in a multi-
level heterogenous Fog environment and serves them in a
greedy, best-fit approach, based on their computing needs.

To enable the secure execution of cloud native
applications, frameworks are introduced [10] that support
container execution in sandboxed environment based on
micro-VMs. Recent works also recommend unikernels [11],
[12], which are specialized machine images, tailored to a
single application. Unikernels have minimal memory/system
footprint, achieve high performance and provide strong
isolation equivalent to that of virtual machines. These trends
give rise to a number of fundamental challenges that relate to
the application deployment, the support of heterogeneous
infrastructures, and the provided security. The authors in [13]
focus on the challenges and requirements for building a
scalable and trustworthy multi-tenant AIoT (Artificial
Intelligence of Things) cloud-native platform. They first
identify several key challenges, including security, privacy
and trust and highlight how these challenges differ in a multi-
tenant edge environment in comparison with a central cloud.
They also present the state-of-the-art methods for addressing
these challenges and describe open research areas.

In [14], the authors propose a security-aware dynamic
scheduling approach for cloud-based industrial applications in
a two-tier infrastructure. They introduce a three-level security
model that corresponds to public, semi-public and private
data. A distributed Particle Swarm Optimization heuristic is
developed to perform resource allocation, and a dynamic
scheduling mechanism to deal with real-time optimization.
The authors in [15] propose a security-aware offloading model
for a multi-user environment. A new security layer is
introduced utilizing the Advanced Encryption Standard
cryptographic algorithm to prevent attacks such as sniffing,
jamming and eavesdropping. The resource allocation problem
is formulated with the optimization objective of minimizing

the latency and energy overhead of mobile users, leveraging a
Deep Reinforcement learning algorithm.

The work in [16] presents a security-aware task offloading
method for maximizing the total profit of edge nodes in an
Edge-Cloud computing (ECC) environment. A security model
is constructed, utilizing several confidentialities (e.g., AES)
and integrity (e.g., SHA1, MD5) services for coping with
security threats. A genetic algorithm is developed to solve the
respective resource-allocation problem. The authors in [17]
discuss the evolution of machine learning from a centralized
approach to distributed machine learning (DML) and
federated learning (FL) in terms of data privacy and security.
They argue that FL is more secure and privacy-preserving than
DML, as FL allows data to remain on local devices rather than
being centrally collected and processed.

In our work, to enable the efficient execution of cloud
native applications over the edge-cloud continuum, we model
the dependencies among the microservices along with their
communication requirements. In addition, we consider
application isolation mechanisms, such as virtualization and
containerization techniques, to enable the application
execution in sandboxes [18], or even unikernels [12]. Coupled
with hardware extensions [19], these mechanisms can provide
increased security for multi-tenant execution. These
requirements of applications and resources introduce, from an
algorithmic perspective, a high number of constraints that
need to be addressed simultaneously while considering
different optimization criteria.

III. INFRASTRUCTURE DESCRIPTION
Our study focuses on a multi-layer edge-cloud

infrastructure (Fig. 1), with computing and storage resources
across various layers. The considered infrastructure comprises
devices positioned at different locations, spanning from “near-
edge” (i.e., from on-premises to tens of kilometres) to “far-
edge” devices (i.e., some hundreds of kilometres) and cloud
datacenters (i.e., typically several thousand kilometres away,
situated in various geographic regions worldwide).

Fig. 1. Heterogenous resources across the edge-cloud continuum.

The management of the infrastructure and the service of
the applications is enabled by a hierarchical two-level system.
The high-level orchestrator assigns application requests to
Local Orchestrators, based on well-established platforms
(such as K8s, K3s) that control a subset of nodes in the
infrastructure. This provides the freedom to the Local
Orchestrator to serve in a highly efficient manner the
“requests”, satisfying both the resource’s requirements and the
central orchestrator objectives, with a minimal decision-
making time. Next, the Local Orchestrators perform the actual

deployment based on the desired performance requirements.
Hence, they perform the necessary resource allocation to serve
the applications’ microservices, optimizing a set of objectives.

The resources can vary both in size and capabilities, with
the most common being micro-datacenters (mDC’s), modular
data centers in shipping containers, specialized computing
devices (FPGA, GPU) and IoT devices (e.g., Arduino,
Raspberry Pi, NVIDIA Jetson). These can be placed on
providers’ premises (e.g., the Central Office - CO), or on other
large and small premises (e.g., stadiums, malls, businesses,
houses) and special hardware enables the trusted execution.

Along the edge-cloud continuum, from IoT devices
through the edge to the core cloud, available computing and
storage capacity increases, culminating in an almost infinite
resource pool in the cloud. The cloud provides abundant
processing power and high availability, contrasted by edge
resources' dynamic availability and less processing power.
Execution cost pertains to expenses for operating
computing/storage systems and special security-enhancing
software/hardware. The cloud layer is typically the most cost-
effective due to economies of scale, while cost increases for
edge layers because of limited resources, a smaller customer
base, hosting expenses, and wide geographical dispersion.

Various networking mechanisms using different wired
(optical) and wireless (e.g., 5G) technologies provide the
required interconnection of the individual edge and cloud
layers. Typically, these multi-domain and multi-technology
network paths are controlled and managed by multiple telco
operators. In this work, we abstract the communication paths
between the resources in the same or different layers as virtual
links with specific latency and capacity. These values depend
on the networking locality of the resources, with those in close
proximity resulting in lower latency than those that are far
apart. Hence, the propagation delay increases in accordance
with the physical distance of the data-generation point.

To guarantee a robust and secure application execution,
the infrastructure leverages advanced software mechanisms
and in some cases peripheral employs specialized peripheral
hardware. This comprehensive approach provides varying
workload isolation levels, enabling also trusted execution
across multiple layers, even in the presence of untrusted
physical nodes commonly found in edge devices. This
methodology aligns with the SERRANO H2020 project [6],
which employs the confidential computing paradigm to create
end-to-end security tiers. It transparently manages and spawns
diverse containerized workloads, utilizing lightweight
virtualization and strict security attestation mechanisms.

Fig. 2. Different levels of workload isolation provided by plain containers,

unikernels and micro-VMs.

In Fig. 2, we show the diverse levels of workload isolation
that can be achieved using lightweight virtualization
mechanisms. These advancements pave the way for
establishing distinct tiers of security and trustworthiness.

(i) Tier-0 represents generic containers.

(ii) Tier-1 embodies microVM sandboxing [10], [11]. In
this scenario, the application, which is essentially the
container, runs ontop of a microVM. This requires booting a
complete virtualization stack (including VMM, kernel,
rootfs), which remains active until the application's
termination. Despite progress in minimizing the overhead of
VMMs regarding CPU and memory footprint, even the latest
VMMs [10] display a 30% overhead in memory management
and address translation, plus additional CPU usage for
handling I/O and context/mode switches. This also takes into
account the extra memory used by the VMM and the necessity
for a full OS system (the microVM) to be active for container
spawning. Storage overhead is proportional to the application.
However, a microVM can support container execution with a
minimum rootfs, typically in the tens of MBs, with typical
applications in the hundreds of MBs.

(iii) Tier-2 is defined by unikernel execution. In this case,
CPU, memory, and storage footprints are minimized as the
application itself is compiled as a machine image, eliminating
unnecessary OS and library software stacks. According to
[19], this results in at least a 20% reduction in CPU and
memory overhead, while the application binary footprint
decreases by at least 60%. This reduction is achieved by
excluding the OS/libraries from the application, apart from the
optimized build.

(iv) Tier-3 and (v) Tier-4 are similar to Tier-0 and Tier-1
respectively, but with enhanced security provided by secure
boot [18]. In these cases, a special peripheral hardware is
required (known as Trusted Platform Module) to provide
hardware based, security related functions. In addition,
trusted execution in Tier 4 requires the use of an attestation
mechanism in the hypervisor layer.

Multipliers Tier 0 Tier 1 Tier 2 Tier 3 Tier 4
CPU 1 1.3 0.8 1 1.3
RAM 1 1.3 0.8 1 1.3

Storage 1 1.1 0.4 1 1.1
Table 1. The multipliers of the computing and storage requirements for the

different security and trustworthiness tiers.

Each tier imposes distinct demands in terms of computing
and storage resources, which we have quantified in Table 1.
The presented values are normalized with respect to the
generic workload requirements of Tier 0. Hence, the
multiplier of 1.3 of the CPU overhead for Tier 1 indicates that
Tier 1 execution requires 30% more processing resources than
Tier 0, while for Tier 2 20% less. Hence, when deploying a
cloud-native application, it is essential to provide: (i) the
computing and storage requirements for each microservice,
(ii) specify the maximum delay between them for optimal
execution in the infrastructure and additionally, (iii) the
minimum level of security and isolation for each microservice
to ensure the application's secure and efficient operation.

IV. PRORBLEM FORMULATION
To represent a hierarchical edge-cloud infrastructure we

assume a Complete Undirected Weighted Graph 𝐺 = (𝑉, 𝐸).
The set of nodes V corresponds to distinct geographical areas
where a set 𝑀! denotes the locations (nodes) where

computing resources are available and/or where workloads are
generated (and can be equipped or not with local processing).
A fixed communication (propagation) latency 𝑙!,!# is
introduced among different nodes 𝑣, 𝑣# 	 ∈ 𝑉 . This latency
takes into consideration the nodes’ propagation delay, as well
as additional delays incurred within the nodes during the
communication process. Machines 𝑀! (virtual and/or
physical) are placed at the different nodes 𝑣 ∈ 𝑉are controlled
by low-level orchestrators 𝑂. Each low-level orchestrator 𝑜 ∈
𝑂 controls a subset of nodes 𝑉$ ⊆ 𝑉 and thus controls 𝑀$ =
⋃ 𝑀!!∈&! machines, with two orchestrators controlling
distinct set of resources (𝑉$ ∩ 𝑉$" = ∅, for 𝑜, 𝑜# ∈ 𝑂).

The machines serve the workloads at different security
tiers 𝑠 ∈ 𝑆, where integers are used to represent the different
workload isolation levels from the lowest (equal to 0) to the
highest. Also, a subset of the machines 𝑉' ⊆ 𝑉 are equipped
with hardware peripherals (secure boot) to support the
execution of tier 3 and 4 workloads 𝑆# = {3,4}. Each machine
𝑚 is described by the tuple 𝜏(= [𝑐(, 𝑟(, ℎ(, 𝑡(, 𝑝(,], where
𝑐(is the CPU capacity of the machine measured in CPU
units, 𝑟(is the RAM capacity of the machine measured in
RAM units, ℎ(is the storage capacity of the machine
measured in GB’s, 𝑡(indicates the existence of secure boot
(value 1) or not (value 0) and 𝑝(is the operational cost of the
machine, which is the cost of use for a given period (time unit).

The workload in our scenario consists of a set 𝐴 of cloud-
native applications. Each application 𝑎 ∈ 𝐴 is represented by
an Undirected Weighted Graph 𝐺) = (𝑉), 𝐸)) , where the
nodes 𝑉)	 denote the microservices that make up the
application, and the edges 𝐸)denote the existence of inter-
dependencies among them. We adopted an undirected graph
representation of the cloud-native applications, as we are
concerned with the delay constraint formed by their
communication dependency, which is assumed to be bi-
directional. The data of each application is generated at node
𝑔! . Each microservice 𝑖) ∈ 𝑉) , has specific requirements
described by the tuple [𝜀),* , 𝜌),* , 𝜔),* , 𝜎),* , 𝜆),*], where 𝜀),* is
the microservice’s CPU demand, 𝜌),* is its memory demand,
𝜔),* is the storage demand, 𝜎),* is the minimum security tier
requirement and 𝜆),* is the duration of microservice in time
units. Note that the computing and storage resources are
specified assuming Tier 0 execution. This eliminates the need
for users to profile the requirements of their applications for
the different security tiers. Hence, when deploying the
microservices in a machine with respect to the specified
security tier requirement, the CPU, RAM and storage
requirements of the microservices need to be considered based
on the selected security tier 𝑠 and thus with the respective
multipliers 𝜀'̂, 𝜌K', 𝜔L' (Table 1) to calculate the actual
computing and storage requirements.

Moreover, each link 𝑒*#,*#" that connects two microservices
𝑖+ , 𝑖)# ∈ 𝑉) , with 𝑖 ≠ 𝑖′ denotes a maximum acceptable
latency requirement 𝛿*#,*#" ; this implies that microservices
𝑖+ , 𝑖)# can be assigned to machines 𝑚,𝑚# to corresponding
service nodes 𝑣, 𝑣′ only if 𝛿*#,*#" ≥ 𝑙!,!":(∈!,("∈!". This delay
constraint acts as a measure of the intensity of the dependency
between them, in a sense that highly dependent microservices
should be placed on the same or geographically approximate
nodes. Finally, each application 𝑎 ∈ 𝐴 has a delay limit 𝐷),
which is the maximum acceptable delay between any node
that hosts any of the application’s microservices and the
source node where the application’s demand is generated.

This is a general measure of the application’s overall time-
sensitivity, in the sense that a time sensitive application
requires all its microservices to be processed by nodes with
low-delay.

A. MILP FORMULATION

In what follows, we present the mathematical formulation
of the two-level resource allocation problem of cloud native
applications over an edge-cloud infrastructure. The
optimization objective is the weighted combination of the total
monetary cost, the delay per microservice assignment and the
workloads’ isolation level difference from the requested one.
Below are the variables considered in the MILP formulation
are presented.

𝑥),*,$ Binary variable equal to 1 if microservice 𝑖 =
1,… , 𝐼) of application 𝑎 = 1,… , 𝐴 is assigned to
low level orchestrator 𝑜 = 1,… , 𝑂

𝑦),*,(,' Binary variable equal to 1 if microservice 𝑖 =
1,… , 𝐼) of application 𝑎 = 1,… , 𝐴 is placed at
machine 𝑚 = 1,… ,𝑀! and is served at security
level s= 0,… , |𝑆|

𝜃) Integer variable that denotes the latency of
application 𝑎 = 1,… , 𝐴

𝛹! Integer variable that denotes the total monetary
cost of serving the cloud native application 𝑎 =
1,… , 𝐴

𝑤* Weighting coefficients for 𝑖 = 1,2,3 to control
the contribution of operational cost and latency in
the objective function with ∑ 𝑤*-

*./ = 1

- Objective function.

min𝑤" ∙ (𝛹!

#

!$"

+𝑤%(𝜃&

'

&$"

−𝑤(((((𝑦!,*,+,,

|𝑆|

,$-

.!

+$"

/"

0$"

'

&$"

Subject to the following constraints:

-C.1. Each microservice 𝑖 = 1,… , 𝐼) of each application
𝑎 = 1,…𝐴 must be assigned to a low-level orchestrator.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!,(𝑥!,0,1 = 1
2

1$"

	

-C.2.The microservices 𝑖 = 1,… . , 𝐼) of each application
𝑎 = 1,…𝐴 that are executed with security Tier 𝑠 =
0, . . , |𝑆| must be assigned to a machine of the selected
orchestrator o.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1, ((𝑦!,*,+,, ≥
|𝑆|

,$-

.!

+$"

𝑥!,0,1	

-C.3. The microservices that are executed with security
Tier 3 and 4 need to be placed at nodes with extra peripheral
hardware.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝜊 ∈ 𝛰, ∀𝑚 ∈ 𝛭1,, ∀𝑠 ∈ 𝑆3, 𝑦0,!,+,, ≤ 𝑡𝑚
-C.4. The total CPU required from all the microservices

𝑖 = 1,… . , 𝐼) of application 𝑎 = 1,… . , 𝐴 deployed at a
machine m must not exceed its capacity.

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1,((((𝜀*,! ∙ 𝜀,̂) ∙ 𝑦!,0,+,, ≤
|5|

,$"

/"

0$"

#

!$"

𝑐+	

-C.5. The total RAM required from all the microservices
𝑖 = 1,… . , 𝐼) of application 𝑎 = 1,… . , 𝐴 deployed at a
machine m must not exceed its capacity.

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1,((((𝜌*,! ∙ 𝜌H,) ∙ 𝑦!,0,+,, ≤
|5|

,$"

/"

0$"

#

!$"

𝑟+	

-C.6. The total Storage required from all the microservices
𝑖 = 1,… . , 𝐼) of application 𝑎 = 1,… . , 𝐴 deployed at a
machine m must not exceed its capacity.

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1,((((𝜔*,! ∙ 𝜔K,) ∙ 𝑦!,0,+,, ≤
|5|

,$"

/"

0$"

#

!$"

ℎ+	

-C.7. The trusted execution tier of a machine that is
assigned a microservice must be equal or greater than the tier
demanded by the microservice.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝑚 ∈ 𝛭1,∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆	
	𝑦!,0,+,, ∙ 𝑠 ≥ 𝜎𝑎,𝑖	

-C.8,9. The microservices 𝑖 = 1,… . , 𝐼) of application
𝑎 = 1,… . , 𝐴 must be assigned to a machine that is situated in
a node 𝑣 that respects the application’s delay limit.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1, ∀𝑠 ∈ 𝑆,	
𝑙+,6" ∙ 𝑦!,0,+,, ≤ 𝜃!,	𝜃! ≤ 𝐷!	

-C.10. For each pair of connected microservices i,i' of an
application 𝑎 = 1,… , 𝐴, the selected machines must respect
the dependent microservices delay limit.

𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦!,0,+,, + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦!,0#,+;,,
≤ 𝛿!,0,!,0# + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ 		

-C.11 Monetary cost calculation for application 𝑎 =
1,… , 𝐴

∀𝑎 ∈ 𝐴,𝛹𝑎 =(((𝑦!,0,+,,

|5|

𝑠=0	

𝑀𝑜

𝑚=1

𝐼𝑎

𝑖=1
∙ 𝑝𝑚 ∙ 𝜆𝑎,𝑖

Assuming that Α applications with I microservices need to
be served. O orchestrators perform the assignment of
applications to resources, with each one controlling M
machines, which support S security tiers. The total number of
variables is [(𝐴 ∙ 𝐼 ∙ 𝑂) + (𝐴 ∙ 𝐼 ∙ 𝑀 ∙ 𝑆) + 2 ∙ 𝐴 + 3] . The
MILP formulation also requires 𝐴 ∙ (𝐼 + 1) equality
constraints for C.1 and C.10. Also, it requires the following
inequality constraints: 3∙ [𝐴 ∙ 𝐼 ∙ 𝑀] for C.2,8,9, 2 ∙ [𝐴 ∙ 𝐼 ∙ 𝑀 ∙
𝑆] for C.3.7, 3 ∙ 𝑀 for C.4,5,6 and 𝐴 ∙ 𝐼= for C.10.

B. Best fit heuristic

The presented MILP approach is computationally
intensive and exhibits a prohibitively large execution time
even for medium-sized problems. To address this, we
developed sub-optimal mechanisms. The first mechanism is a
greedy best fit heuristic. It takes as input the infrastructure
graph G and application demands A, and allocates resources
sequentially for the cloud native applications with respect to
computing/storage capacity, security and latency needs
optimizing the objective function set. To do so, it examines
each microservice independently and allocates resources in a
best-fit manner according to the specified objective function.
When it fails to serve a microservice due to either
communication latency or computing or storage capacity
constraints it backtracks and re-allocates resources for the
problematic set of microservices.

The algorithm begins by ordering the cloud native
application demands based on their application delay limit 𝐷).
As applications consist of dependent microservices, the pairs
of microservices are also ordered based on their latency
requirements (in latency units l.u.) among them from the
strictest to the loosest. This way, the algorithm prioritizes
applications and microservices with stricter latency

requirements to maximize the chances of meeting the
requirements while also decreasing any reallocations due to
backtracking.

The allocation of resources for cloud native applications is
performed sequentially. Given a microservice of an
application 𝑎 , the algorithm identifies the candidate
orchestrators to serve it. These orchestrators are selected based
on their ability to meet the application’s latency requirement
𝐷) and their machines’ ability to fulfill communication
constraints with already assigned microservices.
Subsequently, the selected orchestrators are sorted in
ascending order based on their objective value, which is the
weighted average of their machines’ cost, security, and
latency towards the data generation node. The orchestrators
are examined sequentially, beginning with the one offering the
best objective value.

If an application contains only a single microservice, the
algorithm selects the top-ranked orchestrator, and
subsequently identifies candidate machines for deployment.
These are machines that possess the required
computing/storage resources and an equal or higher trusted
execution tier than the one demanded by the microservice.
Additionally, these machines must reside in nodes that satisfy
the application’s delay requirement. The algorithm then
assigns the microservice to the candidate machine that yields
the best objective value. If the application contains more than
one microservices, the above process applies for the first
microservice. However, for each subsequent microservice, the
identification of the candidate machines also considers the
latency requirements among interconnected microservices.

If no feasible placement is found for a microservice due to
communication latency constraints, the affected inter-
connected microservices that have already been served are de-
allocated, freeing up the occupied resources. The algorithm
will then attempt to re-embed the impacted microservices
(possibly in a new orchestrator), until a feasible solution is
found. This process is repeated until all microservices within
an application are served, at which point the algorithm
proceeds by selecting the next application in line. The
algorithm terminates once all applications have been served.

C. Multi-agent Rollout heuristic
We also developed a multi-agent rollout [22] mechanism

to enhance the performance of the greedy best fit heuristic and
trade-off execution time with performance. Rollout is a well-
known reinforcement learning technique that provide a near-
optimal solution by leveraging a base policy, which in this
case is the greedy best fit heuristic discussed in the previous
sub-section. To find the final solutions, it follows an iterative
process that takes, at each step, an instance of the problem
with a partial solution and constructs the final solution
incrementally. This approach is particularly useful when exact
methods are slow or when the solutions provided by heuristics
are below optimal and can produce significant results.

Upon selecting an application, the multi-agent rollout
mechanism, illustrated in Fig. 3, begins by assigning an agent
to each microservice. These agents co-operate/compete with
time to fulfill the microservices’ requirements based on the set
objective function. Each agent takes sequential action,
exploring all possible placements across the different
orchestrators and their nodes. As the search space can be
large, the algorithm prunes nodes that do not comprise
machines meeting certain conditions. These conditions

encompass: (i) the minimum latency requirements of the
already served communicating microservices of the
applications, (ii) the CPU, RAM and storage capacity. (iii) the
minimum trusted execution requirements and (iv) the
application latency constraint 𝐷). Furthermore, for each node,
if more than one machines meet the problem’s constraints,
only the placement in the machine that yields the best
objective is evaluated. This way, in the worst case, each agent
assesses at most ∑ 𝑣$$ possible placements for a microservice
(instead of ∑ 𝑀$$).

The best-fit heuristic of the previous sub-section is utilized
by the Rollout mechanism in the context of reinforcement
learning to approximate the future agents’ decisions in the
total cost approximation and evaluate the effect of the decision
of the current agent. Hence, the process is repeated for all the
candidate nodes that are able to serve the microservice of the
current agent and the total cost that includes the current
agent’s decision and the approximate cost for future decisions
is calculated and the assignment that exhibits the lowest total
cost is selected in order to allocate resources for the current
microservice. This methodology, thus, leads to a more
informed and cost-effective approach to resource allocation,
which can significantly improve the overall efficiency and
performance of the cloud-native application deployment.

The purpose of using the multi-agent version of rollout is
to curtail the state-space of the problem. By breaking down
the allocation of resources for an application 𝑎 and a
microservice 𝑖 ∈ 𝐼) and by applying one-agent-at-a-time
instead of all-agents-at-once, the state space is effectively
reduced. The reduction is further amplified by pruning the
constraint-violating nodes, as well as evaluating only one
machine per node, as discussed earlier. In this way, the control
space complexity stemming from the various options for
serving the applications is traded off with state space
complexity, and the computational requirements are
proportional to the number of microservices 𝐼) of the different
applications 𝑎 and the number of nodes within the different
orchestrators ∑ 𝑣$$.

V. PERFORMANCE EVALUATION
A. Experimental setup

To examine the performance of the proposed mechanisms
we performed a number of simulation experiments. The
mechanisms were developed in MATLAB and the

experiments were conducted on a 6 core 2.6 GHz Intel Core
i7 PC with 12 GB of RAM. We assumed a hierarchical
infrastructure that spans over the edge-cloud continuum and is
split in three-layers that correspond to near edge, far edge and
cloud nodes. We introduced two different topologies, namely
“basic” and “extended”, with each one consisting of nodes
with computing machines of distinct characteristics and
capacities, as illustrated in Table 2. Note that values exhibited
in the close interval [𝑎, 𝑏] are sampled from the uniform
distribution over that range.

 Near-edge Far-edge Cloud
Nodes (basic) 25 4 1

Nodes (extended) 40 7 2
Machines per node

(basic)
1 [7,10] 50

Machines per node
(extended)

2 [10,15] 100

CPU (CPU units) [4,8] [5,10] [8,12]
RAM (RAM units) [1,4] [2,8] [4,16]

STORAGE (GB units) [4,16] [8,32] [16,64]
Monetary COST (Cost

Units)
[6,7] [3,4] [1.5,2]

Table 2. The characteristics of the computing nodes of the different
topologies.

In both topologies, the near-edge layer comprises of a
large number of nodes with few low-capacity computing
systems, placed close to the data sources. Conversely, the
cloud layer comprises of a limited number of nodes that host
a large number of high-powered machines. The cost of the
near-edge resources, as compared to central cloud nodes, is
assumed to be higher [23] as near-edge nodes are typically
deployed in remote environments, making it challenging to
maintain and upgrade the infrastructure. Also, these nodes are
designed to have low latency and high bandwidth
connectivity, which requires expensive networking equipment
and bandwidth costs. Finally, the costs associated with
providing the necessary power and cooling infrastructure is
lower at the central cloud, which achieves economies of scale.
Hence, the cost of the near-edge nodes was taken to be around
4 times higher than the central cloud, considering the
additional cost associated with the secure workload execution.

We have also considered the communication delay
between infrastructure nodes. We assumed that near-edge
resources require between [0.5, 1.5] l.u., far-edge resources [3,
4] l.u. and cloud resources [7, 8] l.u. from the data generation
points [24]. This takes into account the principle that nodes
within the near-edge layer, given their geographic proximity

Fig. 3. The flowchart of the greedy best fit heuristic.

to the data source, should logically experience less
propagation delay. Conversely, cloud resource nodes located
in more distant areas would inherently experience longer
delay times.

Number of microservices [1,7]
Delay constraint [2,10]

Microservices’ CPU demand [1,2]
Microservices’ RAM demand [0.5,1]

Microservices’ storage demand [1,5]
Dependency chance for a pair of microservices 25%

Dependency delay constraint [0.5,3.5]
Table 3. The cloud native applications’ workload characteristics.

 For the workload, we focused on two scenarios; (i) a small
and (ii) a medium-sized consisting of cloud-native
applications of a maximum of 7 microservices (Table 3). Note
that an application with a single microservice can represent a
generic end-user demand, while microservice replicas are
considered as microservices with identical resource profiles.
We set the dependency probability between any pair of
microservices to 25%, and the respective delay constraint to
range between 0.5 and 3.5 l. u.

B. Evaluation Results

Initially, we compared the performance of the proposed
sub-optimal mechanisms, the greedy heuristic and the multi-
agent rollout with respect to the optimal solution provided by
the MILP mechanism. For the evaluation we considered the
following optimization criteria: (i) minimization of the
operational cost (𝑤/ = 1), (ii) minimization of the
applications latency (𝑤= = 1), (iii) maximization of trusted
execution (𝑤- = 1) and (iv) all optimization criteria (𝑤/ =
𝑤= = 0.4, 𝑤- = 0.2). We used the “small” topology as
described in Table 1 and a small workload consisting of 50
applications. The execution time for the optimal solver was
limited to 60 minutes and the presented results are averaged
over 20 simulations. The results of the simulation experiments
are illustrated in Fig. 4.

Fig. 4. The optimality gap for the different optimization criteria.

When the main optimization criterion is the latency
minimization, the heuristic has an optimality gap of 14.5%.
This happens due to the high competition for the limited near-
edge resources, which requires a more sophisticated resource
allocation approach to effectively allocate these resources. For
the same reason the all-optimization criteria lags by 11% from
optimal. However, when the optimization criterion is the
minimization of the operation cost or the maximization of
trusted execution, the search space is much smaller and thus

the performance of the heuristic is close to optimal
underperforming only by about 3% and 10% respectively.

On the other hand, the Multi-agent Rollout has a
significantly better performance, with the worst case being for
the latency optimization. However, it significantly improves
the performance of the greedy heuristic due to the
consideration of the future placements and thus lags only by
4.5%. This is the biggest gap for the performance of the
rollout. Also, when the optimization is the minimization of the
operational cost, the optimality gap is smaller than 1%, which
means that it manages for the most of the application demands
to allocate them in an optimal manner.

As for the execution time, the best fit heuristic provided an
almost instantaneous assignment, with an average time of 0.01
seconds per application. On the other hand, the Rollout
algorithm performed slower, at an average of 0.9 seconds per
application, with a standard deviation of 0.3 seconds. Finally,
the optimal solver exceeded the 3600 time-limit in all cases,
thus resulting in an average of 72 seconds per application.

Fig. 5. The allocation of microservices at the different layers of the edge-

cloud continuum.

Next, the multi-agent rollout mechanism was evaluated for
the extended topology with 300 microservices and was
compared to the allocation performed by the best-fit heuristic
which is the baseline scenario for this set of experiments. We
began by analysing the allocation of microservices for the
different mechanisms and optimization criteria across the
edge-cloud continuum (Fig. 5).

The experiments revealed that resource allocation patterns
varied based on the optimization objective. When cost or the
trusted execution were prioritized, cloud resources were
favoured due to their high capacity and the higher availability
of trusted execution tiers. Conversely, when the latency
minimization was the main objective, near and far edge
resources were heavily utilized. Additionally, when all the
optimization criteria were simultaneously optimized, the
solution proved beneficial in allocating resources tailored to
the application's specific needs.

This highlights the advantages of taking all the
optimization criteria into consideration in a multi-objective
optimization approach during the resource allocation process
and the ability of the rollout mechanism to achieve an
improved allocation of resources by leveraging the decisions
of the heuristic in a reinforcement learning manner. All in all,
this approach leads to more efficient allocation of resources

across the edge-cloud continuum, optimizing application
performance and cost.

Fig. 6. The operational cost overhead for the different optimization
criteria.

Next, in Fig. 6 we present the results of experiments
regarding the average cost overhead associated with security
as an additional constraint, compared to generic workload
demands which acts as the baseline scenario for this case, for
the different optimization objectives. The cost overhead for a
microservice's placement is determined as the percentile
increase in cost between its deployment in a default container
(Tier-0) and the deployment method chosen in the assignment.

As expected, the highest cost overhead is incurred in the
maximization of trusted execution, where machines with
higher tiers, which are inherently more costly, are favoured.
Trusted execution is also considered in the “all optimization
criteria” scenario, producing increased cost overhead. On the
other hand, the impact of additional security on cost overhead
is less notable for the other two optimization objectives, where
trusted execution is not a contributing factor.

Fig. 7. The experienced latency for the different optimization criteria.

Finally, in Fig. 7 we present the effect of the different
optimization criteria on the average propagation latency.
When the minimization of latency is prioritized, the lowest
average latency is achieved. Conversely, when operational
cost is optimized, as many microservices as possible are
placed on the far-edge and cloud layers, incurring higher
latency. In the trusted execution optimization case,
microservices are placed on machines with high security tiers,
which are generally located in the upper layers (extra
hardware), leading to higher average propagation latency. The
weighted optimization approach strikes a balance among the
different criteria, thus achieving a relatively smaller latency.

By comparing the Multi-agent Rollout with the greedy
heuristic mechanism performance, we observe that the rollout

approach generally results in a marginally lower cost overhead
and communication latency for all objectives, with the
exception of trusted execution. As expected, when
considering both cost and other criteria, the rollout mechanism
performs better, finding the most cost-efficient machines that
usually possess lower security levels and subsequently lower
security-cost-overhead.

Similarly, with latency as an objective, it manages to place
more microservices on edge nodes, at machines with adequate
security tiers and thus lower overhead costs. Similarly, for the
trusted execution objective, the rollout mechanism improves
the solution by placing more microservices on machines with
a higher security tier, leading to a higher security cost
overhead. The aforementioned findings highlight the
importance of considering multiple optimization criteria when
allocating resources for cloud native applications across the
edge-cloud continuum. While prioritizing a single objective
may lead to optimal results for that specific objective, it may
negatively impact other criteria, such as latency or operational
cost. Therefore, a comprehensive approach that balances
multiple objectives can lead to a more efficient allocation of
resources, resulting in improved application performance,
reduced costs and better utilization of the infrastructure’s
resources.

VI. Conclusion

In this study, we aimed to address the challenge of
allocating resources to cloud-native applications within a
hierarchical edge-cloud infrastructure. Our approach
considered critical factors such as the inter-dependencies
among microservices and the trusted execution requirements
of cloud-native applications. To meet the varied security and
isolation demands of microservices, we introduced innovative
technologies such as sandboxing and unikernels into our
infrastructure. To model the resource allocation problem, we
formulated a multi-objective optimization problem that
balances various and conflicting objectives, such as
minimizing operational costs and propagation latency from
data generation points, while considering the workloads’
security tier requirements. We developed optimal and sub-
optimal mechanisms that efficiently trade-off performance for
execution time, as demonstrated in our experiments. Our
results showed that the greedy best-fit heuristic fell short of
optimal performance by almost 11% for all optimization
criteria. However, the multi-agent rollout mechanism
significantly improved the greedy heuristic's performance,
achieving close to optimal levels at 3.7%. Furthermore, our
experiments highlighted the trade-offs between delay, cost,
and security. In conclusion, our study provides a novel
approach to resource allocation in a hierarchical edge-cloud
infrastructure, addressing crucial factors such as security,
isolation, and inter-dependencies among microservices. The
proposed multi-objective optimization problem and
developed mechanisms offer efficient trade-offs between
performance and execution time.

ACKNOWLEDGMENT

The work presented is supported by the EU Horizon 2020
research and innovation program under grant agreement No.
101017168 in the context of the SERRANO project and by the
Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “2nd Call for H.F.R.I. Research Projects to support
Faculty Members & Researchers” (Project Number: 04596).

REFERENCES
[1] Y. bin Zikria, R. Ali, M. K. Afzal, and S. W. Kim, “Next-generation

internet of things (IoT): Opportunities, challenges, and solutions,”
Sensors (Switzerland), vol. 21, no. 4. MDPI AG, pp. 1–7, Feb. 02,
2021.

[2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S.
Ullah Khan, “The rise of ‘big data’ on cloud computing: Review and
open research issues,” Information Systems, vol. 47. Elsevier Ltd, pp.
98–115, 2015.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet Things J, vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[4] G. Sallam and B. Ji, “Joint Placement and Allocation of VNF Nodes
with Budget and Capacity Constraints,” Jan. 2019.

[5] J. Singh, J. Powles, T. Pasquier, and J. Bacon, “Data flow management
and compliance in cloud computing,” IEEE Cloud Computing, vol. 2,
no. 4, pp. 24–32, Jul. 2015.

[6] “SERRANO - Transparent Application Deployment in a Secure,
Accelerated and Cognitive Cloud Continuum” https://ict-serrano.eu
(accessed Jun. 26, 2023).

[7] X. Li, Z. Lian, X. Qin, and W. Jie, “Topology-aware resource
allocation for IoT services in clouds,” IEEE Access, vol. 6, pp. 77880–
77889, 2018.

[8] R. A. C. da Silva and N. L. S. da Fonseca, “Resource allocation
mechanism for a fog-cloud infrastructure,” in IEEE International
Conference on Communications, Jul. 2018, vol. 2018-May.

[9] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini and S. Cretti,
"Foggy: A Platform for Workload Orchestration in a Fog Computing
Environment," 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Hong Kong, China,
2017.

[10] A. Alexandru, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P.
Piwonka, D. M. Popa. "Firecracker: Lightweight Virtualization for
Serverless Applications." In NSDI, vol. 20, pp. 419-434. 2020.

[11] Kata Containers, “The speed of containers, the security of VMs,”
Available online: https://katacontainers.io/

[12] A. Madhavapeddy et al., “Unikernels,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, pp. 461–472, 2013.

[13] Xiong and H. Chen, “Challenges for Building a Cloud Native Scalable
and Trustable Multi-tenant AIoT Platform,” in IEEE/ACM

International Conference on Computer-Aided Design, Digest of
Technical Papers, ICCAD, Nov. 2020.

[14] S. Meng et al., “Security-Aware Dynamic Scheduling for Real-Time
Optimization in Cloud-Based Industrial Applications,” IEEE Trans
Industr Inform, vol. 17, no. 6, pp. 4219–4228, Jun. 2021.

[15] Y. Wang, W. Zhang, H. Deng, and X. Li, “Efficient Resource
Allocation for Security-Aware Task Offloading in MEC System Using
DVS,” Electronics (Switzerland), vol. 11, no. 19, Oct. 2022.

[16] Z. Li, V. Chang, H. Hu, D. Yu, J. Ge, and B. Huang, “Profit
maximization for security-aware task offloading in edge-cloud
environment,” J Parallel Distrib Comput, vol. 157, pp. 43–55, Nov.
2021.

[17] S. Shen, T. Zhu, D. Wu, W. Wang, and W. Zhou, “From Distributed
Machine Learning To Federated Learning: In The View Of Data
Privacy And Security,” Oct. 2020.

[18] M. Sabt, M. Achemlal and A. Bouabdallah, "Trusted Execution
Environment: What It is, and What It is Not," 2015 IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp. 57-64

[19] S. Kuenzer et al., “Unikraft: Fast, Specialized Unikernels the Easy
Way,” arXiv.org, Apr. 21, 2021.

[20] Nicholas, G.S., Siddiqui, A.S., Joseph, S.R. et al. A Secure Boot
Framework with Multi-security Features and Logic-Locking
Applications for Reconfigurable Logic. J Hardw Syst Secur 5, 260–
268, 2021.

[21] R. Tarjan, "Depth-first search and linear graph algorithms," 12th
Annual Symposium on Switching and Automata Theory, pp. 114-121,
USA, 1971.

[22] D. Bertsekas, "Multiagent Reinforcement Learning: Rollout and Policy
Iteration," in IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2,
pp. 249-272, 2021.

[23] “Analysis: The economics of edge computing.” Accessed: Mar. 06,
2023. [Online]. Available: https://www.edgecomputing-
news.com/2020/10/29/analysis-economics-of-edge-computing/

[24] Pallewatta, S., Kostakos, V., & Buyya, R., “Microservices-based IoT
application placement within heterogeneous and resource constrained
fog computing environments”, UCC 2019 - Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud
Computing,71–81.

