
Resource Allocation for Distributed Machine
Learning at the Edge-Cloud Continuum

Ippokratis Sartzetakis*‡, Polyzois Soumplis*‡, Panagiotis Pantazopoulos*, Konstantinos V. Katsaros*, Vasilis Sourlas*, Emmanouel
(Manos) Varvarigos*‡

*Institute of Communication and Computer Systems, Athens, Greece, ‡National Technical University of Athens, Athens, Greece
isartz@mail.ntua.gr, soumplis@mail.ntua.gr, ppantaz@iccs.gr, k.katsaros@iccs.gr, v.sourlas@iccs.gr, vmanos@mail.ntua.gr

Abstract—Edge computing has emerged as a paradigm for

local computing/processing tasks, reducing the distances over
which data transfers are made. Thus, an opportunity is
presented for data transfer-intensive, distributed machine
learning. In this paper we develop a solution for serving
distributed Machine Learning (ML) training jobs at the edge–
cloud continuum. We model the specific requirements of each
ML job, and the features of the edge and cloud resources. Next,
we develop an Integer Linear Programming algorithm to
perform the resource allocation. We examine different scenarios
(different processing and bandwidth costs) and quantify
tradeoffs related to performance and cost of edge/cloud
bandwidth and processing resources. Our simulations indicate
that even though there are many parameters that determine the
allocation, the processing costs seem to play on average the most
important role. The cloud b/w costs can be significant in certain
scenarios. Finally, in certain examined cases, significant
monetary benefits can be achieved through the collaboration of
both edge and cloud resources when compared to using
exclusively edge or cloud resources.

Keywords— cloud computing, distributed machine learning,
edge-cloud continuum, edge computing, resource allocation

I. INTRODUCTION

Mobile phones, intelligent vehicles, energy meters and
other Internet of Things (IoT) devices are improving and
spreading into many areas of society empowering new digital
services. The abundant edge devices generate enormous
amounts of data. To tackle these developments, new
computing paradigms (e.g., edge computing) arise to process
these data. As a result, an opportunity for machine learning
training arises to use the abundant processing infrastructure
created and commoditize the related analytics services.

In distributed machine learning [1][2] the training is
performed on dedicated edge or cloud resources. This means
that powerful computation resources are employed. Moreover,
the training of an ML job is divided into a number of ML tasks
that are executed in parallel in different equipment [3][4]. In
distributed ML performed over the edge-cloud continuum, an
important challenge is to allocate the most appropriate
resources to serve each ML job with a certain objective (e.g.,
minimize the monetary cost). The challenge is similar to
computation offloading [5], but presents additional
complications due to the requirements of distributed ML.
First, a decision has to be made on whether a job will be served
at the edge or at the cloud. The decision mainly depends on
the cost requirements of each job and the corresponding
parameters of the edge and cloud resources. Then the suitable
number and type of resources should be allocated according
to the needs of the ML job (e.g., amount of data, type of ML
training algorithm). The problem requires modeling of the
different contributors to the (bandwidth and processing) cost

of a job that could be different at the edge and at the cloud.
Moreover, there are different types of distributed ML
architectures depending on, e.g., the type of parallelism, the
communication architecture, and computation timing.

In this paper we investigate the resource allocation
problem for distributed machine learning applications. More
specifically, we consider a scenario where various devices are
located at the edge of the network. The devices produce data
that are used for ML training at edge or cloud resources. The
goal is to assign the required resources (processing, memory,
storage, bandwidth) for each machine learning job while
optimizing certain metrics.

The main contributions of our work are:

i) We present an resource allocation model for serving
distributed ML training jobs. We jointly take into
account both edge and cloud resources, their
computational performance, their bandwidth and
processing monetary costs. The model allows for
exploring insights on the various benefits and tradeoffs.

ii) We present an Integer Linear Programming algorithm
that solves the edge/cloud joint resource allocation
problem. The objective is to minimize the monetary cost
to serve all the ML jobs. The formulation is versatile,
and can be used to allocate resources for various variants
of distributed ML applications, training (such as model
or data parallelism, and also all-reduce or aggregation
servers). The algorithm can provide a timely solution to
large instances of the problem.

iii) We perform realistic simulations experiments to
quantify the tradeoffs between edge and cloud resources
for various b/w and processing costs of edge vs cloud.

II. RELATED WORK

Our work is mainly related to two topics: distributed ML
and computation offloading. Distributed ML is an active
research topic. There are three main taxonomies of distributed
ML [3][4] based on the: i) type of parallelism, ii)
communication architecture, iii) computation timing. Their
specific characteristics have to be taken into account to design
a robust resource allocation formulation for each case. As far
as parallelism is concerned, there is the model parallelism and
the data parallelism. In model parallelism the model is divided
into a certain number of segments that are executed in a
respective number of workers. The training is performed using
the same data in all workers. A main reason to adopt model
parallelism is memory limitations. In data parallelism, the
model is common to all workers, but the training data are
separate. Each worker computes locally its model weights and
communicates its values to the other workers to aggregate the
results and update the common model. Regarding the

2022 IEEE International Conference on Communications (ICC): Communication QoS, Reliability and Modeling
Symposium

978-1-5386-8347-7/22/$31.00 ©2022 IEEE 5107

communication architecture, a prominent variant is the
parameter (aggregation) server. In this case the workers
communicate their local computations to the server that
aggregates the workers’ weights. A different communication
architecture is all-reduce. In this case the workers directly
communicate with each other to average the model weights.
Concerning computation timing, there are two main
approaches: synchronous and asynchronous learning. In
synchronous learning, the aggregation of the workers’ model
weights is performed simultaneously. This can incur
inefficiencies, when some workers (stragglers) are performing
worse than others. In asynchronous learning the workers are
allowed to perform at their own pace. A pipelined architecture
can be considered as in [4] to improve training throughput. It
allows overlapping communication with computation time
and reduces the required communication.

Computation offloading initially referred to moving
computationally intensive tasks to the cloud where powerful
and abundant resources were available. As technology
evolved, new applications required low latency and high
bandwidth. As a result, Mobile Edge Computing or Multi-
access Edge Computing (MEC) emerged. MEC provides
significant computation and b/w efficient capabilities at the
network edge, close to the users. There is vast relevant
research related to MEC computation offloading [5][6][7].
Various works target to minimize execution delay and energy
consumption, optimize throughput-network costs, and find an
optimal collaboration between edge and cloud resources. Even
though the research on computation offloading is vast, still it
cannot directly be applied to our case study. The reason is the
specific resource allocation requirements of distributed ML
that can vary depending on the specific type of ML training
algorithm, the accuracy, time constraints, and the architecture.

A recent research topic is the intersection of distributed
ML and computation offloading, which is the topic of this
work as well. Regarding distributed ML at the edge, [8]
studied the efficient utilization of the network’s resources by
analyzing the convergence rate of distributed gradient descent.
The authors of [9] considered ML training of data from
augmented reality edge devices. The work in [10] considered
incremental offloading of a training model to edge devices.
The authors of [11] compared the performance of federated
learning to variants of edge and centralized learning. Ref. [12]
jointly considered the data collection problem and the
resource allocation to maximize the distributed ML
throughput. The work in [13] investigated offloading of IoT
deep learning applications in an edge computing environment.

To the best of our knowledge there is no previous work
that combines realistic modeling of the resource allocation
problem of distributed ML using both edge and cloud
resources and accounting for different architectures.
Moreover, an analytic comparison of various tradeoffs
between b/w and processing costs of the edge and cloud seems
to be missing from related work.

III. PROBLEM STATEMENT

A. Scenario Description

We consider various ML scenarios consisting of certain
devices (e.g., vehicles, IoT) at the edge (Fig. 1). Each scenario
could correspond to a different type of machine learning job,
e.g., image recognition, anomaly detection, etc. We assume
that there is an edge network close to the devices, and a more
distant cloud. The ML jobs are served either at the edge or at

the cloud, depending on specific requirements that will be
discussed later. If the tasks of a job are served both at the edge
and at the cloud then the large variance of the communication
time for the exchange of the model weights may significantly
impact the performance of the training algorithm. In the
following we describe use cases in a variety of IoT and in
Internet of Vehicles (IoV) environments.

In recent years IoT has spread across numerous
applications and domains. Billions of devices are connected to
the internet, gather data from their sensors and communicate
with other devices. IoT applications range from smartphones,
smart home devices and smart manufacturing in industries.
IoT devices can have several different types of sensors: image,
sound, environmental, etc. Depending on the application and
the type of the sensor, the data could be generated in high
volume and streaming fashion. According to [14], the data

produced by all the sensors of a smart city could be
approximately 8 GB/day. The data can be used in a large range
of machine learning applications: image-voice-activity
recognition, and in sectors such as smart electricity grids and
healthcare. In many of these scenarios, the continuous
learning is important in order for the model to be adaptable to
the environment and to other changes.

Automotive industry is in the dawn of a major
transformation fueled by the developments in autonomous
driving and the involvement of IT companies. IoV is a
network of “smart” vehicles that are interconnected and
exchange data to enhance traffic safety and efficiency and
provide commercial infotainment. IoV has significant
processing and communication capabilities, supported by
edge and cloud resources. Future vehicles will have a large
number of sensors (e.g., Light Detection and Ranging, sonar
and cameras) that produce enormous amount of data. Each
vehicle can generate 4 TB of data per day [15]. This amount
of data will put significant stress on the network resources.
The data of the vehicles can be leveraged in many different
distributed ML scenarios (e.g., dynamic vehicle routing to
avoid congestion, or object detection and classification).

B. Problem Formulation

In this section we will formally define the problem to
tackle the aforementioned distributed ML scenarios. The
formulation is generic in that it can be used for any of the
above scenarios and for many different distributed ML
architectures. More specifically, we consider a number of
devices that continuously produce data. Each device u
continuously produces data at a rate of 𝜆௨ samples/sec. A set
of a certain number and type of devices and their data to be
trained, form an ML training job j. The training of an ML job

Fig. 1 The abstract architecture considered

2022 IEEE International Conference on Communications (ICC): Communication QoS, Reliability and Modeling
Symposium

5108

j is divided into a set of distributed ML tasks 𝑇௝ that are
executed in respective workers. Each ML task 𝑡௝௞ is
responsible for a subset 𝑑௝௞ of the entire dataset 𝐷௝ of each job
j. A device 𝑢௝௞ is related to the kth ML task and belongs to the
set of devices 𝑈௝ of the jth job.

The time axis is divided in time periods of duration 𝑃௢ ,
which are asynchronously defined for each resource. The
devices feeding an ML job continuously upload their data to
the network’s resources that run a training ML algorithm on
batches of data. During a period, each resource performs
training by processing a batch of data, consisting of data
received at it during the previous period (i.e., until the current
period begins). Each resource continues to receive data from
the devices that will be processed at the following period. At
each time period 𝑃௢, device u produces and sends for training
𝑠௨ = 𝑃௢𝜆௨ samples. Each ML task 𝑇௝௞ has a total 𝑆௝௞ =
∑ 𝑃௢𝜆௨௨∈௎ೕೖ

 samples that it has to process within period 𝑃௢.
We assume all the ML tasks of a job will be trained within the
same time period 𝑃௢. This includes both the computation time
of the tasks and the communication of the weights (w) of the
model from the nodes where the tasks are executed to the
aggregation server(s) and back. Note that various devices may
send data asynchronously, but computations take place
synchronously at the next available time period 𝑃௢ (Fig. 2).
Let 𝑃௖௢௠௣ the total computation time required to finish the
training of a batch of data. Also let 𝑃௖௢௠௠ the required
communication time for the weights. Depending on the
architecture of the distributed ML algorithm, there could be
different relationships between 𝑃௖௢௠௠ and 𝑃௖௢௠௣ . Assuming
that the workers first complete the computations and then they
send the model weights for averaging (no pipelining, so no
overlapping of communication and computation times), then
𝑃௢ = 𝑃௖௢௠௣ + 𝑃௖௢௠௠ . Thus 𝑃௖௢௠௠ = 𝜔𝑃௖௢௠௣ , ω<1. The
actual communication overhead ω depends on parameters
such as the hardware configuration and the specific ML model
[4]. Assuming pipelining, the communication overhead can be
reduced up to 95%, and a perfect overlap of computation and
communication can be achieved [4]. Then, 𝑃 ≈ 𝑃௖௢௠௣.

In order to perform the computations, each ML task needs
certain resources. We assume that each ML task 𝑡௝௞ has
processing (GPU based), memory, storage, bandwidth and
aggregator requirements. These requirements are respectively
described by a vector of resources 𝑅௝௞(𝑍) =
[𝐺௝௞, 𝑀௝௞, 𝑉௝௞, 𝐵௝௞, 𝐴௝௞]. The size of the required resources is
proportionally dependent on the size of the samples of the task
and on the type Z of the ML task. More specifically, an ML

task has processing workload 𝐺௝௞(𝑍)𝑆௝௞ which has to be
completed within a time period 𝑃௢ . Assuming perfect
overlapping of computation and communication, the task
requires processing rate 𝐺௝௞(𝑍)𝑆௝௞ 𝑃௢⁄ . If the overlapping is
not perfect, then the processing rate increases to account for
the communication overhead. An ML task similarly requires
memory 𝑀௝௞(𝑍)𝑆௝௞ 𝑃௢⁄ and storage 𝑉௝௞(𝑍)𝑆௝௞ 𝑃௢⁄ . The
number of aggregators depend on the assumed architecture.
These values can be translated to resource units. Each resource
can be assigned in units of predetermined granularity e.g., one
unit of memory could correspond to 1GB RAM. The required
bandwidth 𝐵௝௞ can be derived as follows. Let β the number of
required bits to represent a sample. β depends on the nature of
each sample (e.g., picture, sentence, etc.). Consequently, the
required data rate for task 𝑇௝௞ is 𝐵௝௞ = 𝛽 ∑ 𝜆௨ೕೖ௨∈௎ೕೖ

.

As far as the network is concerned, we consider an edge
and a cloud network. The edge network consists of a set of
nodes N. Each node has finite resources that can be used by
the machine learning tasks. More specifically, each edge node
n has a number of 𝑅௡

ீ GPU units, 𝑅௡
ெ memory units, 𝑅௡

௏
storage units, 𝑅௡

஻ incoming b/w units to receive the data from
the devices and 𝑅௡

஺ aggregator units. The cloud network is
assumed to have infinite resources. A major difference
between the edge and the cloud are the respective processing
and bandwidth monetary costs. The cost to use the processing
units is defined as 𝐶ா

ீ at the edge and 𝐶஼
ீ at the cloud. The cost

of b/w is defined as 𝐶ா
௕௪ at the edge and 𝐶஼

௕௪ at the cloud.

C. Resource Allocation Algorithm

In this subsection we present the ILP algorithm
responsible for the allocation of the resources. The algorithm
gets certain inputs, and using some related constraints aims to
allocate the network’s resources (the variables of the
algorithm), while satisfying the objective. The formulation
assumes that there is one aggregation server. It can be
modified in a straightforward way for other architectures.
Also, we assume that a job can be either entirely served at the
edge or at the cloud. The formulation can be expanded to
allow more flexible allocation of resources. The algorithm
provides a solution for a given period 𝑃௢ . Whenever the
parameters change (e.g., a mobile dynamic scenario), the
algorithm is re-executed to provide a new solution.

Inputs:

 𝑁: Set of edge nodes, with n a specific node of the set,

 𝑅௡
ீ, 𝑅௡

ெ, 𝑅௡
௏, 𝑅௡

஻, 𝑅௡
஺ : Total number of GPU, Memory,

Storage, incoming B/w, Aggregator units at edge node n,

 J: Set of ML jobs, with j a specific job of the set,

 T: Set of ML tasks, with 𝑇௝ the set containing all tasks of
job j. The element 𝑡௝௞ is the kth task related to the jth job,

 𝐺௝௞, 𝑀௝௞, 𝑉௝௞, 𝐵௝௞ , 𝐴௝௞: Required res. units of task 𝑡௝௞,

 𝐶ா
ீ, 𝐶஼

ீ: The proc. monetary cost at the edge, cloud,

 𝐶ா
௕௪, 𝐶஼

௕௪: The b/w monetary cost at the edge, cloud.

Variables:

 𝜉௡
௝௞

, 𝜉஼
௝௞:Binary variables (equal 1) if task 𝑡௝௞ of job j uses

resource units at edge node n (𝜉௡
௝௞), or at the cloud (𝜉஼

௝௞),

 𝑒௝, 𝑐௝: Binary variables (equal 1) if job j uses edge or cloud

Fig. 2 An example of an ML job with the timings of the training

2022 IEEE International Conference on Communications (ICC): Communication QoS, Reliability and Modeling
Symposium

5109

Objective:

𝑚𝑖 𝑛

⎝

⎜
⎛

෍

⎝

⎜
⎛

෍ ෍ 𝜉௡
௝௞(𝐶ா

௕௪𝐵௝௞ + 𝐶ா
ீ𝐺௝௞)

்ೕ௡

+ ෍ 𝜉௖
௝௞(𝐶஼

௕௪𝐵௝௞ + 𝐶஼
ீ𝐺௝௞)

்ೕ ⎠

⎟
⎞

௝

⎠

⎟
⎞

 (3)

Subject to:

 Each job and all its tasks are served at the edge or cloud:

∀𝑗 ∈ 𝐽: 𝑒௝ + 𝑐௝ = 1 (4)

 For each job and each of its tasks, if it employs the edge
(𝑒௝ = 1), its tasks will be served once and in one node,
since 𝑒௝ is 1, and the tasks variables are summed:

∀𝑡௝௞ ∈ 𝑇௝ : ෍ 𝜉௡
௝௞

௡∈ே

= 𝑒௝ (5)

 If a job employs the cloud, its tasks will be served once:

∀𝑡௝௞ ∈ 𝑇௝ : 𝜉௖
௝௞

= 𝑐௝ (6)

 Each edge node should have enough (#GPUs, memory,
storage, bandwidth, aggregator) capacity to serve the
assigned tasks. So, for all nodes we sum all the resources
that a job could potentially use (𝜉௡

௝௞), and this sum should
be less than the capacity of each node:

∀𝑛 ∈ 𝑁 ∶ ෍ ෍ 𝜉௡
௝௞

𝐺௝௞

்ೕ௝

≤ 𝑅௡
ீ , ෍ ෍ 𝜉௡

௝௞
𝑀௝௞

்ೕ௝

≤ 𝑅௡
ெ

∀𝑛 ∈ 𝑁: ෍ ෍ 𝜉௡
௝௞

𝑉௝௞

்ೕ௝

≤ 𝑅௡
௏ , ෍ ෍ 𝜉௡

௝௞
𝐵௝௞

்ೕ௝

≤ 𝑅௡
஻

∀𝑛 ∈ 𝑁: ෍ 𝜉௡
௝௞

௝

≤ 𝑅௡
஺ (7)

 In Eq. 3 the objective is to minimize the total cost of
serving all ML jobs. The first part of the equation refers to the
cost of a job if it is served at an edge node n. The cost consists
of the b/w units 𝐵௝௞ of each task times the cost of edge b/w
𝐶ா

௕௪, plus the processing units 𝐺௝௞ of each task times the cost
of each processing unit 𝐶ா

ீ. The second part of the equation
refers to the cost of a job if served at the cloud. It is similar to
the calculation of the edge cost, only without the n nodes. The
ILP algorithm can serve the ML jobs with the objective to
minimize the total cost while satisfying the constraints and
requirements. In the following section we examine various
scenarios and evaluate the tradeoffs in each case.

IV. SIMULATION RESULTS

To evaluate our proposed resource allocation framework
and quantify the edge-cloud cost relationships, we performed
a number of simulation experiments. For all the parameters we
assigned values that we consider realistic. We assumed a 20-
node edge network with finite resources. The network could
correspond to the edge facilities of a megacity. For example,
in the New York metropolitan area, Google currently operates
8 edge nodes [16]. There are also several other service
providers in the area, with their own equipment. In the
immediate future further expansion of these facilities is almost
certain. Thus, an edge network of 20 nodes seems realistic.
We also assumed an abstract cloud with infinite resources.
Each edge node has 5 racks. One rack is comprised of 10

servers, and 1 server has 4 GPUs. Thus, each edge node has
200 GPUs. For each edge node we also consider a total of 25
GB RAM, 10 TB of storage, 10 Tbps incoming bandwidth and
6000 CPU physical cores for the aggregators. We assume a
total of 100 image recognition ML jobs. This number of jobs
could correspond to jobs from fleets of IoV coupled with jobs
from networks of IoTs. Each job consists of either 3, 4 or 5
ML tasks, uniformly distributed over all jobs. The sum of the
data production rate of the devices of each task (∑ 𝜆௨ೕೖ௨∈௎ೕೖ

)
is 10 samples/sec. We consider that the duration of the training
period is 𝑃௢ = 60 seconds. Note that the exact number of the
ML tasks per job, the sum of the 𝜆௨ೕೖ

and 𝑃௢ does not play an
important role to the simulation and the resulting tradeoffs.
They almost only affect the magnitude of the problem. The
size S of each sample (image) of a job is chosen from the
following set of integers: [1, 2, 3, 4, 5, 6] MBs and it is
uniformly distributed across all jobs. The training
performance 𝛱 of the GPU is 𝛱 = 566 samples/sec. The
respective cost at the cloud is $0.91/hour. The training
performance is based on [17]. The benchmarked GPU was
NVIDIA V100 corresponding to 1 GPU. The b/w cost to
transfer data to the cloud is $0.02/GB. The respective pricings
are taken from [18]. We assume that the training is fully
pipelined, i.e., the computation and communication times
fully overlap. To find the required number of GPU resources
𝐺௝௞ per task, we first multiply the duration of the training
period (𝑃௢) by the number of samples/sec of the task (𝑆௝௞) and
by the number of epochs 𝐻௝ . Then we divide by the
performance in samples/sec 𝛱 . The (rounded) result is the
number of required GPUs for the ML task. The required b/w
of each task is derived as follows. We multiply the number of
samples of a task by the size in bytes of the task. The
calculation of the required storage and memory is trivial and
does not play significant role in the allocation.

We examined a set of different parameters to evaluate the
tradeoffs between processing-b/w cost at the edge and at the
cloud. More specifically, we assumed different: i) edge vs
cloud bandwidth costs, ii) edge vs cloud processing costs, iii)
number of epochs. According to [19] the edge’s b/w costs can
be approximately 0.1 times the cloud’s. We therefore assumed
that the edge b/w cost could be [0.5, 0,25, 0.1] times the cost
to transfer the data to the cloud. Moreover, according to [20]
the edge processing costs can be approximately 1.5 times the
cloud processing costs. We therefore assumed that the
processing costs at the edge could be [1, 1.5, 2] times more
than that of the cloud. The number of epochs affects the
required processing units required to complete a training
round within the time period 𝑃௢ . The required number of
epochs can depend on factors, such as the type of the ML
algorithm, the layers of the Neural Network, the desired
accuracy, whether the training is continuous or not, and many
other parameters. According to [21], the number of epochs
required for certain benchmarks to reach the required accuracy
can vary from 5 to approximately 50 epochs. In other cases, a
larger number of epochs may be required. In our problem
statement, we assume continuous learning with different
datasets. This means that each dataset can potentially employ
low number of epochs. On a long enough timeline, the
accuracy of each ML model will converge to the required. We
assume that the number of epochs can be [1, 10, 20, 40, 80,
160]. For the simulations we used a desktop computer with a
quad-core CPU at 4 GHz with 16 GB RAM. We used Python
and Pyomo [22] to code the ILP, and IBM CPLEX to solve
the problem. The running time of the ILP algorithm for the

2022 IEEE International Conference on Communications (ICC): Communication QoS, Reliability and Modeling
Symposium

5110

aforementioned parameters, was approximately 0.7 seconds to
create the equations and 0.8 seconds to prepare the solver and
find the solution (the total number of variables was
approximately 11000). The optimality gap was always 0.00%.
For a larger instance of 60 edge nodes and 200 jobs the
running time in total was approximately 2 and 2.5 seconds
respectively (61000 variables). The ILP can provide a timely
solution even in large instances of the problem, and a heuristic
is not necessary. Future variations of the problem, can be more
computationally intensive, and a heuristic could be required.

TABLE I. SIMULATION PARAMETERS

Symbol Value Symbol Value

N 20 nodes 𝑷𝒐 60 sec

𝑹𝒏
𝑮 , 𝑹𝒏

𝑩 200 GPU, 10 Tbps S 1-6 MBs

J 100 jobs 𝛱 566 samples/sec

|𝑻𝒋| 3, 4, 5 tasks 𝑪𝑪
𝑮 $0.91/hour

∑ 𝝀𝒖𝒋𝒌𝒖∈𝑼𝒋𝒌 10 samples/sec 𝑪𝑪
𝒃𝒘 $0.02/GB

A. Edge vs Cloud allocation decisions

In Fig. 3 we show the number of jobs allocated at the cloud
as a function of the number of epochs and for different
edge/cloud processing and b/w costs. For simplicity reasons
we do not depict the allocation of the remaining jobs at the
edge. In Fig. 3a the processing costs of edge and cloud are
equal. For all the b/w edge/cloud cost ratios, the number of
jobs allocated to the cloud is the same. When the number of
epochs is small, all jobs are served at the edge, since the b/w
costs are lower. Only after 160 epochs are some jobs served at
the cloud. The increased number of epochs means that the total
processing cost of a job play a more important role than the
b/w cost to the allocation of the jobs. Note that as we will see
in Fig. 4, the cloud serves smaller (in terms of Mbytes) jobs.
In Figs. 3b, 3c the edge processing costs are more expensive

than the cloud’s. In Fig. 3b we notice that the allocation of jobs
tips towards the cloud relatively quickly. The different b/w
costs seem to play a role for the allocation of the jobs after 20
epochs. Until then all jobs are always served at the edge. In
Fig. 3c more jobs are served at the cloud. At 160 epochs all
jobs all always served at the cloud. Even though the edge
processing costs are twice the cloud’s, the edge is still more
preferable until 40 epochs. Overall, from Fig. 3 we can
conclude that the edge is more preferable to serve jobs with
relatively low processing requirements. Also the different b/w
cost ratios play a relatively small role in the allocation.

Fig. 4 depicts the mean size in GBs for 40 epochs of a job’s
task that is served at either the edge or cloud when the edge’s
processing costs are twice than the cloud’s. Similar
conclusions can be drawn for different epochs and processing
costs (as long as some jobs are served at the edge and others
at the cloud). The size of a task depends on the number of
samples/sec 𝜆௨ of its related devices, the duration of 𝑃௢ , and
the size of each sample of a task. The first two variables are
the same for all the jobs we considered. Thus, the
differentiating factor is the size of a task’s sample. Note also
that we have assumed a random number of tasks per job. This
means that the definite size of a job depends also on the exact
number of the tasks. However, this does not significantly
affect the decision on the allocated location of a job. The
increased number of tasks not only means more data to
transfer (hence increased b/w costs), but also means more
samples to calculate (hence analogous increase on the
processing requirements). Since we have assumed that the
performance of a GPU in samples/sec is constant regardless of
the size of a sample, the differentiating factor in whether a job
will be served at the edge or at the cloud is the size of its tasks’
samples. We notice that the edge tends to serve tasks with
large size. It seems that in order for a task to be served at the

Fig. 4 Mean size of a job allocated in edge or cloud for 40 epochs

and for different cost ratios of edge to cloud b/w

0
20
40
60
80

100
120
140
160
180
200

0.5 0.25 0.1

si
ze

 in
 G

B
s

Ratio of cost of edge to cloud bw

Mean size of a job

edge

cloud

Fig. 5 Total cost of jobs decomposed to edge b/w, edge processing,

cloud b/w, cloud processing costs

0

2

4

6

8

10

12

14

16

1 10 20 40 80 160

C
os

t i
n

$

Number of epochs

Decomposed total cost

edge b/w

edge proc.

cloud b/w

cloud proc.

 a b c

Fig. 3 Number of jobs allocated at the cloud for different b/w costs and ratios of edge to cloud processing costs: (a) 1, (b) 1.5, (c) 2

0

5

10

15

20

25

1 10 20 40 80 160

N
um

be
r

of
 jo

bs

Number of epochs

Number of jobs allocated at the cloud
by ratios of edge to cloud b/w cost

0.5

0.25

0.1

0

20

40

60

80

100

120

1 10 20 40 80 160

N
um

be
r

of
 jo

bs

Number of epochs

Number of jobs allocated at the cloud
by ratios of edge to cloud b/w cost

0.5

0.25

0.1

0

20

40

60

80

100

120

1 10 20 40 80 160

N
um

be
r

of
 j

ob
s

Number of epochs

Number of jobs allocated at the cloud
by ratios of edge to cloud b/w cost

0.5

0.25

0.1

2022 IEEE International Conference on Communications (ICC): Communication QoS, Reliability and Modeling
Symposium

5111

cloud, it has to be significantly smaller than the tasks that are
typically served at the edge. As the b/w cost decrease, the size
of the jobs served to the cloud decreases respectively by 34%.
The trends are similar for different edge processing costs (not
shown here due to limited space). Also, when the number of
epochs increase, the contribution of the processing costs due
to the additional epochs is increased. Therefore, a job has to
be larger to be served at the edge. Note that we considered an
image recognition training scenario. Thus, each sample is
relatively large. In different applications (e.g., ML translation)
the size of the samples can be smaller. This means less b/w
required, thus different job distribution at the edge and cloud.

B. Monetary cost evaluation

Fig. 5 shows the total cost to serve all jobs for one training
round, decomposed to edge and cloud b/w and processing
costs and for different number of epochs. Here we assumed an
edge to cloud b/w cost ratio of 0.1, and edge to cloud
processing costs of 2. Apart from the case of 1 epoch, the main
contributor to the costs is processing costs. As the number of
epochs increases, edge (and later cloud) processing costs play
the most important role to the total cost of the jobs. For 160
epochs all jobs are served at the cloud. Overall, we notice that
the cloud b/w costs are a considerable fraction (approximately
44% for 40 and 80 epochs) of the overall cloud costs. Thus, in
lower number of epochs the edge is more preferable.

In Fig. 6 we present the total cost to serve all jobs to the
edge/cloud for the same parameters as Fig. 5. We compare to
the cost in case we had only cloud or only edge resources
available. We notice that for low number of epochs the cloud
is overall much more expensive than the edge, and therefore
the cooperation of edge/cloud does not offer monetary
benefits when compared to the edge. For 20 and 40 epochs the
edge/cloud is 3% and 8% cheaper than the edge. For large
training instances, this difference can be monetary significant.
For 80 epochs where the processing costs are sizeable, the
edge/cloud is 22.4% cheaper than the edge and 5.3% cheaper
than the cloud. For 160 epochs all jobs are served to the cloud
since the edge is more expensive overall. Also, in this case the
edge does not have enough resources to serve all jobs. If it had
(requiring 2000 GPUs/node), the total cost would have been
$20.37. In either case, the cooperation of edge/cloud can result
in significant monetary cost savings when compared to the
isolated operation of either the edge or cloud.

V. CONCLUSIONS

In this paper we considered the resource allocation
problem for distributed machine learning applications. We
proposed a framework to allocate resources for training ML

jobs at the edge–cloud continuum. We examined various
optimization parameters pertained to processing costs and
bandwidth costs in both edge and cloud resources. The results
indicate that the processing costs play an important role in the
allocation of a job to the edge or to the cloud. Significant cost
savings were observed through the cooperation of edge and
cloud resources when compared to the exclusive use of edge
or cloud. Future work includes the allocation of inference jobs
along with training, the modeling of energy consumption as
well as trade-offs between computation time and accuracy.

ACKNOWLEDGMENT

This work was partially supported by the Horizon 2020 5G-
IANA project (grant agreement: 101016427), and the Horizon 2020
SERRANO project (grant agreement: 101017168).

REFERENCES
[1] Trishul Chilimbi, et. al., “Project adam: Building an efficient and

scalable deep learning training system,” USENIX 2014.

[2] Mu Li, et. al., “Scaling Distributed Machine Learning with the
Parameter Server,” USENIX 2014.

[3] M. Langer, et. al., “Distributed Training of Deep Learning Models: A
Taxonomic Perspective,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 12, 2802-2818, 2020.

[4] A. Harlap, et. al., “PipeDream: Fast and Efficient Pipeline Parallel
DNN Training,” arXiv:1806.03377v1, 2018.

[5] P. Mach, and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Comm. Surveys &
Tutorials, 19(3), 1628-1656, 2017.

[6] Y. Mao, et. al., “A survey on mobile edge computing: The
communication perspective,” IEEE Comm. Surveys & Tutorials,
19(4), 2322-2358, 2017.

[7] F. Saeik, et. al., “Task offloading in Edge and Cloud Computing: A
survey on mathematical, artificial intelligence and control theory
solutions,” Computer Networks, 195, 2021.

[8] S. Wang, et. al., “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” INFOCOM 2018.

[9] X. Ran, et. al., “DeepDecision: A mobile deep learning framework for
edge video analytics,” INFOCOM 2018.

[10] H.-J. Jeong, et. al., “IONN: Incremental offloading of neural network
computations from mobile devices to edge servers,” SoCC 2018.

[11] G. Drainakis, et. al., “On the Distribution of ML Workloads to the
Network Edge and Beyond”, INFOCOM 2021.

[12] M. Chen, et. al., “Joint Data Collection and Resource Allocation for
Distributed Machine Learning at the Edge,” IEEE Transactions on
Mobile Computing 2020.

[13] H. Li, K. Ota, M. Dong, “Learning IoT in Edge: Deep Learning for the
Internet of Things with Edge Computing,” IEEE network 32.1, 2018.

[14] A. Sinaeepourfard, et. al., “Estimating Smart City sensors data
generation,” In IEEE Med-Hoc-Net, 2016.

[15] J. Zhang, L. Khaled, “Mobile edge intelligence and computing for the
internet of vehicles,” Proceedings of the IEEE 108.2, 2019.

[16] “Mapping out edge computing: How dense is it?,” available online:
https://www.lightreading.com/the-edge/mapping-out-edge-
computing-how-dense-is-it/d/d-id/771128

[17] “Nvidia resnext performance,” available online:
https://ngc.nvidia.com/catalog/resources/nvidia:resnext_for_tensorflo
w/performance

[18] “Amazon ec2 pricing,” available online:
https://aws.amazon.com/ec2/instance-types/p3/

[19] “Edge computing and transmission costs,” available online:
https://www.datacenterdynamics.com/en/opinions/edge-computing-
and-transmission-costs/

[20] “The economics of edge computing,” available online:
https://edgecomputing-news.com/2020/10/29/analysis-economics-of-
edge-computing

[21] P. Mattson, et al., “MLPerf Training Benchmark,” ArXiv
abs/1910.01500 (2020).

[22] W. Hart, et. al.,“Pyomo–Optimization Modeling in Python,” Springer,
2017.

Fig. 6 Total cost to serve the jobs for number of epochs

0

2

4

6

8

10

12

14

16

1 10 20 40 80 160

C
os

t i
n

$

Number of epochs

Total cost to serve all jobs

edge and
cloud

only edge

only cloud

2022 IEEE International Conference on Communications (ICC): Communication QoS, Reliability and Modeling
Symposium

5112

