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Abstract—Edge computing has emerged as a paradigm for 

local computing/processing tasks, reducing the distances over 
which data transfers are made. Thus, an opportunity is 
presented for data transfer-intensive, distributed machine 
learning. In this paper we develop a solution for serving 
distributed Machine Learning (ML) training jobs at the edge–
cloud continuum. We model the specific requirements of each 
ML job, and the features of the edge and cloud resources. Next, 
we develop an Integer Linear Programming algorithm to 
perform the resource allocation. We examine different scenarios 
(different processing and bandwidth costs) and quantify 
tradeoffs related to performance and cost of edge/cloud 
bandwidth and processing resources. Our simulations indicate 
that even though there are many parameters that determine the 
allocation, the processing costs seem to play on average the most 
important role. The cloud b/w costs can be significant in certain 
scenarios. Finally, in certain examined cases, significant 
monetary benefits can be achieved through the collaboration of 
both edge and cloud resources when compared to using 
exclusively edge or cloud resources. 

Keywords— cloud computing, distributed machine learning, 
edge-cloud continuum, edge computing, resource allocation 

I. INTRODUCTION 

Mobile phones, intelligent vehicles, energy meters and 
other Internet of Things (IoT) devices are improving and 
spreading into many areas of society empowering new digital 
services. The abundant edge devices generate enormous 
amounts of data. To tackle these developments, new 
computing paradigms (e.g., edge computing) arise to process 
these data. As a result, an opportunity for machine learning 
training arises to use the abundant processing infrastructure 
created and commoditize the related analytics services.  

In distributed machine learning [1][2] the training is 
performed on dedicated edge or cloud resources. This means 
that powerful computation resources are employed. Moreover, 
the training of an ML job is divided into a number of ML tasks 
that are executed in parallel in different equipment [3][4]. In 
distributed ML performed over the edge-cloud continuum, an 
important challenge is to allocate the most appropriate 
resources to serve each ML job with a certain objective (e.g., 
minimize the monetary cost). The challenge is similar to 
computation offloading [5], but presents additional 
complications due to the requirements of distributed ML. 
First, a decision has to be made on whether a job will be served 
at the edge or at the cloud. The decision mainly depends on 
the cost requirements of each job and the corresponding 
parameters of the edge and cloud resources. Then the suitable 
number and type of resources should be allocated according 
to the needs of the ML job (e.g., amount of data, type of ML 
training algorithm). The problem requires modeling of the 
different contributors to the (bandwidth and processing) cost 

of a job that could be different at the edge and at the cloud. 
Moreover, there are different types of distributed ML 
architectures depending on, e.g., the type of parallelism, the 
communication architecture, and computation timing.  

In this paper we investigate the resource allocation 
problem for distributed machine learning applications. More 
specifically, we consider a scenario where various devices are 
located at the edge of the network. The devices produce data 
that are used for ML training at edge or cloud resources. The 
goal is to assign the required resources (processing, memory, 
storage, bandwidth) for each machine learning job while 
optimizing certain metrics.  

The main contributions of our work are:  

i) We present an resource allocation model for serving  
distributed ML training jobs. We jointly take into 
account both edge and cloud resources, their 
computational performance, their bandwidth and 
processing monetary costs. The model allows for 
exploring insights on the various benefits and tradeoffs. 

ii) We present an Integer Linear Programming algorithm 
that solves the edge/cloud joint resource allocation 
problem. The objective is to minimize the monetary cost 
to serve all the ML jobs. The formulation is versatile, 
and can be used to allocate resources for various variants 
of distributed ML applications, training (such as model 
or data parallelism, and also all-reduce or aggregation 
servers). The algorithm can provide a timely solution to 
large instances of the problem. 

iii) We perform realistic simulations experiments to 
quantify the tradeoffs between edge and cloud resources 
for various b/w and processing costs of edge vs cloud. 

II. RELATED WORK 

Our work is mainly related to two topics: distributed ML 
and computation offloading. Distributed ML is an active 
research topic. There are three main taxonomies of distributed 
ML [3][4] based on the: i) type of parallelism, ii) 
communication architecture, iii) computation timing. Their 
specific characteristics have to be taken into account to design 
a robust resource allocation formulation for each case. As far 
as parallelism is concerned, there is the model parallelism and 
the data parallelism. In model parallelism the model is divided 
into a certain number of segments that are executed in a 
respective number of workers. The training is performed using 
the same data in all workers. A main reason to adopt model 
parallelism is memory limitations. In data parallelism, the 
model is common to all workers, but the training data are 
separate. Each worker computes locally its model weights and 
communicates its values to the other workers to aggregate the 
results and update the common model. Regarding the 
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communication architecture, a prominent variant is the 
parameter (aggregation) server. In this case the workers 
communicate their local computations to the server that 
aggregates the workers’ weights. A different communication 
architecture is all-reduce. In this case the workers directly 
communicate with each other to average the model weights. 
Concerning computation timing, there are two main 
approaches: synchronous and asynchronous learning. In 
synchronous learning, the aggregation of the workers’ model 
weights is performed simultaneously. This can incur 
inefficiencies, when some workers (stragglers) are performing 
worse than others. In asynchronous learning the workers are 
allowed to perform at their own pace. A pipelined architecture 
can be considered as in [4] to improve training throughput. It 
allows overlapping communication with computation time 
and reduces the required communication. 

Computation offloading initially referred to moving 
computationally intensive tasks to the cloud where powerful 
and abundant resources were available. As technology 
evolved, new applications required low latency and high 
bandwidth. As a result, Mobile Edge Computing or Multi-
access Edge Computing (MEC) emerged. MEC provides 
significant computation and b/w efficient capabilities at the 
network edge, close to the users. There is vast relevant 
research related to MEC computation offloading [5][6][7]. 
Various works target to minimize execution delay and energy 
consumption, optimize throughput-network costs, and find an 
optimal collaboration between edge and cloud resources. Even 
though the research on computation offloading is vast, still it 
cannot directly be applied to our case study. The reason is the 
specific resource allocation requirements of distributed ML 
that can vary depending on the specific type of ML training 
algorithm, the accuracy, time constraints, and the architecture.  

A recent research topic is the intersection of distributed 
ML and computation offloading, which is the topic of this 
work as well. Regarding distributed ML at the edge, [8] 
studied the efficient utilization of the network’s resources by 
analyzing the convergence rate of distributed gradient descent. 
The authors of [9] considered ML training of data from 
augmented reality edge devices. The work in [10] considered 
incremental offloading of a training model to edge devices. 
The authors of [11] compared the performance of federated 
learning to variants of edge and centralized learning. Ref. [12] 
jointly considered the data collection problem and the 
resource allocation to maximize the distributed ML 
throughput. The work in [13] investigated offloading of IoT 
deep learning applications in an edge computing environment.  

To the best of our knowledge there is no previous work 
that combines realistic modeling of the resource allocation 
problem of distributed ML using both edge and cloud 
resources and accounting for different architectures. 
Moreover, an analytic comparison of various tradeoffs 
between b/w and processing costs of the edge and cloud seems 
to be missing from related work. 

III. PROBLEM STATEMENT 

A. Scenario Description 

We consider various ML scenarios consisting of certain 
devices (e.g., vehicles, IoT) at the edge (Fig. 1). Each scenario 
could correspond to a different type of machine learning job, 
e.g., image recognition, anomaly detection, etc. We assume 
that there is an edge network close to the devices, and a more 
distant cloud. The ML jobs are served either at the edge or at 

the cloud, depending on specific requirements that will be 
discussed later. If the tasks of a job are served both at the edge 
and at the cloud then the large variance of the communication 
time for the exchange of the model weights may significantly 
impact the performance of the training algorithm. In the 
following we describe use cases in a variety of IoT and in 
Internet of Vehicles (IoV) environments.  

In recent years IoT has spread across numerous 
applications and domains. Billions of devices are connected to 
the internet, gather data from their sensors and communicate 
with other devices. IoT applications range from smartphones, 
smart home devices and smart manufacturing in industries. 
IoT devices can have several different types of sensors: image, 
sound, environmental, etc. Depending on the application and 
the type of the sensor, the data could be generated in high 
volume and streaming fashion. According to [14], the data 

produced by all the sensors of a smart city could be 
approximately 8 GB/day. The data can be used in a large range 
of machine learning applications: image-voice-activity 
recognition, and in sectors such as smart electricity grids and 
healthcare. In many of these scenarios, the continuous 
learning is important in order for the model to be adaptable to 
the environment and to other changes.  

Automotive industry is in the dawn of a major 
transformation fueled by the developments in autonomous 
driving and the involvement of IT companies. IoV is a 
network of “smart” vehicles that are interconnected and 
exchange data to enhance traffic safety and efficiency and 
provide commercial infotainment. IoV has significant 
processing and communication capabilities, supported by 
edge and cloud resources. Future vehicles will have a large 
number of sensors (e.g., Light Detection and Ranging, sonar 
and cameras) that produce enormous amount of data. Each 
vehicle can generate 4 TB of data per day [15]. This amount 
of data will put significant stress on the network resources. 
The data of the vehicles can be leveraged in many different 
distributed ML scenarios (e.g., dynamic vehicle routing to 
avoid congestion, or object detection and classification). 

B. Problem Formulation 

In this section we will formally define the problem to 
tackle the aforementioned distributed ML scenarios. The 
formulation is generic in that it can be used for any of the 
above scenarios and for many different distributed ML 
architectures. More specifically, we consider a number of 
devices that continuously produce data. Each device u 
continuously produces data at a rate of 𝜆௨ samples/sec. A set 
of a certain number and type of devices and their data to be 
trained, form an ML training job j. The training of an ML job 

 
Fig. 1 The abstract architecture considered  
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j is divided into a set of distributed ML tasks 𝑇௝ that are 
executed in respective workers. Each ML task 𝑡௝௞  is 
responsible for a subset 𝑑௝௞ of the entire dataset 𝐷௝  of each job 
j. A device 𝑢௝௞ is related to the kth ML task and belongs to the 
set of devices 𝑈௝ of the jth job.  

The time axis is divided in time periods of duration 𝑃௢ , 
which are asynchronously defined for each resource. The 
devices feeding an ML job continuously upload their data to 
the network’s resources that run a training ML algorithm on 
batches of data. During a period, each resource performs 
training by processing a batch of data, consisting of data 
received at it during the previous period (i.e., until the current 
period begins). Each resource continues to receive data from 
the devices that will be processed at the following period. At 
each time period 𝑃௢, device u produces and sends for training 
𝑠௨ = 𝑃௢𝜆௨  samples. Each ML task 𝑇௝௞  has a total 𝑆௝௞ =
∑ 𝑃௢𝜆௨௨∈௎ೕೖ

 samples that it has to process within period 𝑃௢. 
We assume all the ML tasks of a job will be trained within the 
same time period 𝑃௢. This includes both the computation time 
of the tasks and the communication of the weights (w) of the 
model from the nodes where the tasks are executed to the 
aggregation server(s) and back. Note that various devices may 
send data asynchronously, but computations take place 
synchronously at the next available time period 𝑃௢  (Fig. 2). 
Let 𝑃௖௢௠௣  the total computation time required to finish the 
training of a batch of data. Also let 𝑃௖௢௠௠  the required 
communication time for the weights. Depending on the 
architecture of the distributed ML algorithm, there could be 
different relationships between 𝑃௖௢௠௠  and 𝑃௖௢௠௣ . Assuming 
that the workers first complete the computations and then they 
send the model weights for averaging (no pipelining, so no 
overlapping of communication and computation times), then 
𝑃௢ = 𝑃௖௢௠௣ + 𝑃௖௢௠௠ . Thus 𝑃௖௢௠௠ = 𝜔𝑃௖௢௠௣ , ω<1. The 
actual communication overhead ω depends on parameters 
such as the hardware configuration and the specific ML model 
[4]. Assuming pipelining, the communication overhead can be 
reduced up to 95%, and a perfect overlap of computation and 
communication can be achieved [4]. Then, 𝑃 ≈ 𝑃௖௢௠௣.  

In order to perform the computations, each ML task needs 
certain resources. We assume that each ML task 𝑡௝௞  has 
processing (GPU based), memory, storage, bandwidth and 
aggregator requirements. These requirements are respectively 
described by a vector of resources  𝑅௝௞(𝑍) =
[𝐺௝௞, 𝑀௝௞, 𝑉௝௞, 𝐵௝௞, 𝐴௝௞]. The size of the required resources is 
proportionally dependent on the size of the samples of the task 
and on the type Z of the ML task. More specifically, an ML 

task has processing workload 𝐺௝௞(𝑍)𝑆௝௞  which has to be 
completed within a time period 𝑃௢ . Assuming perfect 
overlapping of computation and communication, the task 
requires processing rate 𝐺௝௞(𝑍)𝑆௝௞ 𝑃௢⁄ . If the overlapping is 
not perfect, then the processing rate increases to account for 
the communication overhead. An ML task similarly requires 
memory 𝑀௝௞(𝑍)𝑆௝௞ 𝑃௢⁄  and storage 𝑉௝௞(𝑍)𝑆௝௞ 𝑃௢⁄ . The 
number of aggregators depend on the assumed architecture. 
These values can be translated to resource units. Each resource 
can be assigned in units of predetermined granularity e.g., one 
unit of memory could correspond to 1GB RAM. The required 
bandwidth 𝐵௝௞  can be derived as follows. Let β the number of 
required bits to represent a sample. β depends on the nature of 
each sample (e.g., picture, sentence, etc.). Consequently, the 
required data rate for task 𝑇௝௞ is  𝐵௝௞ = 𝛽 ∑ 𝜆௨ೕೖ௨∈௎ೕೖ

.  

As far as the network is concerned, we consider an edge 
and a cloud network. The edge network consists of a set of 
nodes N. Each node has finite resources that can be used by 
the machine learning tasks. More specifically, each edge node 
n has a number of 𝑅௡

ீ GPU units, 𝑅௡
ெ  memory units, 𝑅௡

௏ 
storage units, 𝑅௡

஻  incoming b/w units to receive the data from 
the devices and 𝑅௡

஺  aggregator units. The cloud network is 
assumed to have infinite resources. A major difference 
between the edge and the cloud are the respective processing 
and bandwidth monetary costs. The cost to use the processing 
units is defined as 𝐶ா

ீ  at the edge and 𝐶஼
ீ at the cloud. The cost 

of b/w is defined as 𝐶ா
௕௪ at the edge and 𝐶஼

௕௪ at the cloud. 

C. Resource Allocation Algorithm 

In this subsection we present the ILP algorithm 
responsible for the allocation of the resources. The algorithm 
gets certain inputs, and using some related constraints aims to 
allocate the network’s resources (the variables of the 
algorithm), while satisfying the objective. The formulation 
assumes that there is one aggregation server. It can be 
modified in a straightforward way for other architectures. 
Also, we assume that a job can be either entirely served at the 
edge or at the cloud. The formulation can be expanded to 
allow more flexible allocation of resources. The algorithm 
provides a solution for a given period 𝑃௢ . Whenever the 
parameters change (e.g., a mobile dynamic scenario), the 
algorithm is re-executed to provide a new solution.  

Inputs: 

 𝑁: Set of edge nodes, with n a specific node of the set, 

 𝑅௡
ீ, 𝑅௡

ெ, 𝑅௡
௏, 𝑅௡

஻, 𝑅௡
஺ : Total number of GPU, Memory, 

Storage, incoming B/w, Aggregator units at edge node n, 

 J: Set of ML jobs, with j a specific job of the set, 

 T: Set of ML tasks, with 𝑇௝ the set containing all tasks of 
job j. The element 𝑡௝௞ is the kth task related to the jth job, 

 𝐺௝௞, 𝑀௝௞, 𝑉௝௞, 𝐵௝௞ , 𝐴௝௞: Required res. units of task 𝑡௝௞, 

 𝐶ா
ீ, 𝐶஼

ீ: The proc. monetary cost at the edge, cloud, 

 𝐶ா
௕௪, 𝐶஼

௕௪: The b/w monetary cost at the edge, cloud. 

Variables: 

 𝜉௡
௝௞

, 𝜉஼
௝௞:Binary variables (equal 1) if task 𝑡௝௞ of job j uses 

resource units at edge node n (𝜉௡
௝௞), or at the cloud (𝜉஼

௝௞), 

 𝑒௝, 𝑐௝: Binary variables (equal 1) if job j uses edge or cloud 

 
Fig. 2 An example of an ML job with the timings of the training 
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Objective: 

𝑚𝑖 𝑛

⎝

⎜
⎛

෍

⎝

⎜
⎛

෍ ෍ 𝜉௡
௝௞(𝐶ா

௕௪𝐵௝௞ + 𝐶ா
ீ𝐺௝௞)

்ೕ௡

+ ෍ 𝜉௖
௝௞(𝐶஼

௕௪𝐵௝௞ + 𝐶஼
ீ𝐺௝௞)

்ೕ ⎠

⎟
⎞

௝

⎠

⎟
⎞

              (3) 

Subject to: 

 Each job and all its tasks are served at the edge or cloud: 

∀𝑗 ∈ 𝐽: 𝑒௝ + 𝑐௝ = 1                         (4) 

 For each job and each of its tasks, if it employs the edge 
(𝑒௝ = 1), its tasks will be served once and in one node, 
since 𝑒௝ is 1, and the tasks variables are summed: 

∀𝑡௝௞ ∈ 𝑇௝ : ෍ 𝜉௡
௝௞

௡∈ே

= 𝑒௝                    (5) 

 If a job employs the cloud, its tasks will be served once: 

∀𝑡௝௞ ∈ 𝑇௝ : 𝜉௖
௝௞

= 𝑐௝                        (6) 

 Each edge node should have enough (#GPUs, memory, 
storage, bandwidth, aggregator) capacity to serve the 
assigned tasks. So, for all nodes we sum all the resources 
that a job could potentially use (𝜉௡

௝௞), and this sum should 
be less than the capacity of each node: 

∀𝑛 ∈ 𝑁 ∶ ෍ ෍ 𝜉௡
௝௞

𝐺௝௞

்ೕ௝

≤ 𝑅௡
ீ , ෍ ෍ 𝜉௡

௝௞
𝑀௝௞

்ೕ௝

≤ 𝑅௡
ெ 

∀𝑛 ∈ 𝑁: ෍ ෍ 𝜉௡
௝௞

𝑉௝௞

்ೕ௝

≤ 𝑅௡
௏ ,         ෍ ෍ 𝜉௡

௝௞
𝐵௝௞

்ೕ௝

≤ 𝑅௡
஻ 

∀𝑛 ∈ 𝑁: ෍ 𝜉௡
௝௞

௝

≤ 𝑅௡
஺                         (7) 

 In Eq. 3 the objective is to minimize the total cost of 
serving all ML jobs. The first part of the equation refers to the 
cost of a job if it is served at an edge node n. The cost consists 
of the b/w units 𝐵௝௞  of each task times the cost of edge b/w 
𝐶ா

௕௪, plus the processing units 𝐺௝௞  of each task times the cost 
of each processing unit 𝐶ா

ீ. The second part of the equation 
refers to the cost of a job if served at the cloud. It is similar to 
the calculation of the edge cost, only without the n nodes. The 
ILP algorithm can serve the ML jobs with the objective to 
minimize the total cost while satisfying the constraints and 
requirements. In the following section we examine various 
scenarios and evaluate the tradeoffs in each case. 

IV. SIMULATION RESULTS 

To evaluate our proposed resource allocation framework 
and quantify the edge-cloud cost relationships, we performed 
a number of simulation experiments. For all the parameters we 
assigned values that we consider realistic. We assumed a 20-
node edge network with finite resources. The network could 
correspond to the edge facilities of a megacity. For example, 
in the New York metropolitan area, Google currently operates 
8 edge nodes [16]. There are also several other service 
providers in the area, with their own equipment. In the 
immediate future further expansion of these facilities is almost 
certain. Thus, an edge network of 20 nodes seems realistic. 
We also assumed an abstract cloud with infinite resources. 
Each edge node has 5 racks. One rack is comprised of 10 

servers, and 1 server has 4 GPUs. Thus, each edge node has 
200 GPUs. For each edge node we also consider a total of 25 
GB RAM, 10 TB of storage, 10 Tbps incoming bandwidth and 
6000 CPU physical cores for the aggregators. We assume a 
total of 100 image recognition ML jobs. This number of jobs 
could correspond to jobs from fleets of IoV coupled with jobs 
from networks of IoTs. Each job consists of either 3, 4 or 5 
ML tasks, uniformly distributed over all jobs. The sum of the 
data production rate of the devices of each task (∑ 𝜆௨ೕೖ௨∈௎ೕೖ

) 
is 10 samples/sec. We consider that the duration of the training 
period is 𝑃௢ = 60 seconds. Note that the exact number of the 
ML tasks per job, the sum of the 𝜆௨ೕೖ

and 𝑃௢ does not play an 
important role to the simulation and the resulting tradeoffs. 
They almost only affect the magnitude of the problem. The 
size S of each sample (image) of a job is chosen from the 
following set of integers: [1, 2, 3, 4, 5, 6] MBs and it is 
uniformly distributed across all jobs. The training 
performance 𝛱 of the GPU is 𝛱 = 566 samples/sec. The 
respective cost at the cloud is $0.91/hour. The training 
performance is based on [17]. The benchmarked GPU was 
NVIDIA V100 corresponding to 1 GPU. The b/w cost to 
transfer data to the cloud is $0.02/GB. The respective pricings 
are taken from [18]. We assume that the training is fully 
pipelined, i.e., the computation and communication times 
fully overlap. To find the required number of GPU resources 
𝐺௝௞  per task, we first multiply the duration of the training 
period (𝑃௢) by the number of samples/sec of the task (𝑆௝௞) and 
by the number of epochs 𝐻௝ . Then we divide by the 
performance in samples/sec 𝛱 . The (rounded) result is the 
number of required GPUs for the ML task. The required b/w 
of each task is derived as follows. We multiply the number of 
samples of a task by the size in bytes of the task. The 
calculation of the required storage and memory is trivial and 
does not play significant role in the allocation. 

We examined a set of different parameters to evaluate the 
tradeoffs between processing-b/w cost at the edge and at the 
cloud. More specifically, we assumed different: i) edge vs 
cloud bandwidth costs, ii) edge vs cloud processing costs, iii) 
number of epochs. According to [19] the edge’s b/w costs can 
be approximately 0.1 times the cloud’s. We therefore assumed 
that the edge b/w cost could be [0.5, 0,25, 0.1] times the cost 
to transfer the data to the cloud. Moreover, according to [20] 
the edge processing costs can be approximately 1.5 times the 
cloud processing costs. We therefore assumed that the 
processing costs at the edge could be [1, 1.5, 2] times more 
than that of the cloud. The number of epochs affects the 
required processing units required to complete a training 
round within the time period  𝑃௢ . The required number of 
epochs can depend on factors, such as the type of the ML 
algorithm, the layers of the Neural Network, the desired 
accuracy, whether the training is continuous or not, and many 
other parameters. According to [21], the number of epochs 
required for certain benchmarks to reach the required accuracy 
can vary from 5 to approximately 50 epochs. In other cases, a 
larger number of epochs may be required. In our problem 
statement, we assume continuous learning with different 
datasets. This means that each dataset can potentially employ 
low number of epochs. On a long enough timeline, the 
accuracy of each ML model will converge to the required. We 
assume that the number of epochs can be [1, 10, 20, 40, 80, 
160]. For the simulations we used a desktop computer with a 
quad-core CPU at 4 GHz with 16 GB RAM. We used Python 
and Pyomo [22] to code the ILP, and IBM CPLEX to solve 
the problem. The running time of the ILP algorithm for the 
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aforementioned parameters, was approximately 0.7 seconds to 
create the equations and 0.8 seconds to prepare the solver and 
find the solution (the total number of variables was 
approximately 11000). The optimality gap was always 0.00%. 
For a larger instance of 60 edge nodes and 200 jobs the 
running time in total was approximately 2 and 2.5 seconds 
respectively (61000 variables). The ILP can provide a timely 
solution even in large instances of the problem, and a heuristic 
is not necessary. Future variations of the problem, can be more 
computationally intensive, and a heuristic could be required.  

TABLE I.  SIMULATION PARAMETERS 

Symbol Value Symbol Value 

N 20 nodes 𝑷𝒐 60 sec 

𝑹𝒏
𝑮 , 𝑹𝒏

𝑩 200 GPU, 10 Tbps S 1-6 MBs 

J 100 jobs 𝛱 566 samples/sec 

|𝑻𝒋| 3, 4, 5 tasks 𝑪𝑪
𝑮 $0.91/hour 

∑ 𝝀𝒖𝒋𝒌𝒖∈𝑼𝒋𝒌 10 samples/sec 𝑪𝑪
𝒃𝒘 $0.02/GB 

A. Edge vs Cloud allocation decisions 

In Fig. 3 we show the number of jobs allocated at the cloud 
as a function of the number of epochs and for different 
edge/cloud processing and b/w costs. For simplicity reasons 
we do not depict the allocation of the remaining jobs at the 
edge. In Fig. 3a the processing costs of edge and cloud are 
equal. For all the b/w edge/cloud cost ratios, the number of 
jobs allocated to the cloud is the same. When the number of 
epochs is small, all jobs are served at the edge, since the b/w 
costs are lower. Only after 160 epochs are some jobs served at 
the cloud. The increased number of epochs means that the total 
processing cost of a job play a more important role than the 
b/w cost to the allocation of the jobs. Note that as we will see 
in Fig. 4, the cloud serves smaller (in terms of Mbytes) jobs. 
In Figs. 3b, 3c the edge processing costs are more expensive 

than the cloud’s. In Fig. 3b we notice that the allocation of jobs 
tips towards the cloud relatively quickly. The different b/w 
costs seem to play a role for the allocation of the jobs after 20 
epochs. Until then all jobs are always served at the edge. In 
Fig. 3c more jobs are served at the cloud. At 160 epochs all 
jobs all always served at the cloud. Even though the edge 
processing costs are twice the cloud’s, the edge is still more 
preferable until 40 epochs. Overall, from Fig. 3 we can 
conclude that the edge is more preferable to serve jobs with 
relatively low processing requirements. Also the different b/w 
cost ratios play a relatively small role in the allocation.  

Fig. 4 depicts the mean size in GBs for 40 epochs of a job’s 
task that is served at either the edge or cloud when the edge’s 
processing costs are twice than the cloud’s. Similar 
conclusions can be drawn for different epochs and processing 
costs (as long as some jobs are served at the edge and others 
at the cloud). The size of a task depends on the number of 
samples/sec 𝜆௨ of its related devices, the duration of 𝑃௢ , and 
the size of each sample of a task. The first two variables are 
the same for all the jobs we considered. Thus, the 
differentiating factor is the size of a task’s sample. Note also 
that we have assumed a random number of tasks per job. This 
means that the definite size of a job depends also on the exact 
number of the tasks. However, this does not significantly 
affect the decision on the allocated location of a job. The 
increased number of tasks not only means more data to 
transfer (hence increased b/w costs), but also means more 
samples to calculate (hence analogous increase on the 
processing requirements). Since we have assumed that the 
performance of a GPU in samples/sec is constant regardless of 
the size of a sample, the differentiating factor in whether a job 
will be served at the edge or at the cloud is the size of its tasks’ 
samples. We notice that the edge tends to serve tasks with 
large size. It seems that in order for a task to be served at the 
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cloud, it has to be significantly smaller than the tasks that are  
typically served at the edge. As the  b/w cost decrease, the size 
of the jobs served to the cloud decreases respectively by 34%. 
The trends are similar for different edge processing costs (not 
shown here due to limited space). Also, when the number of 
epochs increase, the contribution of the processing costs due 
to the additional epochs is increased. Therefore, a job has to 
be larger to be served at the edge. Note that we considered an 
image recognition training scenario. Thus, each sample is 
relatively large. In different applications (e.g., ML translation) 
the size of the samples can be smaller. This means less b/w 
required, thus different job distribution at the edge and cloud.  

B. Monetary cost evaluation 

Fig. 5 shows the total cost to serve all jobs for one training 
round, decomposed to edge and cloud b/w and processing 
costs and for different number of epochs. Here we assumed an 
edge to cloud b/w cost ratio of 0.1, and edge to cloud 
processing costs of 2. Apart from the case of 1 epoch, the main 
contributor to the costs is processing costs. As the number of 
epochs increases, edge (and later cloud) processing costs play 
the most important role to the total cost of the jobs. For 160 
epochs all jobs are served at the cloud. Overall, we notice that 
the cloud b/w costs are a considerable fraction (approximately 
44% for 40 and 80 epochs) of the overall cloud costs. Thus, in 
lower number of epochs the edge is more preferable.       

In Fig. 6 we present the total cost to serve all jobs to the 
edge/cloud for the same parameters as Fig. 5. We compare to 
the cost in case we had only cloud or only edge resources 
available. We notice that for low number of epochs the cloud 
is overall much more expensive than the edge, and therefore 
the cooperation of edge/cloud does not offer monetary 
benefits when compared to the edge. For 20 and 40 epochs the 
edge/cloud is 3% and 8% cheaper than the edge. For large 
training instances, this difference can be monetary significant. 
For 80 epochs where the processing costs are sizeable, the 
edge/cloud is 22.4% cheaper than the edge and 5.3% cheaper 
than the cloud. For 160 epochs all jobs are served to the cloud 
since the edge is more expensive overall. Also, in this case the 
edge does not have enough resources to serve all jobs. If it had 
(requiring 2000 GPUs/node), the total cost would have been 
$20.37. In either case, the cooperation of edge/cloud can result 
in significant monetary cost savings when compared to the 
isolated operation of either the edge or cloud. 

V. CONCLUSIONS 

In this paper we considered the resource allocation 
problem for distributed machine learning applications. We 
proposed a framework to allocate resources for training ML 

jobs at the edge–cloud continuum. We examined various 
optimization parameters pertained to processing costs and 
bandwidth costs in both edge and cloud resources. The results 
indicate that the processing costs play an important role in the 
allocation of a job to the edge or to the cloud. Significant cost 
savings were observed through the cooperation of edge and 
cloud resources when compared to the exclusive use of edge 
or cloud. Future work includes the allocation of inference jobs 
along with training, the modeling of energy consumption as 
well as trade-offs between computation time and accuracy.  
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Fig. 6 Total cost to serve the jobs for number of epochs  
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