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Abstract—Cloud-native applications, comprised of multiple 
services, optimize their execution on the edge cloud continuum, 
by leveraging both edge for time-critical computations and the 
more distant (but abundant) cloud resources for not time-driven 
computations. The infrastructure is controlled by a hierarchical 
orchestrator logic, with sub-modules at each level managing a 
specific set of resources. A crucial challenge in deploying 
applications over such a distributed infrastructure is the 
allocation of resources, considering jointly application-specific 
security requirements and computing and networking 
constraints, that increase significantly the complexity of the 
decision-making process. In this work, we assume varying levels 
of workload isolation achievable through lightweight 
virtualization mechanisms, establishing distinct tiers of security 
and trustworthiness, each with its own quantified computational 
and storage requirements. We model the respective resource 
allocation problem, i.e., of provisioning edge-cloud continuum 
resources for cloud-native applications subject to applications’ 
performance and security requirements, as a Mixed Integer 
Linear Program. Additionally, a best-fit heuristic is introduced 
to reduce the execution time for real-size scenarios, performing 
a fast allocation of resources for the applications while 
maintaining a tolerable optimality gap. Finally, a Multi-agent 
Rollout Mechanism is proposed that trades off execution time 
with performance leveraging the greedy heuristic for the 
approximation of future decisions in a Reinforcement Learning 
manner. Several simulation experiments were performed to 
showcase the effectiveness of the developed mechanisms, while 
simultaneously addressing the needs of conflicting objectives. 
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I. INTRODUCTION 
We are witnessing a wave of emerging cloud computing 

technologies and services that empower advanced 
applications from different vertical sectors with diverse 
requirements. Centralized cloud computing infrastructures 
and respective services currently handle most of these 
applications’ processing and storage requirements. However, 
it has been recognized that only a fragment of the data 
generated will be truly useful, while their size will exceed the 
storage capabilities of today’s cloud datacenters [1], [2]. At 
the same time, the application’s performance requirements 
become increasingly strict, e.g., in terms of latency, 
geographic density, security and energy consumption.  

To address these requirements, computation and storage 
resources are placed at the network periphery in a concept 
known as edge computing. The realization of an edge-cloud 
continuum has been recognized as key to overcoming the 
bottlenecks in data collection and transmission present in 
centralized processing, as it can improve manifold the 
applications’ execution latency, the use of networking, and the 

efficiency in the infrastructures’ utilization [3], [4], reducing 
also networking congestion.  

Cloud-native applications, characterized by their 
modularity and scalability, operate in dynamic, multi-
technology environments. They consist of loosely coupled 
small, independent components known as microservices. 
These components offer increased flexibility and auto-
scalability, but present unique computing and security 
requirements. Their independent deployment across the edge-
cloud continuum adds complexity to the application rollout 
process. Deployment challenges include managing 
microservice communication and service chain embedding, 
necessitating secure execution amongst concurrently running 
microservices on identical resources. 

As a potential solution to the demanding requirements of 
deploying microservices in a cloud-edge environment, the 
concept of virtualization has emerged. Virtualization can 
facilitate isolated execution, but it can also increase the 
overhead and reduce the already limited computing and 
storage capacity of edge devices. Instead of using a full 
virtualization stack with a hypervisor and virtual machines, 
OS-level virtualization through containers can be a better 
option [5]. It significantly reduces the overhead associated 
with the traditional Virtual Machine stack: VMM (e.g., 
QEMU), hardware extensions (KVM). However, this 
approach has a drawback, containers share the same OS kernel 
and a malicious application running in a container can 
compromise the entire system. A solution is to provide edge 
resources with security and trustworthiness tiers. 

Allocating resources in a distributed multi-tenant 
infrastructure poses challenges for a centralized orchestrator. 
In order to address these challenges, hierarchical orchestrator 
architectures are employed to enable a more efficient resource 
allocation. SERRANO [6] adopts a similar approach, with 
high-level decision taken, by the Resource Orchestrator, on 
the edge-cloud continuum layer, and low-level scheduling 
performed by each platform’s orchestration mechanisms (i.e., 
Local Orchestrator). This provides several degrees of freedom 
to the Local Orchestrator for serving in an optimal manner the 
“request”, satisfying both the central orchestrator and the 
resource’s requirements.  

In this work, our primary focus is on the efficient 
allocation of resources for cloud-native applications within 
multitenant edge and cloud infrastructures. Our approach 
encompasses both the intricacies involved in orchestrating 
inter-communicating microservices and the necessity of 
fulfilling their security execution requirements. We evaluate 
different degrees of workload isolation and trusted execution, 
exploring cutting-edge technologies such as sandboxing and 
unikernels and we quantify the resulting trade-offs in the 
computing and storage requirements. Then we develop three 



different security-aware resource allocation mechanisms, 
initially modelling the respective resource allocation problem 
as a Mixed Integer Linear Program (MILP). Recognizing the 
vast search space for real-sized application deployment and its 
long execution time, we propose a greedy heuristic and a 
multi-agent rollout approach. The latter mechanism is based 
on the principles of the approximate dynamic programming 
and reinforcement learning in order to exploit efficiently the 
trade-off between execution time and resource allocation 
efficiency. The rest of this paper is organized as follows. In 
section II, we report on related work. Section III presents the 
considered infrastructure. Section IV describes the resource 
allocation mechanisms. Section V evaluates the efficiency of 
these mechanisms and finally Section VI concludes our work. 

II. RELATED WORK 
Numerous studies have explored the resource allocation 

problem for the placement of applications over computing and 
networking infrastructures. The authors in [7] examine the 
placement of virtual machines on top of physical systems in a 
cloud data center to perform big-data analytics from IoT 
devices, targeting to optimize the utilization of network 
resources. In [8], the authors develop an algorithm based on 
Gaussian Process Regression in order to predict future traffic 
and minimize request blocking, especially in the case of time 
critical requests. They consider a hierarchical infrastructure, 
and the algorithm is used to ensure the lower layer resource 
sufficiency for future time-sensitive demands. The authors in 
[9] present Foggy, an architectural framework based on open-
source tools that handles requests from end users in a multi-
level heterogenous Fog environment and serves them in a 
greedy, best-fit approach, based on their computing needs.  

To enable the secure execution of cloud native 
applications, frameworks are introduced [10] that support 
container execution in sandboxed environment based on 
micro-VMs. Recent works also recommend unikernels [11], 
[12], which are specialized machine images, tailored to a 
single application. Unikernels have minimal memory/system 
footprint, achieve high performance and provide strong 
isolation equivalent to that of virtual machines. These trends 
give rise to a number of fundamental challenges that relate to 
the application deployment, the support of heterogeneous 
infrastructures, and the provided security. The authors in [13] 
focus on the challenges and requirements for building a 
scalable and trustworthy multi-tenant AIoT (Artificial 
Intelligence of Things) cloud-native platform. They first 
identify several key challenges, including security, privacy 
and trust and highlight how these challenges differ in a multi-
tenant edge environment in comparison with a central cloud. 
They also present the state-of-the-art methods for addressing 
these challenges and describe open research areas.  

In [14], the authors propose a security-aware dynamic 
scheduling approach for cloud-based industrial applications in 
a two-tier infrastructure. They introduce a three-level security 
model that corresponds to public, semi-public and private 
data. A distributed Particle Swarm Optimization heuristic is 
developed to perform resource allocation, and a dynamic 
scheduling mechanism to deal with real-time optimization. 
The authors in [15] propose a security-aware offloading model 
for a multi-user environment. A new security layer is 
introduced utilizing the Advanced Encryption Standard 
cryptographic algorithm to prevent attacks such as sniffing, 
jamming and eavesdropping. The resource allocation problem 
is formulated with the optimization objective of minimizing 

the latency and energy overhead of mobile users, leveraging a 
Deep Reinforcement learning algorithm.  

The work in [16] presents a security-aware task offloading 
method for maximizing the total profit of edge nodes in an 
Edge-Cloud computing (ECC) environment. A security model 
is constructed, utilizing several confidentialities (e.g., AES) 
and integrity (e.g., SHA1, MD5) services for coping with 
security threats. A genetic algorithm is developed to solve the 
respective resource-allocation problem. The authors in [17] 
discuss the evolution of machine learning from a centralized 
approach to distributed machine learning (DML) and 
federated learning (FL) in terms of data privacy and security. 
They argue that FL is more secure and privacy-preserving than 
DML, as FL allows data to remain on local devices rather than 
being centrally collected and processed.  

In our work, to enable the efficient execution of cloud 
native applications over the edge-cloud continuum, we model 
the dependencies among the microservices along with their 
communication requirements. In addition, we consider 
application isolation mechanisms, such as virtualization and 
containerization techniques, to enable the application 
execution in sandboxes [18], or even unikernels [12]. Coupled 
with hardware extensions [19], these mechanisms can provide 
increased security for multi-tenant execution. These 
requirements of applications and resources introduce, from an 
algorithmic perspective, a high number of constraints that 
need to be addressed simultaneously while considering 
different optimization criteria.   

III. INFRASTRUCTURE DESCRIPTION 
Our study focuses on a multi-layer edge-cloud 

infrastructure (Fig. 1), with computing and storage resources 
across various layers. The considered infrastructure comprises 
devices positioned at different locations, spanning from “near-
edge” (i.e., from on-premises to tens of kilometres) to “far-
edge” devices (i.e., some hundreds of kilometres) and cloud 
datacenters (i.e., typically several thousand kilometres away, 
situated in various geographic regions worldwide). 

 
Fig. 1. Heterogenous resources across the edge-cloud continuum. 

The management of the infrastructure and the service of 
the applications is enabled by a hierarchical two-level system. 
The high-level orchestrator assigns application requests to 
Local Orchestrators, based on well-established platforms 
(such as K8s, K3s) that control a subset of nodes in the 
infrastructure. This provides the freedom to the Local 
Orchestrator to serve in a highly efficient manner the 
“requests”, satisfying both the resource’s requirements and the 
central orchestrator objectives, with a minimal decision-
making time. Next, the Local Orchestrators perform the actual 



deployment based on the desired performance requirements. 
Hence, they perform the necessary resource allocation to serve 
the applications’ microservices, optimizing a set of objectives.  

The resources can vary both in size and capabilities, with 
the most common being micro-datacenters (mDC’s), modular 
data centers in shipping containers, specialized computing 
devices (FPGA, GPU) and IoT devices (e.g., Arduino, 
Raspberry Pi, NVIDIA Jetson). These can be placed on 
providers’ premises (e.g., the Central Office - CO), or on other 
large and small premises (e.g., stadiums, malls, businesses, 
houses) and special hardware enables the trusted execution. 

Along the edge-cloud continuum, from IoT devices 
through the edge to the core cloud, available computing and 
storage capacity increases, culminating in an almost infinite 
resource pool in the cloud. The cloud provides abundant 
processing power and high availability, contrasted by edge 
resources' dynamic availability and less processing power. 
Execution cost pertains to expenses for operating 
computing/storage systems and special security-enhancing 
software/hardware. The cloud layer is typically the most cost-
effective due to economies of scale, while cost increases for 
edge layers because of limited resources, a smaller customer 
base, hosting expenses, and wide geographical dispersion. 

Various networking mechanisms using different wired 
(optical) and wireless (e.g., 5G) technologies provide the 
required interconnection of the individual edge and cloud 
layers. Typically, these multi-domain and multi-technology 
network paths are controlled and managed by multiple telco 
operators. In this work, we abstract the communication paths 
between the resources in the same or different layers as virtual 
links with specific latency and capacity. These values depend 
on the networking locality of the resources, with those in close 
proximity resulting in lower latency than those that are far 
apart. Hence, the propagation delay increases in accordance 
with the physical distance of the data-generation point.  

To guarantee a robust and secure application execution, 
the infrastructure leverages advanced software mechanisms 
and in some cases peripheral employs specialized peripheral 
hardware. This comprehensive approach provides varying 
workload isolation levels, enabling also  trusted execution 
across multiple layers, even in the presence of untrusted 
physical nodes commonly found in edge devices. This 
methodology aligns with the SERRANO H2020 project [6], 
which employs the confidential computing paradigm to create 
end-to-end security tiers. It transparently manages and spawns 
diverse containerized workloads, utilizing lightweight 
virtualization and strict security attestation mechanisms. 

 
Fig. 2. Different levels of workload isolation provided by plain containers, 

unikernels and micro-VMs. 

In Fig. 2, we show the diverse levels of workload isolation 
that can be achieved using lightweight virtualization 
mechanisms. These advancements pave the way for 
establishing distinct tiers of security and trustworthiness. 

(i) Tier-0 represents generic containers. 

(ii) Tier-1 embodies microVM sandboxing [10], [11]. In 
this scenario, the application, which is essentially the 
container, runs ontop of a microVM. This requires booting a 
complete virtualization stack (including VMM, kernel, 
rootfs), which remains active until the application's 
termination. Despite progress in minimizing the overhead of 
VMMs regarding CPU and memory footprint, even the latest 
VMMs [10] display a 30% overhead in memory management 
and address translation, plus additional CPU usage for 
handling I/O and context/mode switches. This also takes into 
account the extra memory used by the VMM and the necessity 
for a full OS system (the microVM) to be active for container 
spawning. Storage overhead is proportional to the application. 
However, a microVM can support container execution with a 
minimum rootfs, typically in the tens of MBs, with typical 
applications in the hundreds of MBs. 

(iii) Tier-2 is defined by unikernel execution. In this case, 
CPU, memory, and storage footprints are minimized as the 
application itself is compiled as a machine image, eliminating 
unnecessary OS and library software stacks. According to 
[19], this results in at least a 20% reduction in CPU and 
memory overhead, while the application binary footprint 
decreases by at least 60%. This reduction is achieved by 
excluding the OS/libraries from the application, apart from the 
optimized build. 

(iv) Tier-3 and (v) Tier-4 are similar to Tier-0 and Tier-1 
respectively, but with enhanced security provided by secure 
boot [18]. In these cases, a special peripheral hardware is 
required (known as Trusted Platform Module) to provide 
hardware based, security related functions.  In addition, 
trusted execution in Tier 4 requires the use of an attestation 
mechanism in the hypervisor layer.  

Multipliers Tier 0 Tier 1 Tier 2 Tier 3 Tier 4 
CPU  1 1.3 0.8 1 1.3 
RAM  1 1.3 0.8 1 1.3 

Storage  1 1.1 0.4 1 1.1 
Table 1. The multipliers of the computing and storage requirements for the 

different security and trustworthiness tiers.  

Each tier imposes distinct demands in terms of computing 
and storage resources, which we have quantified in Table 1. 
The presented values are normalized with respect to the 
generic workload requirements of Tier 0. Hence, the 
multiplier of 1.3 of the CPU overhead for Tier 1 indicates that 
Tier 1 execution requires 30% more processing resources than 
Tier 0, while for Tier 2 20% less. Hence, when deploying a 
cloud-native application, it is essential to provide: (i) the 
computing and storage requirements for each microservice, 
(ii) specify the maximum delay between them for optimal 
execution in the infrastructure and additionally, (iii) the 
minimum level of security and isolation for each microservice 
to ensure the application's secure and efficient operation. 

IV. PRORBLEM FORMULATION 
To represent a hierarchical edge-cloud infrastructure we 

assume a Complete Undirected Weighted Graph 𝐺 = (𝑉, 𝐸). 
The set of nodes V corresponds to distinct geographical areas 
where a set 𝑀!  denotes the locations (nodes) where 



computing resources are available and/or where workloads are 
generated (and can be equipped or not with local processing). 
A fixed communication (propagation) latency 𝑙!,!#  is 
introduced among different nodes 𝑣, 𝑣# 	 ∈ 𝑉 . This latency 
takes into consideration the nodes’ propagation delay, as well 
as additional delays incurred within the nodes during the 
communication process. Machines 𝑀!  (virtual and/or 
physical) are placed at the different nodes 𝑣 ∈ 𝑉are controlled 
by low-level orchestrators 𝑂. Each low-level orchestrator 𝑜 ∈
𝑂 controls a subset of nodes 𝑉$ ⊆ 𝑉 and thus controls 𝑀$ =
⋃ 𝑀!!∈&!  machines, with two orchestrators controlling 
distinct set of resources (𝑉$ ∩ 𝑉$" = ∅, for 𝑜, 𝑜# ∈ 𝑂).  

The machines serve the workloads at different security 
tiers 𝑠 ∈ 𝑆, where integers are used to represent the different 
workload isolation levels from the lowest (equal to 0) to the 
highest. Also, a subset of the machines 𝑉' ⊆ 𝑉 are equipped 
with hardware peripherals (secure boot) to support the 
execution of tier 3 and 4 workloads 𝑆# = {3,4}. Each machine 
𝑚 is described by the tuple 𝜏( = [𝑐(, 𝑟(, ℎ(, 𝑡(, 𝑝(,], where 
𝑐(  is the CPU capacity of the machine measured in CPU 
units, 𝑟(  is the RAM capacity of the machine measured in 
RAM units, ℎ(	 is the storage capacity of the machine 
measured in GB’s, 𝑡( indicates the existence of secure boot 
(value 1) or not (value 0) and 𝑝( is the operational cost of the 
machine, which is the cost of use for a given period (time unit). 

The workload in our scenario consists of a set 𝐴 of cloud-
native applications. Each application 𝑎 ∈ 𝐴 is represented by 
an Undirected Weighted Graph 𝐺) = (𝑉), 𝐸)) , where the 
nodes 𝑉)	 denote the microservices that make up the 
application, and the edges 𝐸)denote the existence of inter-
dependencies among them. We adopted an undirected graph 
representation of the cloud-native applications, as we are 
concerned with the delay constraint formed by their 
communication dependency, which is assumed to be bi-
directional.  The data of each application is generated at node 
𝑔! . Each microservice 𝑖) ∈ 𝑉) , has specific requirements 
described by the tuple [𝜀),* , 𝜌),* , 𝜔),* , 𝜎),* , 𝜆),*], where 𝜀),*  is 
the microservice’s CPU demand, 𝜌),* is its memory demand, 
𝜔),* is the storage demand, 𝜎),* is the minimum security tier 
requirement  and 𝜆),* is the duration of microservice in time 
units. Note that the computing and storage resources are 
specified assuming Tier 0 execution. This eliminates the need 
for users to profile the requirements of their applications for 
the different security tiers. Hence, when deploying the 
microservices in a machine with respect to the specified 
security tier requirement, the CPU, RAM and storage 
requirements of the microservices need to be considered based 
on the selected security tier 𝑠  and thus with the respective 
multipliers  𝜀'̂, 𝜌K', 𝜔L'   (Table 1) to calculate the actual 
computing and storage requirements.  

Moreover, each link 𝑒*#,*#"  that connects two microservices 
𝑖+ , 𝑖)# ∈ 𝑉) , with 𝑖 ≠ 𝑖′  denotes a  maximum acceptable 
latency requirement 𝛿*#,*#" ; this implies that microservices 
𝑖+ , 𝑖)# can be assigned to machines 𝑚,𝑚#  to corresponding 
service nodes 𝑣, 𝑣′ only if  𝛿*#,*#" ≥ 𝑙!,!":(∈!,("∈!". This delay 
constraint acts as a measure of the intensity of the dependency 
between them, in a sense that highly dependent microservices 
should be placed on the same or geographically approximate 
nodes. Finally, each application 𝑎 ∈ 𝐴 has a delay limit 𝐷), 
which is the maximum acceptable delay between any node 
that hosts any of the application’s microservices and the 
source node where the application’s demand is generated. 

This is a general measure of the application’s overall time-
sensitivity, in the sense that a time sensitive application 
requires all its microservices to be processed by nodes with 
low-delay.  

A. MILP FORMULATION       

In what follows, we present the mathematical formulation 
of the two-level resource allocation problem of cloud native 
applications over an edge-cloud infrastructure. The 
optimization objective is the weighted combination of the total 
monetary cost, the delay per microservice assignment and the 
workloads’ isolation level difference from the requested one. 
Below are the variables considered in the MILP formulation 
are presented. 

𝑥),*,$ Binary variable equal to 1 if microservice 𝑖 =
1,… , 𝐼)  of application 𝑎 = 1,… , 𝐴 is assigned to 
low level orchestrator 𝑜 = 1,… , 𝑂 

𝑦),*,(,' Binary variable equal to 1 if microservice 𝑖 =
1,… , 𝐼)  of application 𝑎 = 1,… , 𝐴  is placed at 
machine 𝑚 = 1,… ,𝑀! and is served at security 
level s= 0,… , |𝑆| 

𝜃) Integer variable that denotes the latency of 
application 𝑎 = 1,… , 𝐴  

𝛹! Integer variable that denotes the total monetary 
cost of serving the cloud native application 𝑎 =
1,… , 𝐴 

𝑤* Weighting coefficients for 𝑖 = 1,2,3  to control 
the contribution of operational cost and latency in 
the objective function with ∑ 𝑤*-

*./ = 1 

- Objective function.  
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Subject to the following constraints: 

-C.1. Each microservice 𝑖 = 1,… , 𝐼)  of each application 
𝑎 = 1,…𝐴 must be assigned to a low-level orchestrator. 

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!,(𝑥!,0,1 = 1
2

1$"

	

-C.2.The microservices 𝑖 = 1,… . , 𝐼)  of each application 
𝑎 = 1,…𝐴  that are executed with security Tier 𝑠 =
0, . . , |𝑆| must be assigned to a machine of the selected 
orchestrator o. 

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1, ((𝑦!,*,+,, ≥
|𝑆|

,$-

.!

+$"

𝑥!,0,1	

-C.3. The microservices that are executed with security 
Tier 3 and 4 need to be placed at nodes with extra peripheral 
hardware. 

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝜊 ∈ 𝛰, ∀𝑚 ∈ 𝛭1,, ∀𝑠 ∈ 𝑆3, 𝑦0,!,+,, ≤ 𝑡𝑚 
-C.4. The total CPU required from all the microservices 

𝑖 = 1,… . , 𝐼)  of application 𝑎 = 1,… . , 𝐴  deployed at a 
machine m must not exceed its capacity. 

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1,((((𝜀*,! ∙ 𝜀,̂) ∙ 𝑦!,0,+,, ≤
|5|

,$"
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0$"

#

!$"

𝑐+	

-C.5. The total RAM required from all the microservices 
𝑖 = 1,… . , 𝐼)  of application 𝑎 = 1,… . , 𝐴  deployed at a 
machine m must not exceed its capacity. 

 



∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1,((((𝜌*,! ∙ 𝜌H,) ∙ 𝑦!,0,+,, ≤
|5|

,$"

/"

0$"

#

!$"

𝑟+	

-C.6. The total Storage required from all the microservices 
𝑖 = 1,… . , 𝐼)  of application 𝑎 = 1,… . , 𝐴  deployed at a 
machine m must not exceed its capacity. 

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1,((((𝜔*,! ∙ 𝜔K,) ∙ 𝑦!,0,+,, ≤
|5|
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-C.7. The trusted execution tier of a machine that is 
assigned a microservice must be equal or greater than the tier 
demanded by the microservice.  

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝑚 ∈ 𝛭1,∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆	
	𝑦!,0,+,, ∙ 𝑠 ≥ 𝜎𝑎,𝑖	

-C.8,9. The microservices  𝑖 = 1,… . , 𝐼)  of application 
𝑎 = 1,… . , 𝐴 must be assigned to a machine that is situated in 
a node 𝑣 that respects the application’s delay limit.  

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼!, ∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭1, ∀𝑠 ∈ 𝑆,	
𝑙+,6" ∙ 𝑦!,0,+,, ≤ 𝜃!,	𝜃! ≤ 𝐷!	

-C.10. For each pair of connected microservices i,i' of an 
application 𝑎 = 1,… , 𝐴, the selected machines must respect 
the dependent microservices delay limit. 

𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦!,0,+,, + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦!,0#,+;,,
≤ 𝛿!,0,!,0# + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ 		

-C.11 Monetary cost calculation for application 𝑎 =
1,… , 𝐴  

∀𝑎 ∈ 𝐴,𝛹𝑎 =(( (𝑦!,0,+,,

|5|

𝑠=0	

𝑀𝑜

𝑚=1

𝐼𝑎

𝑖=1
∙ 𝑝𝑚 ∙ 𝜆𝑎,𝑖 

Assuming that Α applications with I microservices need to 
be served. O orchestrators perform the assignment of 
applications to resources, with each one controlling M 
machines, which support S security tiers. The total number of 
variables is [(𝐴 ∙ 𝐼 ∙ 𝑂) + (𝐴 ∙ 𝐼 ∙ 𝑀 ∙ 𝑆) + 2 ∙ 𝐴 + 3] . The 
MILP formulation also requires 𝐴 ∙ (𝐼 + 1)   equality 
constraints for C.1 and C.10. Also, it requires the following 
inequality constraints: 3∙ [𝐴 ∙ 𝐼 ∙ 𝑀] for C.2,8,9, 2 ∙ [𝐴 ∙ 𝐼 ∙ 𝑀 ∙
𝑆] for C.3.7, 3 ∙ 𝑀 for C.4,5,6 and 𝐴 ∙ 𝐼= for C.10. 

B. Best fit heuristic 

The presented MILP approach is computationally 
intensive and exhibits a prohibitively large execution time 
even for medium-sized problems. To address this, we 
developed sub-optimal mechanisms. The first mechanism is a 
greedy best fit heuristic. It takes as input the infrastructure 
graph G and application demands A, and allocates resources 
sequentially for the cloud native applications with respect to 
computing/storage capacity, security and latency needs 
optimizing the objective function set. To do so, it examines 
each microservice independently and allocates resources in a 
best-fit manner according to the specified objective function. 
When it fails to serve a microservice due to either 
communication latency or computing or storage capacity 
constraints it backtracks and re-allocates resources for the 
problematic set of microservices.  

The algorithm begins by ordering the cloud native 
application demands based on their application delay limit 𝐷). 
As applications consist of dependent microservices, the pairs 
of microservices are also ordered based on their latency 
requirements (in latency units l.u.) among them from the 
strictest to the loosest. This way, the algorithm prioritizes 
applications and microservices with stricter latency 

requirements to maximize the chances of meeting the 
requirements while also decreasing any reallocations due to 
backtracking. 

The allocation of resources for cloud native applications is 
performed sequentially. Given a microservice of an 
application 𝑎 , the algorithm identifies the candidate 
orchestrators to serve it. These orchestrators are selected based 
on their ability to meet the application’s latency requirement  
𝐷)  and their machines’ ability to fulfill communication 
constraints with already assigned microservices. 
Subsequently, the selected orchestrators are sorted in 
ascending order based on their objective value, which is the 
weighted average of their machines’ cost, security, and 
latency towards the data generation node. The orchestrators 
are examined sequentially, beginning with the one offering the 
best objective value.  

If an application contains only a single microservice, the 
algorithm selects the top-ranked orchestrator, and 
subsequently identifies candidate machines for deployment. 
These are machines that possess the required 
computing/storage resources and an equal or higher trusted 
execution tier than the one demanded by the microservice. 
Additionally, these machines must reside in nodes that satisfy 
the application’s delay requirement. The algorithm then 
assigns the microservice to the candidate machine that yields 
the best objective value. If the application contains more than 
one microservices, the above process applies for the first 
microservice. However, for each subsequent microservice, the 
identification of the candidate machines also considers the 
latency requirements among interconnected microservices.   

If no feasible placement is found for a microservice due to 
communication latency constraints, the affected inter-
connected microservices that have already been served are de-
allocated, freeing up the occupied resources. The algorithm 
will then attempt to re-embed the impacted microservices 
(possibly in a new orchestrator), until a feasible solution is 
found. This process is repeated until all microservices within 
an application are served, at which point the algorithm 
proceeds by selecting the next application in line. The 
algorithm terminates once all applications have been served. 

C. Multi-agent Rollout heuristic 
We also developed a multi-agent rollout [22] mechanism 

to enhance the performance of the greedy best fit heuristic and 
trade-off execution time with performance.  Rollout is a well-
known reinforcement learning technique that provide a near-
optimal solution by leveraging a base policy, which in this 
case is the greedy best fit heuristic discussed in the previous 
sub-section. To find the final solutions, it follows an iterative 
process that takes, at each step, an instance of the problem 
with a partial solution and constructs the final solution 
incrementally. This approach is particularly useful when exact 
methods are slow or when the solutions provided by heuristics 
are below optimal and can produce significant results.  

Upon selecting an application, the multi-agent rollout 
mechanism, illustrated in Fig. 3, begins by assigning an agent 
to each microservice. These agents co-operate/compete with 
time to fulfill the microservices’ requirements based on the set 
objective function. Each agent takes sequential action, 
exploring all possible placements across the different 
orchestrators and their nodes.  As the search space can be 
large, the algorithm prunes nodes that do not comprise 
machines meeting certain conditions. These conditions 



encompass: (i) the minimum latency requirements of the 
already served communicating microservices of the 
applications, (ii) the CPU, RAM and storage capacity. (iii) the 
minimum trusted execution requirements and (iv) the 
application latency constraint 𝐷). Furthermore, for each node, 
if more than one machines meet the problem’s constraints, 
only the placement in the machine that yields the best 
objective is evaluated. This way, in the worst case, each agent 
assesses at most ∑ 𝑣$$  possible placements for a microservice 
(instead of ∑ 𝑀$$ ).  

The best-fit heuristic of the previous sub-section is utilized 
by the Rollout mechanism in the context of reinforcement 
learning to approximate the future agents’ decisions in the 
total cost approximation and evaluate the effect of the decision 
of the current agent. Hence, the process is repeated for all the 
candidate nodes that are able to serve the microservice of the 
current agent and the total cost that includes the current 
agent’s decision and the approximate cost for future decisions 
is calculated and the assignment  that exhibits the lowest total 
cost is selected in order to allocate resources for the current 
microservice. This methodology, thus, leads to a more 
informed and cost-effective approach to resource allocation, 
which can significantly improve the overall efficiency and 
performance of the cloud-native application deployment. 

The purpose of using the multi-agent version of rollout is 
to curtail the state-space of the problem. By breaking down 
the allocation of resources for an application 𝑎  and a 
microservice 𝑖 ∈ 𝐼)  and by applying one-agent-at-a-time 
instead of all-agents-at-once, the state space is effectively 
reduced. The reduction is further amplified by pruning the 
constraint-violating nodes, as well as evaluating only one 
machine per node, as discussed earlier. In this way, the control 
space complexity stemming from the various options for 
serving the applications is traded off with state space 
complexity, and the computational requirements are 
proportional to the number of microservices 𝐼) of the different 
applications 𝑎 and the number of nodes within the different 
orchestrators ∑ 𝑣$$ . 

V. PERFORMANCE EVALUATION 
A. Experimental setup 

To examine the performance of the proposed mechanisms 
we performed a number of simulation experiments. The 
mechanisms were developed in MATLAB and the 

experiments were conducted on a 6 core 2.6 GHz Intel Core 
i7 PC with 12 GB of RAM. We assumed a hierarchical 
infrastructure that spans over the edge-cloud continuum and is 
split in three-layers that correspond to near edge, far edge and 
cloud nodes. We introduced two different topologies, namely 
“basic” and “extended”, with each one consisting  of nodes 
with computing machines of distinct characteristics and 
capacities, as illustrated in Table 2. Note that values exhibited 
in the close interval [𝑎, 𝑏]  are sampled from the uniform 
distribution over that range. 

 Near-edge Far-edge Cloud 
Nodes (basic) 25 4 1 

Nodes (extended) 40 7 2 
Machines per node 

(basic) 
1 [7,10] 50 

Machines per node 
(extended) 

2 [10,15] 100 

CPU (CPU units) [4,8] [5,10] [8,12] 
RAM (RAM units) [1,4] [2,8] [4,16] 

STORAGE (GB units) [4,16] [8,32] [16,64] 
Monetary COST (Cost 

Units) 
[6,7] [3,4] [1.5,2] 

Table 2. The characteristics of the computing nodes of the different 
topologies. 

In both topologies, the near-edge layer comprises of a 
large number of nodes with few low-capacity computing 
systems, placed close to the data sources. Conversely, the 
cloud layer comprises of a limited number of nodes that host 
a large number of high-powered machines. The cost of the 
near-edge resources, as compared to central cloud nodes, is 
assumed to be higher [23] as near-edge nodes are typically 
deployed in remote environments, making it challenging to 
maintain and upgrade the infrastructure. Also, these nodes are 
designed to have low latency and high bandwidth 
connectivity, which requires expensive networking equipment 
and bandwidth costs. Finally, the costs associated with 
providing the necessary power and cooling infrastructure is 
lower at the central cloud, which achieves economies of scale. 
Hence, the cost of the near-edge nodes was taken to be around 
4 times higher than the central cloud, considering the 
additional cost associated with the secure workload execution.  

We have also considered the communication delay 
between infrastructure nodes. We assumed that near-edge 
resources require between [0.5, 1.5] l.u., far-edge resources [3, 
4] l.u. and cloud resources [7, 8] l.u. from the data generation 
points [24]. This takes into account the principle that nodes 
within the near-edge layer, given their geographic proximity 

 
Fig. 3. The flowchart of the greedy best fit heuristic. 

 



to the data source, should logically experience less 
propagation delay. Conversely, cloud resource nodes located 
in more distant areas would inherently experience longer 
delay times. 

Number of microservices [1,7] 
Delay constraint [2,10] 

Microservices’ CPU demand [1,2] 
Microservices’ RAM demand [0.5,1] 

Microservices’ storage demand [1,5] 
Dependency chance for a pair of microservices 25% 

Dependency delay constraint [0.5,3.5] 
Table 3. The cloud native applications’ workload characteristics. 

 For the workload, we focused on two scenarios; (i) a small 
and (ii) a medium-sized consisting of cloud-native 
applications of a maximum of 7 microservices (Table 3). Note 
that an application with a single microservice can represent a 
generic end-user demand, while microservice replicas are 
considered as microservices with identical resource profiles. 
We set the dependency probability between any pair of 
microservices to 25%, and the respective delay constraint to 
range between 0.5 and 3.5 l. u.  

B. Evaluation Results 

Initially, we compared the performance of the proposed 
sub-optimal mechanisms, the greedy heuristic and the multi-
agent rollout with respect to the optimal solution provided by 
the MILP mechanism. For the evaluation we considered the 
following optimization criteria: (i) minimization of the 
operational cost ( 𝑤/ = 1 ), (ii) minimization of the 
applications latency (𝑤= = 1), (iii) maximization of trusted 
execution (𝑤- = 1) and (iv) all optimization criteria (𝑤/ =
𝑤= = 0.4, 𝑤- = 0.2 ). We used the “small” topology as 
described in Table 1 and a small workload consisting of 50 
applications. The execution time for the optimal solver was 
limited to 60 minutes and the presented results are averaged 
over 20 simulations. The results of the simulation experiments 
are illustrated in Fig. 4. 

 
Fig. 4. The optimality gap for the different optimization criteria. 

When the main optimization criterion is the latency 
minimization, the heuristic has an optimality gap of 14.5%. 
This happens due to the high competition for the limited near-
edge resources, which requires a more sophisticated resource 
allocation approach to effectively allocate these resources. For 
the same reason the all-optimization criteria lags by 11% from 
optimal. However, when the optimization criterion is the 
minimization of the operation cost or the maximization of 
trusted execution, the search space is much smaller and thus 

the performance of the heuristic is close to optimal 
underperforming only by about 3% and 10% respectively.  

On the other hand, the Multi-agent Rollout has a 
significantly better performance, with the worst case being for 
the latency optimization. However, it significantly improves 
the performance of the greedy heuristic due to the 
consideration of the future placements and thus lags only by 
4.5%. This is the biggest gap for the performance of the 
rollout. Also, when the optimization is the minimization of the 
operational cost, the optimality gap is smaller than 1%, which 
means that it manages for the most of the application demands 
to allocate them in an optimal manner.  

As for the execution time, the best fit heuristic provided an 
almost instantaneous assignment, with an average time of 0.01 
seconds per application. On the other hand, the Rollout 
algorithm performed slower, at an average of 0.9 seconds per 
application, with a standard deviation of 0.3 seconds. Finally, 
the optimal solver exceeded the 3600 time-limit in all cases, 
thus resulting in an average of 72 seconds per application.  

 
Fig. 5. The allocation of microservices at the different layers of the edge-

cloud continuum. 

Next, the multi-agent rollout mechanism was evaluated for 
the extended topology with 300 microservices and was 
compared to the allocation performed by the best-fit heuristic 
which is the baseline scenario for this set of experiments. We 
began by analysing the allocation of microservices for the 
different mechanisms and optimization criteria across the 
edge-cloud continuum (Fig. 5).  

The experiments revealed that resource allocation patterns 
varied based on the optimization objective. When cost or the 
trusted execution were prioritized, cloud resources were 
favoured due to their high capacity and the higher availability 
of trusted execution tiers. Conversely, when the latency 
minimization was the main objective, near and far edge 
resources were heavily utilized. Additionally, when all the 
optimization criteria were simultaneously optimized, the 
solution proved beneficial in allocating resources tailored to 
the application's specific needs.  

This highlights the advantages of taking all the 
optimization criteria into consideration in a multi-objective 
optimization approach during the resource allocation process 
and the ability of the rollout mechanism to achieve an 
improved allocation of resources by leveraging the decisions 
of the heuristic in a reinforcement learning manner. All in all, 
this approach leads to more efficient allocation of resources 



across the edge-cloud continuum, optimizing application 
performance and cost. 

 
Fig. 6. The operational cost overhead for the different optimization 
criteria. 

Next, in Fig. 6 we present the results of experiments 
regarding the average cost overhead associated with security 
as an additional constraint, compared to generic workload 
demands which acts as the baseline scenario for this case, for 
the different optimization objectives. The cost overhead for a 
microservice's placement is determined as the percentile 
increase in cost between its deployment in a default container 
(Tier-0) and the deployment method chosen in the assignment.  

As expected, the highest cost overhead is incurred in the 
maximization of trusted execution, where machines with 
higher tiers, which are inherently more costly, are favoured. 
Trusted execution is also considered in the “all optimization 
criteria” scenario, producing increased cost overhead. On the 
other hand, the impact of additional security on cost overhead 
is less notable for the other two optimization objectives, where 
trusted execution is not a contributing factor.

 
Fig. 7. The experienced latency for the different optimization criteria. 

Finally, in Fig. 7 we present the effect of the different 
optimization criteria on the average propagation latency. 
When the minimization of latency is prioritized, the lowest 
average latency is achieved. Conversely, when operational 
cost is optimized, as many microservices as possible are 
placed on the far-edge and cloud layers, incurring higher 
latency. In the trusted execution optimization case, 
microservices are placed on machines with high security tiers, 
which are generally located in the upper layers (extra 
hardware), leading to higher average propagation latency. The 
weighted optimization approach strikes a balance among the 
different criteria, thus achieving a relatively smaller latency.   

By comparing the Multi-agent Rollout with the greedy 
heuristic mechanism performance, we observe that the rollout 

approach generally results in a marginally lower cost overhead 
and communication latency for all objectives, with the 
exception of trusted execution. As expected, when 
considering both cost and other criteria, the rollout mechanism 
performs better, finding the most cost-efficient machines that 
usually possess lower security levels and subsequently lower 
security-cost-overhead.  

Similarly, with latency as an objective, it manages to place 
more microservices on edge nodes, at machines with adequate 
security tiers and thus lower overhead costs. Similarly, for the 
trusted execution objective, the rollout mechanism improves 
the solution by placing more microservices on machines with 
a higher security tier, leading to a higher security cost 
overhead. The aforementioned findings highlight the 
importance of considering multiple optimization criteria when 
allocating resources for cloud native applications across the 
edge-cloud continuum. While prioritizing a single objective 
may lead to optimal results for that specific objective, it may 
negatively impact other criteria, such as latency or operational 
cost. Therefore, a comprehensive approach that balances 
multiple objectives can lead to a more efficient allocation of 
resources, resulting in improved application performance, 
reduced costs and better utilization of the infrastructure’s 
resources. 

VI. Conclusion 

In this study, we aimed to address the challenge of 
allocating resources to cloud-native applications within a 
hierarchical edge-cloud infrastructure. Our approach 
considered critical factors such as the inter-dependencies 
among microservices and the trusted execution requirements 
of cloud-native applications. To meet the varied security and 
isolation demands of microservices, we introduced innovative 
technologies such as sandboxing and unikernels into our 
infrastructure. To model the resource allocation problem, we 
formulated a multi-objective optimization problem that 
balances various and conflicting objectives, such as 
minimizing operational costs and propagation latency from 
data generation points, while considering the workloads’ 
security tier requirements. We developed optimal and sub-
optimal mechanisms that efficiently trade-off performance for 
execution time, as demonstrated in our experiments. Our 
results showed that the greedy best-fit heuristic fell short of 
optimal performance by almost 11% for all optimization 
criteria. However, the multi-agent rollout mechanism 
significantly improved the greedy heuristic's performance, 
achieving close to optimal levels at 3.7%. Furthermore, our 
experiments highlighted the trade-offs between delay, cost, 
and security. In conclusion, our study provides a novel 
approach to resource allocation in a hierarchical edge-cloud 
infrastructure, addressing crucial factors such as security, 
isolation, and inter-dependencies among microservices. The 
proposed multi-objective optimization problem and 
developed mechanisms offer efficient trade-offs between 
performance and execution time. 
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