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Abstract—High penetration of Renewable Energy Sources in
modern smart grids necessitates the development of Demand
Response (DR) mechanisms as well as corresponding innovative
services for the emerging flexibility markets. From a game-
theoretic perspective, the key requirements for a DR mechanism
are: efficiency in terms of social welfare, practical applicability,
scalability, privacy and incentive compatibility, in the sense of
making it a dominant strategy for each user to act truthfully
according to his/her real preferences, leaving no room for
cheating. Previous works typically address only a subgroup of
these requirements. In this paper, we propose a DR architecture,
including a mechanism based on Ausubel’s clinching auction
and a communication protocol, that provably guarantee both
efficiency and truthful user participation. Practicality/easiness of
participation is enhanced via simple queries, while scalability
and user privacy are preserved via a distributed implementation.
Simulation results confirm the desired properties, while also
showing that the truthfulness property becomes even more
important in markets where participants are not particularly
flexible.

Index Terms—Demand Response, Auction, Flexibility, Mecha-
nism Design, Blockchain, Incentive Compatibility, Game Theory

NOMENCLATURE

Setting
N Set of participating users
n Number of participating users
i Index of user
T Set of timeslots
m Number of timeslots in the horizon
t Index of timeslot

Flexibility Service Provider
L Aggregated consumption of all users
D Reduction of aggregated consumption
a, b Parameters of the FSP’s reward function
λ Per unit price for consumption reduction

User
q Consumption reduction
q̃ Optimal consumption reduction
ω Inelasticity parameter
G. Tsaousoglou, K. Steriotis, N. Efthymiopoulos, P. Makris, E. Varvarigos

are with the Institute of Communication and Computer Systems, National
Technical University of Athens (ICCS/NTUA).

The work presented in this paper received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No. 863876 in the context of the FLEXGRID project.

Modified Clinching Auction

k, ξ Indexes of iteration
ε Price step
ζ Clinching (allocation) of consumption reduction for a user

Appliance models

p Power consumption
pmax Power consumption upper limit
T Temperature
η, θ Parameters of temperature dynamics
γ EV arrival timeslot (plug-in time)
E Energy required by an EV
δ Minimum charging duration of an EV

I. INTRODUCTION

IN modern smart grids, the need to dynamically balance
supply and demand, has brought a great deal of attention

to the idea of Demand Response (DR). When there is a
need for reducing energy consumption in real-time, an ad-hoc
market is created where the operator offers to buy consumption
reduction from the users. An intermediate entity is assumed,
with the task to clear the ad-hoc flexibility market. We
refer to this entity as the Flexibility Service Provider (FSP).
Each user (consumer) is equipped with a smart meter that
measures his/her consumption at all times. However, the users’
local functions (related to their flexibility/comfort levels and
consumption habits) are private to each user. This makes the
task of the FSP quite challenging, especially when we consider
users who act strategically and may misinterpret their local
function if that makes them better-off.

In real-time DR, expecting the user to manually control
his/her appliances and bids in real-time is not realistic. Rather,
an intelligent agent sites on each user’s side that controls
the user’s DR actions and makes the user’s optimal bidding
decisions while respecting the user’s energy needs. Several
studies have leveraged methods from Artificial Intelligence
and proposed learning algorithms for optimizing the decisions
of such an energy management agent (e.g. [1]). However,
strategic agent behavior can compromise the efficiency of the
DR mechanism. In order to protect the system’s efficiency, a
mechanism needs to be not only optimal, but also incentive
compatible / truthful. This requirement is widely overlooked
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in the DR literature. In the few cases where truthfulness is ad-
dressed, it comes with a sacrifice of practical implementation
ability and user privacy.

In Mechanism Design terms, a mechanism is Dominant
Strategy Incentive Compatible (DSIC) (or, equivalently, sat-
isfies the truthfulness property) when it is at each user’s
best interest to truthfully implement his/her true preferences,
regardless of what other users do (see section 10.2.2 of [2] for
a more detailed analysis). In the vast majority of the DR litera-
ture users are typically modeled to myopically best-respond at
each iteration of the pricing mechanism, i.e., they decide upon
their preferred consumption upon receiving a price signal.
As analyzed in [3], such myopic “local rationality” does not
necessarily imply “global rationality”, i.e., given an iterative
mechanism, it is not always to the user’s best interest to
repeatedly best-respond. Rather, a user might be better-off by
submitting false bids through the process, and such strategic
behavior may compromise the mechanism’s efficiency [4]. In
other words, mechanisms that are not incentive compatible,
are no longer optimal when strategic players are involved.

In this paper we also address this requirement, defined as
the capability of the mechanism to provoke strategic users
to act truthfully in accordance to their preferences, which is
overlooked in most of the DR literature. Moreover, we do
so via an indirect and practical mechanism, which allows for
distributed, scalable and privacy-preserving implementation, in
contrast to the few studies that consider incentive guarantees.

II. RELATED WORK

In the DR literature, the end user is typically modeled
as a selfish player who participates in the mechanism with
the purpose of maximizing his/her own payoff. The user’s
preferences are widely modeled as a convex function (e.g.
[5], [6], [7]). In [8] the electricity bill is minimized while the
user’s satisfaction is maintained above a defined threshold. In
[9], a similar framework was built for deciding the charging
times of EVs under forecasted prices. In [10], a spread is
applied to the real-time prices in order to penalize deviations
from a predefined schedule. In these studies, the bill of a user
depends only on his/her own actions and it is disengaged from
the actions of others. Thus, the users’ DR actions might not
be well coordinated.

In [11], the authors assume that consumers voluntarily
provide their consumption preferences to a central entity,
which optimizes the social welfare. Similarly, in [12], users
estimate their energy needs and report them to an aggregator.
In [13], a set of users enter into a direct-load-control contract
with a load serving entity, responsible to satisfy a DR event.
However, in [11]- [13], users were assumed to honestly reveal
their consumption preferences.

In contrast to the studies presented so far, [5] and [6],
considered users that do not reveal their local preferences, and
the FSP controls their consumption indirectly by iteratively
updating prices and observing the aggregated consumption.
The authors use a dual decomposition method to discover
the optimal prices. A scalable approach is proposed in [14],
where smoothing techniques facilitate fast convergence. In

[15], the aggregator is modeled as a profit-maximizing entity
and a simulated annealing algorithm was adopted for the
price optimization problem. The authors in [16] configure the
pricing scheme with a forecast component. In [17], the authors
consider two simple billing rules and prove that best-response
dynamics converges to Nash Equilibrium. In [18] and [19],
pricing schemes are deployed with the objective of maximizing
the fairness of the consumption allocation. In [20], the effect
of the FSP’s profit policy on the DR outcome was examined.
However, in the studies of this paragraph, users are assumed
to truthfully best-respond to each price query, and thus they
don’t compromise the algorithm’s properties.

In mechanism design terms, the above mechanisms are
not incentive compatible, because a strategic user can benefit
by manipulating his/her responses. Note that the optimality
guarantees of the above studies, would no longer hold in
the case of strategic users. When considering strategic users
the mechanism designer is confronted with a trade-off: the
Vickrey-Clarke-Groves (VCG) mechanism is the unique wel-
fare maximizing mechanism implemented in dominant (and
not best-response) strategies [21], meaning that either a VCG
approach is taken (like in [22], [23]) or welfare maximization
is compromised (like in [24], [25], [26], [27]).

The main problem with the direct-revelation VCG ap-
proaches [22], [23] is that they require users to reveal their
whole set of preferences to the FSP, while the latter makes all
the calculations and decides the allocation and the rewards.
This is clearly impractical, since real users cannot com-
pactly express their preferences in closed-form mathematical
functions and even when they can, they are not happy to
compromise their privacy. These issues were also reported in
[28] and [29], where the authors proposed that the available
actions for each user were restricted to a predefined set in
order to simplify the message space. However, the authors in
[28] do not model the effect of the user’s actions on the price
(similarly to [8], [9], [10]) and the authors in [29] consider EV-
charging users who are only interested in the overall energy
consumption over the horizon (which is not suitable for other
loads and neither for en-route charging EVs). Naturally, these
kinds of approximations result in loss of efficiency.

In this paper, we opt for a VCG-like approach, so as
to achieve social welfare maximization, but we omit the
direct-revelation approach of the typical VCG mechanism.
Instead, we design an iterative auction mechanism based on
Ausubel’s clinching auction, in which users are only required
to make decisions regarding their consumption in the presence
of price signals. The convergence of the proposed method
can be dramatically accelerated, with a minimal loss of ef-
ficiency for which we also prove a theoretical upper bound.
By adopting this approach, we are guaranteed the efficient
and incentive-compatible VCG outcome but also allow for a
scalable, distributed implementation and a privacy-preserving
communication protocol.

A distinct family of studies has elaborated on how the
consumption measurements of an individual user can be
masked in order to protect the user’s privacy (e.g. [31]). In
[30] a distributed authentication method is proposed, while
[32] exploits hash functions in order to serve secure data
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transmission. Furthermore, [33] evolves load hiding techniques
and [34] proposes obfuscation technologies towards data pri-
vacy. In [35] and [36], the authors propose privacy-preserving
data aggregation methods with minimum overhead, while [37]
also accounts for the case of a malicious FSP. Finally, [38]
exploits adaptive key evolution, while [39] and [40] focus
on the consensus problem towards reliable communication in
fully distributed systems.

However, the studies of this family do not contribute to the
design of the pricing scheme per se and assume that prices only
depend on the aggregated consumption. This class of pricing
rules can result in an optimal allocation under assumptions
but it is not incentive compatible. The iterative mechanism
proposed in this paper, can be implemented in configuration
with a self-organized architecture that ensures privacy while
in the same time is able to exploit the aforementioned systems
in order to further enhance its level of security (in contrast to
the direct VCG mechanism).

Summarizing the above, our proposed DR architecture: i) is
suitable for a distributed implementation (unlike [22], [23]), ii)
achieves the VCG outcome and does not sacrifice efficiency
(unlike [24] - [27]), and iii) is incentive compatible (unlike
[5], [6], [8]- [20] and [30]- [40]). In Table I, we present the
four relevant requirements for a DR scheme and compare the
proposed scheme to the state of the art.

TABLE I: Classification of literature based on requirements

Optimal Truthful Scalable Privacy-aware
[11] - [13] 4 5 5 5

[18]- [20], [27] 5 5 4 5
[5], [6], [14]- [17] 4 5 4 5

[22] 4 4 5 5
[26], [28], [29] 5 4 4 5

[30] - [40] 4 5 4 4
This work 4 4 4 4

III. SYSTEM MODEL

We consider a flexibility market comprised of an FSP and
a set N , {1, 2, . . . , n} of n self-interested consumers,
hereinafter referred to as users. We also consider a discrete
representation of time, where continuous time is divided into
timeslots t ∈ T of equal durations s, where set T ,
{1, 2, . . . ,m} represents the scheduling horizon. Each user
possesses a number of controllable appliances, with each
appliance bearing an energy demand. If the consumptions of
different appliances are decoupled (independent of each other)
the appliances can participate in the DR mechanism virtually
as different users. Thus, we can consider one appliance per
user for ease of presentation.

A. User’s consumption and utility

The energy consumption of each user is measurable in real-
time and can be shed upon request, in exchange for monetary
compensation. Such a request for consumption modification is
called a DR-event. In this paper we cope with real-time DR.
Thus, the baseline consumption measurement is taken before
the DR call, so the user cannot manipulate it since he/she does
not know when a DR-event is going to occur.

Flexibility Service
Provider

Aggregated Consumption 
Reduction

System Operator

Reward

DR-event

Control

per-unit reward

consumption reduction

User 
(agent)

Flexible Smart 
Appliance

Fig. 1: System Architecture

The FSP takes on the task of providing the requested service
by calling a DR-event among the users of its portfolio, which
may include a micro-grid, or a local energy community [41],
[42]. Upon a DR-event in timeslot t, the FSP offers a per-unit
reward to the users for consumption reduction. User i can
respond by reducing his/her consumption by a quantity qti ,
assumed to be positive (qti > 0), without loss of generality.
The decisions for q can be taken by an intelligent agent
(on behalf of the actual user and according to the user’s
preferences) in order to disengage the actual user from real-
time participation. The system’s architecture is depicted in
Fig. 1. The consumption reduction qti is characterized by its
feasible set Qi (defined by a set of constraints on qti ) and the
discomfort function di(qti) of user i. The discomfort function is
private to each user and expresses the minimum compensation
in monetary units that a user requires, in order to reduce
his/her consumption by the corresponding amount. We make
the following assumptions on the form of function di(qti):

Assumption 1. Zero consumption reduction, brings zero dis-
comfort to the user:

di(0) = 0

Assumption 2. The discomfort function is convex, so that
additional increase of qti brings increasing discomfort to the
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user:

qiA
t > qiB

t ⇔ di(qiA
t + ε)− di(qiBt + ε)

> di(qiA
t)− di(qiBt),∀ε, qiAt, qiBt > 0.

Detailed example appliance models (including operational
constraints) are described in Section VII. The theoretical
results to be presented in the following sections are valid for
any user model that satisfies the assumptions above. A user’s
utility is defined as the difference between his/her discomfort
and the reward reward ri(qti) he/she receives:

Ui =
∑

t∈T

(
ri(q

t
i)− di(qti)

)
(1)

In order to offer the rewards ri(qti), the FSP draws on the
reward offered by the operator requesting the reduction, as
described in the following subsection.

B. DR-event and the FSP

Let Lt denote the aggregated consumption of all users in
N , as seen by the operator, within a certain time interval t.
The energy cost is modeled as a quadratic function of Lt, (like
in [5] - [7], [14], [17], [22]):

C(Lt) = c1 · Lt + c2 · (Lt)2

Upon a DR-event at t, let Dt denote the reduction from
baseline consumption LtB to consumption LtB − Dt. The
respective cost reduction is:

C(LtB)− C(LtB −Dt) =

c1 · LtB + c2 · (LtB)2 − c1 · (LtB −Dt)− c2 · (LtB −Dt)2

which reads:

C(LtB)− C(LtB −Dt) = (c1 + 2 · c2 · LtB) ·Dt − c2 · (Dt)2

We set a = c1 + 2 · c2 · LtB and b = c2. The cost benefit
C(LtB)−C(LtB−Dt) is denoted as a reward function R(Dt):

Rt(Dt) = a ·Dt − b · (Dt)2, Dt ∈ [0, LtB ], (2)

where a,b are positive parameters with a > 2bLtB so that
it is an increasing function in the range of permitted values.
The proposed DR architecture is open to any other choice of
Rt(Dt), provided it is an increasing and concave function.
Thus, we assume that upon a DR-event, the operator offers a
marginal per-unit reward for a reduction of Dt units:

µ =
d(Rt(Dt))

d(Dt)
(3)

IV. PROBLEM FORMULATION

We would like to facilitate the allocation of consumption
reduction among users so as to maximize social welfare. Social
welfare is defined as the difference between the revenues
Rt(Dt) that the FSP receives from the operator, as defined
in Eq. (2), and the sum of the discomforts caused to its users.
This problem is formulated as:

maximize
qti∈Qi,i∈N

{
Rt(Dt)−

∑
i∈N

di(q
t
i)
}

(4)

subject to Dt =
∑

i∈N
qti . (5)

Problem (4) is a convex optimization problem and could be
solved efficiently if the local functions di(q

t
i) were known

(or truthfully disclosed). However, di(qti) of each user is not
known and thus, problem (4) is typically solved via dual
decomposition in the DR literature. In this approach, the
FSP iteratively increases a per-unit reward λ asking the users
their consumption reduction qti(λ) at each per-unit reward λ
(auction query). At each iteration, each user i responds with
his/her preferred qti(λ). A truthful (locally optimal) response
by user i, denoted as q̃ti(λ), is the one that maximizes i’s
utility for reward λ. This is mathematically formulated as the
solution to maximization problem (6):

q̃ti(λ) = argmaxqti∈Qi,i∈N {λ · q
t
i − di(qti)} (6)

Clearly, q̃ti(λ) is non-decreasing in λ, since qti > 0.
The auction terminates when λ reaches a value for which∑
i∈N q

t
i(λ) = Dt(λ). The final price is called the market-

clearing price and is denoted by λmc. The allocation at λmc
is efficient if the users truthfully report their qti at each query.
However, truthful report may not be the best strategy for every
user. To illustrate this, we present the following example:

Illustrative Example
Consider two users and a given timeslot t. User 1 operates

a load of 10 kW while user 2 operates a 50 kW load. Their
discomfort function is di(qti) = ωi · (qti)2, i ∈ {1, 2}, where
their true flexibility parameters are ω1 = ω2 = 0.1. The reward
function is Rt(Dt) = 5 · (Dt). Should they act according to
their true discomfort function parameters, their utilities (given
by Eq. 1) at equilibrium would be U1 = U2 = 4.875. In case
User 2 acts untruthfully according to ωfake2 = 0.2, his/her
utility at equilibrium will be U2 = 7. Therefore, the best
strategy for User 2 is to be untruthful. �

The previous example demonstrates how the market-clearing
approach builds on the assumption that users behave myopi-
cally, by truthfully solving (6) at each iteration. The problem
is that if we relax the truthfulness assumption and consider
strategic users, market-clearing methods no longer result in
efficient allocations. Thus, it is very important to design
a mechanism that is not only efficient but also incentive
compatible.

The Vickrey-Clarke-Groves (VCG) mechanism is the
unique mechanism that is simultaneously truthful and efficient
[21]. The VCG payment rule is the so called “Clarke pivot
rule”, which rewards each user i with an amount equal to the
difference that i’s presence makes in the welfare of other users.
In the direct VCG mechanism, users are asked to declare their
local functions di(qti) to the FSP (like in [22]). Because of
the Clarke pivot rule, it is a dominant strategy for each user
to make a truthful declaration [43]. In order to calculate the
VCG rewards, problem 4 is solved |N |+1 times (one time with
each user in N absent to calculate the payments, plus one time
with all users present to calculate the allocation). The major
drawback of the direct VCG mechanism is the requirement that
the users disclose their discomfort functions di(qti) to the FSP.
This raises important issues such as privacy and difficulty of
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implementation. In the next section, we propose a modification
of Ausubel’s Clinching auction [44], allowing for a distributed
implementation of VCG, designed to tackle these issues.

V. AUSUBEL’S CLINCHING AUCTION FOR DR-EVENT
PARTICIPATION

The Clinching Auction (CA) is a well-known ascending
price auction that halts when demand equals supply. However,
in contrast to most auctions, allocation and rewards are not
cleared exclusively at the final iteration. Rather, the goods
(consumption reduction in our context) are progressively al-
located as the auction proceeds and payments are also pro-
gressively built, while the auction design guarantees that the
final allocation and payments coincide with the ones obtained
through VCG. Thus, both allocation efficiency and incentive
compatibility are achieved, while the aforementioned privacy
and implementation drawbacks of the direct-VCG mechanism
are effectively addressed.

In order for the CA to work in our setting, first we need
to reverse the price trajectory. In the proposed Modified
Clinching Auction (MCA), the FSP begins with a per-unit
reward λ = λmax and in each iteration k the price λk is
reduced by a small positive number ε. The size of ε adjusts
the discretization level of MCA. By Eq. 3, reward λmax
is d(Rt(0))

d(∆Lt) = a, which, as analyzed in Section III, is the
highest value possible given that Rt is concave. Users respond
by bidding their preferred reduction q̃ti(λ) for each λ. We
represent the user’s response at λ as the solution to the user
utility maximization problem (which is formally defined in Eq.
6 of the previous section).

The user’s objective function is concave in qti , since λ · qti
is linearly increasing and di(qti) is convex by Assumption 2.
Also, the solution q̃ti is increasing in λ, which means that the
user’s response q̃ti gradually decreases as λ decreases. For the
MCA, we relax constraint (5) to the inequality:

Dt >
∑

i∈N
qti (7)

Consider an arbitrary iteration k of the MCA and let Dt(λk)
denote the operator’s desired reduction for per-unit reward λk.
The central idea of the MCA is the following: if there is a set
N j ⊂ N for which we have

Dt(λk)−
∑

j∈N j
q̃tj(λ

k) > 0 (8)

then we allocate a reduction equal to ζki = Dt(λk) −∑
j∈N j q̃tj(λ

k) to each user i /∈ N j at a per-unit reward
λk. We then say that user i “clinched” ζki units. The MCA
auction terminates when set N j that satisfies condition (8)
and set N , are equal, that is, constraint (7) is satisfied. After
that, it allocates the remaining Dt(λ(k−1)) proportionally to
the users that bid in the second-to-last iteration. Algorithm 1
below, describes the proposed MCA.

We are now in a position to prove the optimality of MCA
in terms of social welfare performance:

Theorem 1. The social welfare loss at the final allocation of
MCA is within ε2+λmax·ε

2b of the maximum possible.

Algorithm 1 MCA : Modified Clinching Auction

1: Initialize λ0 = λmax, q
t
i(λmax), Dt(λmax), k = 0

2: while Dt(λk) <
∑
i∈N q̃

t
i(λ

k) do
3: if there exists N j :

∑
j∈N j q̃tj(λ

k) < Dt(λk) then
4: clinch units ζki = Dt(λk) −

∑
j∈N j q̃tj(λ

k) for all
i /∈ N j at per-unit reward λk

5: else
6: set λ(k+1) = λk − ε and k = k + 1
7: ask each user a reduction query for λk and collect

the responses qti(λ
k)

8: ask the operator for the desired total reduction
Dt(λk) at per-unit reward λk

9: end if
10: end while
11: Clinch units ζki =

(
qti(λ

k−1)−
∑k−1
ξ=0 ζ

ξ
i

)
· Dt(λk−1)∑

i∈N q
t
i(λk−1)

at per-unit reward λk−1, for each i ∈ N

Proof. The Proof is given in Appendix A.

Since we cope with a real-time application, the trade-off be-
tween the mechanism’s optimality and its computational time
is of special importance. The latter directly relates to the price-
step ε, which means that Theorem 1 gives a quantification of
the trade-off described. In practice, for the relevant use cases
of price-anticipating users (described in the introduction), the
computational complexity of the MCA is small, which allows
for a very small choice of ε. To emphasize this, it is useful to
state the following corollary to Theorem 1.

Corollary 1. for ε << 1, the welfare loss grows linearly with
ε.

Because the MCA includes a price-sensitive response also
at the operator’s side, we have to verify that the properties of
efficiency and incentive compatibility still hold. This is proved
in the following Propositions.

Proposition 1. Truthful bidding is a dominant strategy in
MCA.

Proof. The proof is given in Appendix B.

Furthermore, the following properties of the VCG mecha-
nism hold also for the MCA:

Proposition 2. MCA is individually rational, weakly budget-
balanced, and achieves the maximum revenue for the FSP
among all efficient and individually rational mechanisms.

Proof. The proof is given in Appendix C.

VI. PRIVACY-PRESERVING DISTRIBUTED
IMPLEMENTATION

In the MCA auction users are only required to respond
to a specific sequence of queries, instead of communicating
their discomfort function. Thus, each participant solves an
optimization problem in parallel, while the mechanism still
achieves the VCG outcome (and its nice properties). This
allows the exploitation of blockchain services towards a DR
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architecture which is not only efficient and truthful but also
privacy-aware. In this section, we demonstrate how exactly
the proposed optimal and incentive compatible mechanism
can be configured with a scalable and privacy-preserving
communication protocol that instantiates blockchain services.
For this purpose, we exploit [45].

The proposed DR architecture exploits blockchain services
[46], which are based on Distributed Hash Tables (DHT)
[47] technologies, in order to execute MCA in a distributed
fashion. In this context, users do not inform the FSP about
their answers to the MCA’s queries. Instead, the necessary
aggregations are realized via a DHT, which is based on the
scheme proposed by Kademlia [45]. Each user (node) is
identified by a number (nodeID) that can be seen as a point
in a specific virtual space. The nodeIDs do not serve only as
identification, but they are also used for answering data base
queries. Each piece of information is given as input to a hash
function whose output belongs to the virtual space. Each node
is responsible for a sub space of this virtual space according
to its nodeID. Furthermore, participating nodes create and
dynamically maintain routing tables in a bottom-up and self-
organized way. Thus, they can collectively reach any point of
this virtual space, by exploiting their routing tables, in order to
store and get information. The distributed execution of MCA
(DE-MCA) takes place through the following processes (see
Algorithm 1 for the centralized version):

Process A - Data insertion: Each node i stores its bid q̃ti(λ
k)

in another random node w through the use of the DHT system
[47]. In more detail, i hashes its id and stores q̃ti(λ

k) and k in
node w which is responsible for this id, based on the Kademlia
architecture. It is highlighted that w is different for each i and
k, as it is derived from the output of the hash function that
Kademlia uses. This means that the set of nodes which are
responsible for a specific data set is not determined from the
data set owners. Thus, collusion of a relatively small number
of malicious users to compromise privacy will fail.

Process B - Calculation of sums: The MCA algorithm
requires the calculation of n+1 different sums at each iteration
k. These are the n sums noted as

∑
j∈N j q̃tj(λ

k) (one for each
user absent) and the sum

∑
i∈N q̃

t
i(λ

k) of all user bids (see
Algorithm 1). The proposed system exploits a tree structure
and develops a distributed algorithm in order to calculate these
sums. To do so, each node w that participates in the calculation
requests from the subset of nodes in its routing tables, that
dispose lower nodeID from it, to inform w on possible data
values which they dispose in order to send them to w. The
term “possible data values”refers to the aggregation of bids
(up to w) for iteration k of MCA that is executed at that
time instance. This process continues recursively until node
MAX , which is the node with the highest id acquires the
desirable data and calculates the sum

∑
i∈N q̃

t
i(λ

k). At this
point, this node also requests and receives Dt(λk) and checks
the termination condition of MCA. If the termination condition
doesn’t hold, MAX proceeds by broadcasting

∑
i∈N q̃

t
i(λ

k)
and Dt(λk) to all nodes by using the aforementioned Kadem-
lia tree.

Process C - Calculation of ζki (λk): Each node w cal-

culates ζki (λk) by subtracting from the broadcasted sum∑
i∈N q̃

t
i(λ

k), the value that is stored in it. Note that this is
not its own q̃ti(λ

k) value, and it doesn’t know whose it is. If
the result is negative then it sets ζki (λk) = 0.

Process D - Tuple update: It is highlighted here that in
each iteration of MCA (e.g. the next iteration k+1) a different
instance of Kademlia tree is created, so that ζk+1

i (λk+1) is
stored at a new node wk+1, other than wk. Thus, even in the
case that a set of nodes are malicious, data privacy is not com-
promised. The tuple Aki = {

∑k
ξ=1 ζ

ξ
i (λξ), λξ ·

∑k
ξ=1 ζ

ξ
i (λξ)},

containing the allocation and payments of user i until iteration
k, is updated and passed from node wk to wk+1.

Process E - Final allocation and payments: At the final
iteration, the updated tuples Aκ

i are communicated to the
FSP. Note that the FSP receives only the final allocation
and payments for each user, i.e. only the sum

∑κ
k=1 ζ

k
i (λk)

and not the intermediate values ζki (λk). In this way the
aforementioned architecture ensures that the FSP and every
other node that participates in the system do not have the data
to estimate the local discomfort function di(·) of user i.

In Algorithm 2, the distributed execution of MCA is de-
scribed. In case of a malicious FSP (i.e. with no hesitations
to break the law), more strict privacy assumptions are needed,
but this case is outside the scope of the present work. The
interested reader can refer to the recent literature of privacy-
preserving aggregation for the smart grid [30]- [38].

Since we cope with real-time DR it is important to note
that, except for line 18 (distributed calculation of sum), all
other operations of DE-MCA require constant time. Also,
as is well known in DHTs, the latency of line 18 increases
logarithmically with the number of users. This results in a very
scalable implementation of the VCG mechanism, suitable for
real-time DR. We also verify this property in the next section.

VII. USER MODELS & PERFORMANCE DEMONSTRATION

In this section, we present detailed appliance models taken
from the literature and then use simulations to demonstrate
the advantages of the MCA and verify its properties. We
also compare MCA with the marginal cost pricing method
[6] in terms of truthfulness and FSP’s profits and with the
direct-revelation VCG method [22] in terms of scalability.
Simulations were run in Matlab R2018b.

A. Detailed appliance models
The first model is taken from [6] and includes appliances

that control the temperature of an environment, such as HVAC
units. The user’s most preferable temperature is denoted by
parameter T prefi (t) and was taken in our experiments to be
uniformly distributed in the interval [75F,79F]. The actual
room temperature, denoted by T ini (t), evolves according to

T ini (t) = T ini (t− 1) + η · [T out(t)− T ini (t− 1)]

+ θ · (pti,HV AC − qti,HV AC) (9)

where pti,HV AC is the user’s measurable power consumption
before the DR-event occurrence and qti,HV AC is the curtail-
ment resulting from the DR-event. Clearly, we have

pti,HV AC − qti,HV AC > 0, (10)
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Algorithm 2 DE-MCA : Distributed Execution of Modified
Clinching Auction

1: FSP sets ε, initializes λ0 = λmax, k = 0, tuples A0
i =

{0, 0} and communicates them to all nodes
2: Each node i receives λ0 and calculates q̃ti(λ

0)
3: Instance 0 of Kademlia tree is created (its root is noted

as MAX0)
4: Data insertion (each node i puts q̃ti(λ

0) to instance 0 of
Kademlia tree, see Process A)

5: Distributed calculation of
∑
i∈N q̃

t
i(λ

k) which ends at
node MAX0 (see Process B)

6: Node MAX0 requests Dt(λk) from FSP and checks the
termination condition

7: while Dt(λk) <
∑
i∈N q̃

t
i(λ

k) do
8: Node MAXk broadcasts

∑
i∈N q̃

t
i(λ

k) to all nodes
9: Each node wk in Kademlia tree, (where wk 6= i)

calculates ζki (λk) (see Process C)
10: Node wk updates the tuple Aki
11: Node MAXk sends to FSP signal to set k = k + 1
12: FSP sets k = k + 1 and λk = λk−1 − ε
13: kth Kademlia tree instance is created
14: Each node wk−1 passes tuple Ak−1

i to node wk (Pro-
cess D)

15: Node MAXk communicates λk to all nodes
16: User i receives λk and calculates q̃ti(λ

k)

17: Data insertion (each user i puts q̃ti(λ
k) to instance k of

Kademlia tree, see Process A)
18: Distributed calculation of

∑
i∈N q̃

t
i(λ

k) at node
MAXk (see Process B)

19: Node MAXk requests Dt(λk) from FSP and checks
the termination condition

20: end while
21: MAXk receives Dt(λk) and broadcasts

∑
i∈N q̃

t
i(λ

k)
and Dt(λk) to all nodes

22: Each node wk calculates ζki (λk) = (q̃ti(λ
k)−

∑k
ξ=0 ζ

ξ
i ) ·

Dt(λk)∑
i∈N q̃

t
i(λk)

and updates tuple Aki
23: All nodes communicate Aki to FSP (Process E)

and we also have the operational constraint

pti,HV AC 6 p
t
i,max, (11)

In the experiments pti,max was set to 5 kW. Outdoors tem-
perature T out(t) was the same for all users and represented a
typical summer day in Athens. Parameters η and θ where set
to 0.9 and 3, respectively. The discomfort for such users was
defined as the square difference between actual and desired
temperatures:

dtempi (qti) = ωtempi,HV AC ·
(
T ini (t)− T prefi (t)

)2

(12)

where parameter ωtempi,HV AC expresses the user’s inelasticity in
timeslot t and was randomly selected in the range [0.10, 0.50].

The second model represents temporally flexible loads (e.g.,
EVs) and is taken from [16]. The EV is plugged-in at timeslot
γi (uniformly selected in the interval [3,9], for one third of

the users and in the interval [14,20] for the remaining two
thirds). Each EV charges at power pti,EV and has a total
demand of Ei,EV kWhs, where Ei,EV was uniformly selected
in the interval [6,36]. The user wants the EV to be charged
as soon as possible and any delay would bring discomfort.
This model accurately represents en-route charging EVs. The
desired charging duration, denoted as δi, was set to δi = 3
timeslots for all users. The upper power limit pti,max, was
selected as pti,max =

Ei,EV

δi
. That is, if no DR-events occurred,

each user would charge his/her EV in 3 consequent timeslots.
An EV operational constraint is given as

pti,EV 6 pi,max (13)

The EV cannot be charged before arrival:

pti,EV = 0, t < γi (14)

and must be fully charged before leaving:∑
t∈T

pti,EV > Ei,EV . (15)

During a DR-event a user may choose to curtail qti,EV units
and shift charging to a later timeslot. This delayed charging
(for timeslots after γi+δi−1), comes with a discomfort defined
as

dwaiti,EV (qtiEV ) =
∑

t∈{T |t>γi+δi}
[(ωwaiti,EV )t−γi−δi+1 · pti,EV ]

(16)
where parameter ωwaiti,EV expresses the user’s inelasticity and
was uniformly selected in [1, 1.5].

B. Simulation Results

Over a time horizon of 24 timeslots, with a duration of
15 minutes for each timeslot and for a setting of 50 users,
we simulated a DR event in timeslot 17 (where there was a
peak in the aggregated consumption). The parameters of the
reward function were set to a = 3 and b = 0.05. We used step
ε = 10−3 in the MCA algorithm. Fig. 2 depicts the aggregated
consumption along all 24 timeslots. As the figure shows, there
is a consumption curtailment in timeslot 17 and a consequent
shift of consumption to timeslot 20. Note that it could not be
shifted to timeslots 18 or 19 because constraints (11) and (13)
where already tight for these timeslots.

Next, we investigate the effect that cheating has on the
FSP’s profits, denoted by Πtruthful for the case where users
act truthfully and by Πcheat for the case where they act
according to what brings them the highest utility. We plot the
ratio Πcheat/Πtruthful for different values of users’ elasticities
{ωtempi,HV AC , ω

wait
i,EV }. To do so, for each experiment we multiply

the users’ elasticity parameters by a positive factor ωf . Higher
values of ωf indicate more inelastic users. Fig. 3 shows that the
ratio Πcheat/Πtruthful is maximized and is equal to 1 for the
MCA, verifying our theoretical results. For the marginal cost
pricing method [6], the FSP’s profit loss due to untruthfulness
rises with ωf (i.e., when users are less elastic), indicating that
our scheme’s truthfulness property becomes more important
in markets where participants are not particularly flexible.
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Fig. 2: Aggregated consumption as a function of time with
and without the DR-event
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Fig. 3: Ratio Πcheat/Πtruthful as a function of ωf

Next, we simulated the DR-event for different values of the
step ε, measuring the proportional welfare loss

Wloss =
Wopt −WMCA

Wopt
, (17)

where Wopt is the optimal welfare and WMCA is the welfare
achieved by the MCA. The simulation results in Fig. 4 verify
Corollary 1, which states that for small values of ε the upper
bound on the welfare loss grows linearly with ε.

Finally, we compare MCA to the direct-revelation VCG
method (proposed in [22]), in terms of scalability with respect
to the number of users. Simulations are carried out on an Intel
Core i7 4GHz, 64-bit, 16GB RAM, computer. The computa-
tional time of the method in [22] rises very quickly, which
makes it impractical for real-time applications. In contrast,
MCA scales remarkably well to any number of users, since
the algorithm’s convergence time does not depend on the size
of set N . In order to evaluate the latency of DE-MCA we
assumed that the data network introduces a network delay
(between any two nodes) that follows a uniform distribution
between 5ms and 15ms. Fig. 6 depicts the latency introduced
by DE-MCA. It is defined as the total time overhead that the
proposed distributed implementation introduces due to data
network delays between any two data network nodes. As
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Fig. 4: Proportional welfare loss of MCA as a function of the
price step ε

it is known theoretically, in DHT technologies, this latency
increases logarithmically with the number of users. This is
verified in Fig. 6. In comparison to the timeslot duration (e.g.
15 minutes, which is a typical granularity for measurements
and clearing of the balancing market), these results show that
the proposed system is both scalable and efficient.
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Fig. 5: Convergence time of MCA and VCG, as a function of
the number of users

C. Incentive Compatibility and the case of inelastic appliances

In this subsection we discuss the property of incentive
compatibility. We verify the theoretical result of Proposition
1 and also experimentally study incentive compatibility in
the case of inflexible appliances (where our Assumptions are
not satisfied). We assume that one user misinterprets his/her
discomfort by manipulating his/her ωwaiti,EV . The untruthful user
is indexed by ch (for cheater). The cheater’s utility Uch is
maximized for a certain choice of ωch. Fig. 7 shows Uch as a
function of ωch.

The black vertical line represents the focal user’s real ωwaiti,EV ,
denoted as ωreal. For the MCA, the user’s optimal choice of ω
(where Uch is maximized) coincides with ωreal, which means
that the user’s best strategy is to act truthfully, in contrast to
the marginal cost pricing method.
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The result of Fig. 7 was expected, since it was already
proven in Proposition 1. Although we cannot state a similarly
strong theoretical guarantee for inflexible users, nevertheless
our simulations show similar results. We study the case where
an appliance is inflexible (Type 2 appliances of [14]), in the
sense that it can only be turned on or off, but its consumption
cannot take intermediate values:

pti,inel ∈ {0, pti,max}, (18)

and thus,
qti,inel ∈ {0, pti,max}. (19)

The user’s discomfort for turning his/her load off, is denoted
by doffi,inel. Thus, the user’s discomfort function takes the form:

di,inel(q
t
i,inel) =

{
0, qti,inel = 0

doffi,inel, qti,inel > 0
(20)

This kind of appliances violate Assumption 2. In fact, the
form of the user’s valuation exhibits complementarity (the user
can either curtail all pti,max KWhs, but cannot make use of
an allocation that is smaller than pti,max). In the presence of
such complementarities there is no tractable iterative auction
that can achieve incentive compatibility [48]. We present an
extension of MCA that accommodates inflexible users and
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Fig. 8: Users’ Utility as a function of user’s interpreted
elasticity ω

evaluate it. Although we can no longer guarantee incentive
compatibility, nevertheless simulation results show that, in
practice, truthful bidding is still the best choice for each user.

Let I denote the set of inflexible users. Also, let κ denote
the number of iterations until the auction halts (see Appendix
A). The first step is to run the MCA algorithm. Then, we
grant the MCA allocations ζki ,∀k only to elastic users i /∈ I.
The remaining reduction

∑κ
k=1

∑
i∈I ζ

k
i , will be reallocated

amongst the inflexible users, in a way that respects constraints
(19). This is an instance of the knapsack problem. In order
not to compromise the computational time guarantees of
our real-time auction, we use a simple heuristic to solve it.
Inflexible users are sorted in increasing order of their “bang-
for-buck” i.e. their doffi,inel/p

t
i,max. We allocate qti,inel = pti,max

to user i ∈ I, in increasing order of the sorted list, until∑
i∈I q

t
i,inel >

∑κ
k=1

∑
i∈I ζ

k
i . The procedure is depicted in

Algorithm 3.

Algorithm 3 Extended Modified Clinching Auction

1: Run the MCA algorithm
2: set qti,inel = 0,∀i ∈ I
3: sort users i ∈ I, in increasing order of doffi,inel/pi,max
4: set qti,inel = pi,max, for user i ∈ I, in increasing order of

the sorted list, until
∑
i∈I q

t
i,inel >

∑κ
k=1

∑
i∈I ζ

k
i .

In Fig. 8, we present indicative results for various values
of pi,max and doffi,inel, regarding truthfulness in the extended
MCA. More specifically, we tested how well a user does
(in terms of utility Ui, see Eq. 6), by interpreting his/her
elasticity with various (untruthful) values ωch. The user’s
actual discomfort for curtailing pi,max units is marked with
a vertical dotted line. From the figure, it becomes clear that
the user already achieves his/her maximum possible utility, by
truthfully interpreting his/her discomfort and has nothing to
gain by playing untruthfully. This is, again, in contrast to the
marginal cost pricing approach [6].

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on March 24,2020 at 14:05:38 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.2965221, IEEE
Transactions on Smart Grid

10

VIII. CONCLUSION

In this paper we considered a setting of strategic, intelligent
users and an FSP seeking to incentivize them in order to
curtail part of their consumption in response to a real-time DR-
event. We showcased the inefficiency of previous state-of-the-
art approaches, which either do not consider user incentives,
or adopt a direct-revelation approach, respectively leading to
either lack of truthfulness and consequent inefficiency, or
to lack of privacy and scalability. To overcome these short-
comings, we presented a novel iterative auction mechanism
that implements the truthful and efficient VCG outcome but
also allows for a distributed implementation and a privacy-
preserving communication protocol. For this purpose, we iden-
tified a suitable mechanism from the field of mechanism design
(Ausubel’s Clinching auction) and modified it for a setting
with continuous items (energy), where the number of items
is not fixed but bears a cost function (reward function in our
case). We extended the properties of the original mechanism
to the modified mechanism that we propose. Furthermore, we
proved a theoretical upper bound for the efficiency loss caused
by an increase in the price step, which relates to a decrease
in the mechanism’s computational time.

Our theoretical and simulation results verified that the
proposed scheme combines the desired properties with very
good performance and small overhead. Moreover, we also
implemented appliances that can only be turned on or off
without the ability to adjust their power consumption. In our
simulations, the proposed mechanism was shown to work very
well in the DR setting, even with these types of loads, despite
the fact that they do not satisfy the necessary assumptions.

APPENDIX A
PROOF OF THEOREM 1

The value of λ at which Dt =
∑
i∈N q̃

t
i is denoted as λmc,

which gives

Dt(λmc) =
∑

i∈N
q̃ti(λmc). (21)

Let κ denote the number of iterations until the auction halts,
that is,

κ = dλmax − λmc
ε

e, (22)

where d·e, denotes the rounding to the nearest integer above.
We have

dλmax − λmc
ε

e > κ > 1 + dλmax − λmc
ε

e. (23)

After the last clinchings (line 11 of Algorithm 1) we have
efficiently allocated Dt(λκ−1) reduction units to the users.
The remaining Dt(λmc) − Dt(λκ−1) are not allocated and
this causes the loss of welfare Wloss, which is depicted as the
grey area in Fig. 9, where the red line represents Dt(λ) and
the blue line represents

∑
i∈N q̃

t
i(λ).

Since we remain agnostic of the closed form of∑
i∈N q̃

t
i(λ

k), we assume the worst case and calculate an
upper bound on the sum of the gray plus the yellow area:

Wloss > λmc ·
(
Dt(λmc)−Dt(λκ−1)

)
+

1

2
(λκ−1 − λmc) ·

(
Dt(λmc)−Dt(λκ−1)

)
. (24)

Fig. 9: Dt(λ) and
∑
i∈N q

t
i(λ) as a function of λ

By substituting Dt(λ) = a−λ
2b , from Eq. 3, we get

Wloss >
λmc · (λκ−1 − λmc)

4b
+
λκ−1 · (λκ−1 − λmc)

4b

>
(λκ−1)

2 − (λmc)
2

4b
.

(25)
By further substituting λκ−1 = λmax − ε · (κ − 1) and also
substituting κ, using the left inequality when κ appears with
a minus sign and the right inequality when it appears with a
plus sign, we finally obtain

Wloss >
ε2 + λmax · ε

2b
(26)

APPENDIX B
PROOF OF PROPOSITION 1

Fix an iteration k and assume that user i bids qti,false(λ
k) 6=

q̃ti(λ
k) in that iteration. From step 4 of MCA, we see that

ζki does not depend on qti but only on the other users’ bids
qtj , j 6= i. Thus, user i’s bid can affect i’s allocation only by
changing the λ at which the termination condition holds. This
means that a false bid qti,false(λ

k) will make a difference to i,
only if k is the last iteration. However, by definition of q̃ti(λ

k)

(see Eq. 6), any bid qti,false(λ
k) 6= q̃ti(λ

k) brings strictly lower
utility to user i at any iteration k. Thus, truthful bidding brings
the highest utility to user i.

APPENDIX C
PROOF OF PROPOSITION 2

The MCA auction is welfare maximizing (by Theorem 1,
for ε small enough) and truthful (by Proposition 1). More-
over, the class of VCG mechanisms is the unique class that
simultaneously achieves these two properties [21]. Since MCA
terminates with the VCG allocation and payments, it inherits
the property of individual rationality.

Regarding the weak budget balance property, it suffices to
show that our setting exhibits the no single-agent effect [2]
10.4.4. This is true if the aggregated utility of n-1 users does
not improve by adding a n-th user to the system. This property
holds in single-sided auctions with monotonous preferences,
since dropping a user only reduces the competition for the
remaining users, thus making them better-off. Moreover, by
[49], the VCG mechanism maximizes the auctioneer’s utility,
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which means that the FSP buys flexibility units from the
users at the lowest possible price (among all efficient and
individually rational mechanisms).
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