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Abstract—Edge computing has emerged as a computing 

paradigm where the application and data processing takes place 
close to the end devices. It decreases the distances over which data 
transfers are made, offering reduced delay and fast speed of action 
for general data processing and store/retrieve jobs. The benefits of 
edge computing can also be reaped for distributed computation 
algorithms, where the cloud also plays an assistive role. In this 
context, an important challenge is to allocate the required 
resources at both edge and cloud to carry out the processing of 
data that are generated over a continuous (“infinite”) time 
horizon. This is a complex problem due to the variety of 
requirements (resource needs, accuracy, delay, etc.) that may be 
posed by each computation algorithm, as well as the heterogeneous 
resources’ features (e.g., processing, bandwidth). In this work, we 
develop a solution for serving weakly coupled general distributed 
algorithms, with emphasis on machine learning algorithms, at the 
edge and/or the cloud. We present a dual-objective Integer Linear 
Programming formulation that optimizes monetary cost and 
computation accuracy. We also introduce efficient heuristics to 
perform the resource allocation. We examine various distributed 
ML allocation scenarios using realistic parameters from actual 
vendors. We quantify trade-offs related to accuracy, performance 
and cost of edge/cloud bandwidth and processing resources. Our 
results indicate that among the many parameters of interest, the 
processing costs seem to play the most important role for the 
allocation decisions. Finally, we explore interesting interactions 
between target accuracy, monetary cost and delay. 

 
Index Terms—cloud and edge computing, distributed 

computing, distributed machine learning, inference, training, 
resource allocation.   

 
 

I. INTRODUCTION 

OBILE phones, intelligent vehicles, energy meters 
and other Internet of Things (IoT) devices are 
spreading into many areas of social activity, 

empowering new digital services. The abundant edge devices 
offer numerous applications requiring prompt processing. They 
also generate enormous amounts of data through which useful 
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and actionable analytics can be obtained. The application 
processing and the transfer of these data all the way to the cloud 
can be challenging, undesired and unnecessary, due to time and 
bandwidth limitations. To tackle these developments, new 
computing paradigms are developed, such as edge computing. 
A combined edge-cloud processing infrastructure promises to 
render inexpensive the distributed data processing, including 
machine learning (ML) training and inference [1]-[5], thus 
“commoditizing” the related services. The response time of the 
observe (IoT, monitoring) - decide (algorithm) - act (actuators 
or reconfiguration) control loop present in many applications 
will also be accelerated. Edge computing is more appropriate 
than cloud computing to process time-sensitive data, as it 
avoids the time needed to relay the information to a centralized 
datacenter. Thus, the decision-making process is accelerated. 
The communication load is also reduced as the paths used have 
fewer hops. Cloud computing is better for processing delay-
tolerant data, because of the economies of scale that central 
datacenters achieve.  

In this context, the challenge of resource allocation for 
distributed computation algorithms over a continuous (infinite) 
time horizon arises. The processing of a distributed algorithm 
(the terms algorithm and algorithmic instance will be used 
interchangeably) can be divided into a number of tasks that are 
executed in parallel on different equipment. In distributed 
computation performed over the edge and cloud, an important 
challenge is to allocate the most appropriate resources to serve 
the tasks comprising an algorithm with a certain objective (e.g., 
minimize the monetary cost). This is similar to computation 
offloading [6], but presents additional complications due to the 
requirements of distributed computation. First, a decision has to 
be made on whether an algorithm will be served at the edge or 
at the cloud. The decision mainly depends on the algorithmic 
instance’s acceptable cost and delay requirements. It also 
depends on the number of tasks each algorithm consists of, i.e., 
the degree of parallelization. The (processing, storage and 
network) capacity parameters of the edge and cloud resources 
influence the decision. Then, the suitable number and type of 
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resources should be allocated according to the needs of the 
algorithmic instance (e.g., amount or streaming rate of data 
involved, required accuracy, type of algorithm). The problem 
requires modeling of the various contributors to the (bandwidth, 
storage and processing) cost of the algorithmic instance, that 
could be different at the edge and at the cloud. Moreover, there 
are different types of algorithmic architectures (e.g., different 
parallelism paradigms, communication architectures, and 
synchronization requirements). All these factors and parameters 
have to be taken into account to formulate and solve the 
resource allocation problem. 

In this work Distributed Machine Learning (DML) training 
or inference is considered explicitly. DML is a special case of 
distributed computation, and it is expected to constitute a large 
part of future computations on data. It fits perfectly the model 
we consider: it involves the processing of data samples that are 
generated continuously and require resources for prolonged 
durations of time (equal to the lifetime of the ML application). 
This model is opposed to the case where computation jobs are 
generated once and have to be scheduled individually.  
Distributed ML differs from federated learning, since in the 
latter the training is typically performed on the user devices 
themselves. The topic of resource allocation for federated 
learning has been studied extensively. More specifically, a joint 
learning, wireless resource allocation, and user selection 
problem have been formulated specifically for federated 
learning [7][8]. Moreover, the total energy consumption of the 
system under a latency constraint can be served as the objective 
for the resource allocation [8]. 

In the following we describe some use cases in IoT and in 
Internet of Vehicles (IoV) that serve as motivation for our work. 

A. Internet of Things 

In the recent years, IoT has spread across numerous 
applications and domains. Billions of devices are already 
connected to the internet, gathering data from their sensors and 
communicating with other devices. IoT applications range from 
smartphones, smart homes and smart manufacturing to smart 
agriculture and drones. IoT devices use a variety of sensors: 
image (e.g., camera), voice (e.g., microphone), environmental 
(e.g., temperature of moisture sensor), mechanical (e.g., 
vibration sensor). Depending on the type of sensor and the 
application, the data could be generated either very 
sporadically, or in high volume and streaming fashion. The total 
IoT data volume of a large smart city that is fed to a given 
application can be enormous and will tend to be rather smooth 
due to its aggregated nature.  

The data from IoT devices is used in a large range of 
applications, the majority of which is expected to be ML-based: 
image recognition (e.g., security related-face recognition, 
farming related - grapes disease detection), event detection, and 
other sectors, such as smart electricity grids and healthcare. 
Also, in industrial IoT, data from a manufacturing environment 
is used to predict and prevent mechanical failures or to 
coordinate robot movement. In all these scenarios, processing 
of the continuously generated data is important in order for the 
model to be adaptable to the environment and to other changes. 

Similarly, smartphone data may feed an ML based voice 
recognition algorithm for digital assistants. Other examples of 
ML algorithms may use data from accelerometers and gyro, 
e.g., for activity recognition.  

B. Internet of Vehicles 

The automotive industry is on the eve of a major 
transformation fueled by the developments in autonomous 
driving and the involvement of IT companies. At the same time, 
Intelligent Transportation Systems (ITS) continuously evolve 
and apply novel communication protocols to provide safer and 
more efficient transportation. IoV involves a network of 
“smart” vehicles that exchange data not only to enhance traffic 
safety and efficiency (e.g., mitigate traffic) but also to provide 
commercial infotainment (e.g., in the form of video and game 
streaming). IoV pose significant processing and 
communication requirements, that should be supported by the 
edge and cloud resources. 

An autonomous vehicle is equipped with different sensors 
and cameras, such as Light Detection and Ranging (LIDAR), 
sonar and high-definition cameras. These sensors produce 
enormous amounts of data: a vehicle can generate 4 TB of data 
per day [9], which will put significant stress on the network 
resources. The transfer of such amount of data to the cloud is 
almost prohibited. Therefore, edge computing is expected to 
play an important role in IoV. 

The data of autonomous vehicles can be leveraged in many 
distributed learning scenarios. In particular, distributed learning 
vehicle routing algorithms can adjust vehicle routing in real 
time and reduce traffic congestion [10]. Another example is 
object detection and classification based on acquired charge-
coupled device (CCD) and LIDAR data [11]. There have been 
several instances where an autonomous vehicle has 
misinterpreted an object in the environment. Continuous 
training is important for object detection, given the variety and 
dynamicity of the environments autonomous vehicles will 
navigate in when they become widely available. And fast 
response times can in many cases be delivered only through 
edge computing. 

In this paper we investigate the resource allocation problem 
for general distributed algorithms and ML applications that 
process continuously generated data. We develop a general 
framework, where the different ML and other algorithmic 
instances that run on the infrastructure are modelled by a vector 
of requirements that depend on the algorithm. More 
specifically, we consider a scenario where various devices are 
located close to the edge of the network. The devices produce 
data continuously, over an infinite time horizon, that are 
processed by an algorithm that runs in edge and/or cloud 
resources. The goal is to assign the required resources 
(processing, memory, storage, bandwidth) for each algorithm 
while optimizing certain metrics. We consider different 
scenarios related to edge/cloud costs, delay and accuracy. We 
introduce an Integer Linear Programming (ILP) algorithm that 
solves the resource allocation problem. We also investigate low 
complexity heuristic resource allocation algorithms. Finally, we 
compare the results, and extract interesting insights on the 
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allocation decisions. 
The main contributions of our work are:  

1) We present a comprehensive solution that can serve 
distributed algorithms processing continuously generated 
data. The resulting infinite time horizon model represents 
an IoT infrastructure (e.g., a smart city) continuously 
generating data (sequence of samples), according to a 
deterministic or random process of a certain average rate. 
These data have to be allocated adequate processing/ 
storage/bandwidth resources so that the system is stable 
and the delays are kept under control. This model is in 
contrast to the one-time problem usually considered, 
where there is a finite number of tasks that have to be 
scheduled on certain resources, once and for all. We 
appropriately design resource allocation schemes that 
account for the different types (e.g., GPU models, RAMs) 
of edge and cloud resources, their computational power, 
their bandwidth, storage and processing monetary costs, 
their communication delay and the achievable accuracy. 
The joint consideration of these optimization parameters 
provides a realistic modeling of the problem, while 
allowing for interesting insights on the potential benefits 
and trade-offs involved. 

2) We present an ILP algorithm that solves the edge/cloud 
joint resource allocation problem. The objectives are to 
minimize the resources’ monetary cost (subject to delay 
requirements) and to maximize the resulting accuracy of 
the algorithmic instance. A weight parameter is used to 
control the relative importance of the two objectives. The 
formulation is versatile and can be used to allocate 
resources for different variants of distributed applications, 
including ML training (e.g., all-reduce or aggregation 
servers) and inference. We also develop efficient heuristic 
algorithms that can solve faster large instances of the 
problem.  

3) We perform realistic simulation-based experiments for a 
distributed ML training scenario. We quantify the trade-
offs between edge and cloud resources for various 
accuracy options, bandwidth and processing costs of the 
edge vs cloud, and the corresponding delays. Finally, we 
compare the results of the different algorithms and 
allocation schemes. 

Our model assumes the continuous (over an infinite time 
horizon) generation of data (samples) that are processed by a 
general distributed (namely ML) application. The application 
characteristics are captured through a resource requirements 
vector of parameters, so that the formulation is kept as general 
as possible. We also use accuracy as a parameter that can be 
traded off to save resources. This leads to the concept of 
approximation as a resource, in the same way that Demand 
Response is used as a resource in smart energy grids, when there 
is a mismatch between demand and supply of energy [12]. 

The rest of the paper is organized as follows. In Section II we 
present the related work. In Section III we describe the network 
scenario considered and the related assumptions. We also 
introduce the resource allocation problem with formal notation 
and present an ILP algorithm to solve it. Afterwards, we present 
the heuristic algorithms. In Section IV we evaluate the proposed 
framework, present the performance results obtained and 

explore the various trade-offs. Finally, Section V summarizes 
the paper and discusses future work. 

II. RELATED WORK 

Our work mainly relates to two topics: distributed 
computation (as in DML) of continuously generated data and 
computation offloading. Distributed computation is not a recent 
subject [13]. Over the last few years, it regained attention. It has 
been applied in the context of machine learning [14][15], 
communication networks [16], power systems [17] and primal-
dual algorithms [18], among others. In general, research on 
distributed computation can refer to several topics, such as the 
design of suitable algorithms, machines and programming 
languages. Related issues include the partition of a workload to 
smaller tasks, the communication of the tasks’ results, the 
synchronization of the computations and the allocation of the 
suitable resources to perform the computations. The specific 
characteristics of each application have to be taken into account 
in order to design a robust resource allocation framework that 
can be applied to each case. 

Distributed ML training is an active research topic and a 
large number of associated methods have been investigated. 
There are three main taxonomies of distributed ML training 
[14][19] based on: i) the type of parallelism, ii) the 
communication architecture, and iii) the computation timing. 
As far as parallelism is concerned, there is model parallelism 
and data parallelism. In model parallelism, the ML model is 
divided into a certain number of segments (tasks) that are 
executed in a respective number of workers. Each worker node 
runs different code (in parallel computation this model is also 
called MIMD – multiple instruction, multiple data). In data 
parallelism, the model is common to all workers, but the 
training data are different (in parallel computation this model is 
called SIMD – single instruction, multiple data). Each worker 
(task) computes locally its model weights (parameters) and 
communicates its values to the rest of the workers that 
aggregate the results and update the common model. Regarding 
the communication architecture in distributed training, perhaps 
the most prominent variant is the parameter (aggregation) 
server [20]. In this case, the workers communicate their local 
computations to one or more centralized server(s), the 
parameter server. The server aggregates the weights of the 
workers and returns the results to the workers to initiate the next 
training round(s). A different communication architecture, 
known as all-reduce, does not use any centralized server. 
Instead, the workers communicate directly with each other, in a 
peer-to-peer manner, to share the model weights.  

Concerning computation timing, there are two main 
approaches: synchronous and asynchronous training. In 
synchronous training, the aggregation of the workers’ model 
weights is performed synchronously: they proceed to the next 
execution round only when the previous round and the 
exchange of the new weights has been completed for all the 
workers. This can incur certain inefficiencies, commonly 
known as synchronization penalties, when some workers 
(stragglers) are progressing slower than others. In asynchronous 
training, the workers are allowed to perform at their own pace 



4 
TNSM-2022-05733.R2 

(so they may be at a different round), thus eliminating the 
synchronization overhead. When a worker finishes a 
computation round, the parameters are updated. The rest of the 
workers will fetch the updated parameters asynchronously [13]. 
There are certain conditions under which synchronous 
convergence also implies asynchronous convergence [13]. 
Finally, a pipelined architecture can be considered, to improve 
the training throughput [21]. It allows the overlapping of the 
communication with the computation time, while also reducing 
the amount of communication required. On a separate issue, 
distributed ML inference [3][4] typically has less processing 
requirements than training. However, the workload can still be 
significant for a user device. Also, the timing requirements are 
often very stringent; e.g., an autonomous vehicle requesting an 
image classification task. A large number of works have 
researched the offloading of inference ML jobs using various 
strategies.    

Computation offloading initially referred to moving compute 
intensive tasks at the cloud where powerful and relatively 

abundant resources are available. As technology evolved, new 
applications required low latency and high bandwidth, which 
could not be satisfied by the cloud. As a result, Mobile Edge 
Computing or Multi-access Edge Computing (MEC) emerged. 
Even though the research on computation offloading is vast 
[6][23], it cannot directly be applied to our ML case study. The 
reason is the specific resource allocation requirements of 
distributed computation algorithms that that are generated 
continuously and can vary depending on the type of algorithm, 
the accuracy, the time constraints, and the architecture. 

A recent research topic is the intersection of distributed ML 
and computation offloading, which is an important subcase of 
this work as well. In federated learning over wireless networks, 
a previously studied challenge is to allocate the resources by 
considering the wireless channel characteristics and the 
convergence rate of the federated learning algorithm [7][8]. In 
our work, we consider distributed computations and distributed 
ML and the modeling is agnostic to the physical layer 
characteristics. We focus on the trade-offs related to accuracy, 
delay and the processing/bandwidth costs. Regarding 
distributed ML training at the edge, the network resources can 
be efficiently utilized by analyzing the convergence rate of the 
distributed gradient descent algorithm [24]. The ML training of 
data from augmented reality edge devices has also been 
considered [25]. Due to the limited computing power of these 
devices, backend “helpers” at the edge or cloud can be 
leveraged. Moreover, the training model can be incrementally 
offloaded at the edge devices [26]. This strategy accelerates the 
training since the edge servers are used in a timely manner. A 
more specialized topic is the offloading of IoT deep learning 
applications in an edge computing environment [29]. Regarding 
the performance of training, there are certain differences of 
federated learning compared to variants of edge and centralized 
learning [27]. Also, there are certain approaches, such as the 
joint data collection and resource allocation, to maximize the 
distributed learning throughput [28]. The problem can be 
formulated as a mixed-integer non-linear program and an 
approximation algorithm can be used. Finally, another topic is 
the job scheduling problem for distributed ML. For example, a 
scheduling algorithm can be employed to decide the execution 
time window and the number and type of workers and 
parameter servers aiming to minimize the weighted average 
completion time [30]. It is a problem similar to ours, but also 
differs as it is mainly a one-time scheduling problem. In 
contrast, we assume continuous generation of data. 

To the best of our knowledge there is no previous work that 
combines realistic modeling of the data collection and resource  
allocation problems of distributed computation / distributed ML 
applied on continuously generated data, using both edge and 
cloud resources and accounting for the different architectures. 
Moreover, an analytic comparison of the various trade-offs 
between accuracy, delay, bandwidth/processing costs of the 
edge and cloud seems to be missing from related work. In this 
paper, we attempt to tackle these important issues. We should 
note that this paper is an extension of a previous work [31]. We 
significantly expanded the work by: i) adding more details on 
the background of the problem, ii) examining the allocation of 

TABLE I 
IMPORTANT NOTATIONS 

 

Symbol Description 

J Set of all algorithmic instances on infrastructure 

𝒋𝒙, 𝒋𝒊 An ML training or inference algorithm 

𝑻𝒋 Set of all tasks of algorithm j 

𝒕𝒋𝒌 A task of algorithm j 

𝒚𝒋𝒌 Set of devices feeding data to the kth task of 
algorithm jth 

𝝀𝒚 The data (samples) generation rate of device y  

N The set of nodes of the edge network 

n A node of the edge network 

𝑷𝒐 Period every which tasks are completed 

𝑷𝒄𝒐𝒎𝒎 Communication time required at end of period to 
transfer the ML model weights  

𝑷𝒄𝒐𝒎𝒑 Computation time within a period 

𝑺𝒋𝒌 Total samples that a task has to process within 
period 𝑷𝒐 

Q The set of all the available GPU models 

q A specific GPU model 

𝑯𝒋 
Required number of training epochs for ML 

algorithm j 

𝑪𝑬
𝒒 , 𝑪𝑪

𝒒 The cost for an ML job to use model q processing 
edge or cloud resources 

𝑪𝑬
𝒘, 𝑪𝑪

𝒘 The b/w cost of edge or cloud 

𝜟𝑬, 𝜟𝑪 
The propagation delay of a job if served to the 

edge or cloud 

𝜹𝒋 
The maximum acceptable propagation delay of a 

job 
𝜜 The set of possible target accuracies of the jobs  

𝒂𝒋 An accuracy of a job ranging from 0 to 1 

𝜶𝒋
𝒎𝒊𝒏 The minimum required accuracy of job j 

 𝑹𝒋 = [𝑮𝒋𝒌𝒂, 𝑴𝒋𝒌𝒂, 
𝑽𝒋𝒌𝒂, 𝑩𝒋𝒌𝒂, 𝜣𝒋𝒌𝒂] 

Vector of required GPU, Memory, Storage, B/w 
resources for each sample of job j  

𝑹𝒏 = [𝑹𝒏
𝑮𝒒

, 𝑹𝒏
𝑴, 𝑹𝒏

𝑽, 
𝑹𝒏

𝑩, 𝑹𝒏
𝜣] 

GPU, memory, storage, incoming b/w, aggregator 
resources units in node n 

𝝃𝒏
𝒋𝒌𝒒𝒂, 𝝃𝑪

𝒋𝒌𝒒𝒂 
Binary ILP variable equal to 1 if task 𝒕𝒋𝒌 uses 

resource units and GPU model q with accuracy a 
at edge node n, or it is served at the cloud  

W 
Weight to control the importance of cost 
minimization vs accuracy maximization 
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inference jobs in addition to training, iii) adding accuracy at the 
objective and studying trade-offs between accuracy and 
resource requirements, iv) adding low complexity heuristic 
algorithms for the resource allocation problem, and v) 
expanding the simulation experiments to include additional 
scenarios.  

III. PROBLEM STATEMENT 

We consider various distributed processing and ML scenarios 
involving IoT or IoV data generating devices (Fig. 1). Each 
scenario may correspond to a different processing algorithm, 
e.g., image recognition, anomaly or event detection, etc. There 
is an edge network close to the devices, and a more distant 
cloud. Computation jobs are completely offloaded to the 
network’s resources, and are not processed at all on the devices. 
In the future, we plan to extend the problem statement to include 
the possibility of (partial) execution of a job on user devices.  

We will now formally define the edge-cloud resource 
allocation problem for the aforementioned distributed 
processing scenarios. The formulation is generic in that it can 
be used to model in a unified way any of the aforementioned 
scenarios and many different distributed architectures. We 
consider a number of user devices near the edge that 
continuously produce data, over a prolonged (“infinite”) time 
horizon. These data are fed for processing to the network’s edge 
or cloud resources. Table I contains all the important notations 
introduced in the following.  

Each device y continuously produces data at an average rate 
of 𝜆௬ samples/sec. Depending on the application, the sample 
may be a number, a picture, a voice or video segment, etc. Each 
algorithmic instance j (e.g., a specific ML application) receives 
data (i.e., samples) generated at a set of devices 𝑌௝ that generate 
a total data set that is denoted by Dj. An ML algorithm can be 
further characterized as 𝑗௫ for training and 𝑗௜ for inference. The 
set J contains all the algorithmic instances to be supported by a 
given infrastructure. The processing of algorithm j is divided 

into a set of distributed tasks 𝑇௝ = {𝑡௝ଵ, 𝑡௝ଶ, … , 𝑡௝௄} (or even one 
task, in case of, e.g., lightweight inference) that are executed in 
parallel at respective workers. Each task 𝑡௝௞ is responsible for 
processing a subset 𝑑௝௞ of the entire dataset 𝐷௝  of algorithm j. 
In particular, task 𝑡௝௞ processes the data samples in 𝑑௝௞ that are 
generated by a subset of devices 𝑦௝௞ belonging to the set of 
devices 𝑌௝  feeding algorithm j. Thus, a subset of devices and 
their generated data form a (sub)task of an algorithm. In the case 
of a training ML task 𝑡௝௞, the loss function that the task aims to 
minimize on its respective dataset is of the form: 

𝑓௝௞(𝑤) =
1

ห𝑑௝௞ห
෍ 𝑓௟(𝑤)

௟∈ௗೕೖ

                           (1) 

where f is a per-sample loss function, | ∙ | denotes the size of a 
set, w is the model parameter vector and l a training data sample. 
The overall training of ML algorithm j takes into account all of 
its tasks, and aims to optimize: 

min 
௪

𝐹௝(𝑤) =
∑ 𝑑௝௞𝑓௝௞(𝑤)௞

ห𝐷௝ห
                          (2) 

over the entire data set Dj. The idea in Eq. (2) is that all the 
parallel tasks tjk in which algorithmic instance j has been 
decomposed contribute to its loss function proportionally to 
their respective data sizes (i.e., with weight 𝑑௝௞/ห𝐷௝ห). 

We assume that the worker nodes running algorithm 𝐽  
exchange intermediate results (the weights, in the case of an ML 
algorithm) every 𝑃௢ seconds, where the symbol 𝑜 represents 
classes of algorithms with different time scales. For example, 
we could have three different classes (𝑜 ∈ {1,2,3}), one for 
training requiring extensive time that is not time critical, one for 
time-critical inference, and one for generic inference. 
Therefore, the time axis can be viewed as divided in time 
periods of duration 𝑃௢ (Fig. 2) during which a certain number 
of samples are processed at the resource (worker) where they 
are gathered. Note that, for stability, the average number of 
samples that are processed at a resource during a period should 

 

Fig. 1 The abstract architecture considered 
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be equal to the average number of samples generated within a 
(previous) interval of duration 𝑃௢ at the corresponding devices 
that send their samples to that resource. The periods are 
asynchronously defined for each resource, in the sense that their 
start (and finish) times are not generally aligned. The devices 
feed an algorithm either continuously (streaming) or in batches 
(at the end of a period) by uploading their data to the appropriate 
processing, storage, memory and network resources. During a 
period, a resource unit performs computations by processing a 
sample upon its arrival or a batch of data received at the 
previous period (i.e., until the current period begins). At the end 
of a period the worker sends the new values of its parameters 𝑤 
to an aggregation node or to the rest of the workers, depending 
on the architecture. The parameters are updated by minimizing 
the overall loss function, e.g., given by Eq. (2), and the new 
values of the parameter vector 𝑤 are communicated to the 
worker nodes. Note that in the case of synchronous training, the 
aggregation server has to wait until it has received all the new 
set of parameters, before starting a new period. In asynchronous 
training, the weights of the parameters can be incorporated 
asynchronously as they arrive. Therefore, in synchronous 
training there is a notion of an iteration (period) that all worker 
nodes operate in. In asynchronous training the worker nodes 
may be at a different iteration, or use different period durations. 
In the synchronous case, the worker nodes have to send updates 
every fixed (or upper-bounded) amount of time. In the 
asynchronous case they do so every some amount of time on 
average. Also note that the number of a DML model parameters 
can be pruned [32], if desired, to reduce model size and the 
related communication and computation requirements. 

 
A. Communication and Computation phase 

The total time to complete the processing of a batch is 

𝑃௢ = 𝑃௢
௣௨௟௟

+ 𝑃௢
௖௢௠௣

+ 𝑃௢
௣௨௦௛

+ 𝑃௢
௨௣ௗ

          (3) 

where 𝑃௢
௣௨௟௟  is the time required for a worker to pull the 

parameters that other workers have computed, 𝑃௢
௖௢௠௣ the total 

computation time required to finish the training, 𝑃௢
௣௨௦௛ the time 

required for a worker to push the parameters it has computed 

and 𝑃௢
௨௣ௗ the time required to update the parameters to the 

current values. In the case of asynchronous iterations, the terms 

in Eq. (3) should be interpreted as mean values. 𝑃௢
௨௣ௗ is roughly 

proportional to the size of parameters that have to be updated, 
over the computational power of the resource that performs the 
update (aggregation). It is generally of small importance 
compared to the other variables and we will ignore it for the rest 
of the paper. Depending on the architecture of each algorithm, 
there could be different definitions and relationships between 
the timings. We denote the aggregated roundtrip 
communication time by 𝑃௢

௖௢௠௠, with 

𝑃௢
௖௢௠௠ = 𝑃௢

௣௨௟௟
+ 𝑃௢

௣௨௦௛
                          (4) 

The data involved in both pulling and pushing are largely the 
same in type and quantity. Therefore, the two timings are 
considered equal, yielding  

𝑃௢
௖௢௠௠ = 2 ൬

𝜇

𝛽
+ 𝛿൰                             (5) 

where 𝜇 the size (in bits) of the model parameters, 𝛽 the 
available bandwidth (in bits per second – bps) and 𝛿 the 
propagation delay (in sec). The computation time is equal to: 

𝑃௢
௖௢௠௣

=
𝑠𝐻

𝑝
                                        (6) 

where 𝑠 is the number of samples that have to be processed, H 
is the number of times a sample is processed (number of epochs 
in the case of DML), and p is the processing power in samples 
processed per sec. In the evaluation section we will present a 
more detailed version of the above equation.  

Depending on the architecture of the distributed algorithm, 
there could be different relationships between the durations 
𝑃௢

௖௢௠௠ and 𝑃௢
௖௢௠௣. Assuming that the workers first complete a 

computation round and then send the model weights for 
aggregation/averaging (i.e., no overlapping of communication 
and computation times), we have: 

𝑃௢ = 𝑃௢
௖௢௠௣

+ 𝑃௢
௖௢௠௠    (7) 

Thus, 𝑃௢
௖௢௠௠ = 𝜔𝑃௢

௖௢௠௣ , where ω=
ଶ௣ቀ

ഋ

ഁ
ାఋቁ 

௦ு
. 

The scalar ω represents the percentage communication 
overhead. It depends on various parameters, including the 
specific model, the communication architecture (e.g., all reduce 
or aggregation server), and we expect ω <1 in most if not all 
cases of interest. For example, in very large-scale distributed 
ML, the communication time can take nearly half of the time of 
training [22]. In the case of DML, if we assume pipelining the 
communication overhead can be reduced up to 95%, and a 
perfect overlap of computation and communication can be 
achieved [21], where 𝑃௢ ≈ 𝑃௢

௖௢௠௣. In the case of inference, the 
communication overhead is either zero (i.e., inference executed 
in just one resource unit) or generally much lower than that for 
the case of training (there is no communication of weights over 
many epochs like in training). Moreover, the efficient layer 
partitioning (model parallelism) of a Deep Neural Network 
results in low communication overhead [3]. 

At each time period 𝑃௢, device y produces and sends for 
training 𝑠௬ = 𝑃௢𝜆௬ samples. Each ML task 𝑡௝௞ has to process a 
total number of samples equal to  

 
Fig. 2 An example of a distributed ML algorithm processing 
samples at various worker nodes, who exchange model 
parameters through an aggregator server. Device y sends either 
continuously at rate λy or in batches of average size 𝑃௢𝜆௬ every 
period 𝑃௢ data for processing at a worker node assigned to it. 
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𝑠௝௞ = ෍ 𝑃௢𝜆୷ =

௬∈௒ೕೖ

   𝑃௢𝜆୨୩                              (8) 

(where 𝜆୨୩: = ∑ 𝜆୷ )௬∈௒ೕೖ
  within time 𝑃௢ for the system to be 

stable, as we assume continuous arrivals over an infinite time 
horizon. The computation power assigned to a worker node 
should be enough to process the received samples (for a given 
number of epochs Hj of an ML training algorithm) within time 
𝑃௢. Otherwise, the work generated would be more than the work 
that can be completed within a period and the system would be 
unstable. The required number of epochs Hj depends on the type 
of the ML algorithm j (e.g., layers of a Neural Network), and 
the desired convergence accuracy (as determined by prior 
profiling-experimentation). In the simulation section we 
provide more details about how the number of epochs affects 
the processing requirements and its impact on the whole 
monetary processing and bandwidth costs and trade-offs.  

The communication resources allocated for transferring the 
data from a device to the worker node assigned to it, should also 
be sufficient. The communication resources needed between 
the worker nodes and the aggregator are generally small. These 
parameters are of small size (numbers) when compared to that 
of the data samples (e.g., images). Therefore, the bandwidth 
requirements for transferring the weights w of the model can be 
ignored in the resource allocation problem and the main 
communication parameter of interest is the propagation delay 
(from the device to the edge or to the cloud).  

B. The Vector of Resource Requirements 

In order to perform the updates, each task needs certain 
computation, memory, storage and network resources during 
each time period. In particular, our assumption (valid in the 
practical use cases mentioned in Section I) is that each task 𝑡௝௞ 
running on a worker node has processing (CPU or GPU based), 
memory, storage, ingress bandwidth requirements that are 
roughly proportional to the number 𝑆௝௞ of samples it receives 
and processes. If the communication architecture is a variant of 
parameter server, the related resources include a number of 
aggregators that also have to be allocated. Note also that this 
proportionality assumption accounts for both model and data 
parallelism. Moreover, the degree of parallelization of each 
algorithm, is captured by the number of different tasks within 
each algorithm. These are also notable differences of our work 
compared to pre-existing offloading algorithms for generic 
single tasks. The requirements are thus described by a vector of 
resource requirement proportionality coefficients  

𝑅௝௞௔ = [𝐺௝௞௔ , 𝑀௝௞௔, 𝑉௝௞௔, 𝐵௝௞௔ , 𝛩௝௞௔] 
where G, M, V, B, and Θ are parameters that reflect the amount 
of processing (𝐺௝௞௔  in e.g. Floating Point Operations – FLOP), 
memory (𝑀௝௞௔, in bytes), storage (𝑉௝௞௔, in bytes), number of 
bits (𝐵௝௞௔) communicated to the nodes, and processing 
(𝛩௝௞௔  in FLOP) for weight aggregating purposes that each 
sample requires for the specific ML task 𝑡௝௞ of algorithm 𝑗, and 
for a specific accuracy level 𝛼. The rationale for introducing the 
resource requirements vector  𝑅௝௞௔ is that each sample (e.g., 
jpeg image) in the task requires some specific processing in 
order to be handled, some specific memory and storage, and it 

has a given size to be communicated, for a given accuracy 𝛼. It 
is worth noting that we consider here accuracy as a kind of 
resource that can be tapped to reduce processing and bandwidth 
requirements (“approximation as a resource”), with higher 
accuracy typically requiring more resources. So, depending on 
the availability or not of the physical resources, the accuracy 
can be adjusted accordingly. The accuracy of an ML algorithm 
depends on many factors, some of which can controlled/ 
adjusted, such as the number of epochs H used, weight 
regularization, depth of the Neural Network, and mini-batch 
size. For example, accuracy can be improved for small mini-
batch sizes. However, this increases the training time as more 
frequent calls for expensive multiplications are required [33]. 
The entries of vector  𝑅௝௞௔  depend on accuracy α in different 
ways: e.g., if accuracy in a Neural Network algorithm j is 
controlled through the number of epochs Hj used (i.e., the 
number of times each sample is used in computations), then 
𝐺௝௞௔ will depend linearly on Hj, while the other parameters of 
𝑅௝௞௔  will be mostly independent of Hj. If accuracy is controlled 
through the number of precision bits used in encoding a sample, 
then the dependence of 𝐵௝௞௔  on it is linear, while the impact on 
the other vector parameters will be different. We assume that 
the dependence of the requirements vector 𝑅௝௞௔on the desired 
accuracy level α is a known function of α. In practice, the 
dependence is complicated and not fully known. Therefore, we 
consider a finite and coarse granularity of accuracy levels. For 
example, we could have a finite set of options A={αgood, αmedium, 
αlow}, in which case we assume we know 𝑅௝௞௔  for α ∈A. The 
exact resource requirements for each task 𝑡௝௞ and accuracy level 
α can be determined by profiling or through ML benchmarks, 
such as MLPERF [34]. Certain strategies can be employed to 
determine the requirements for a specific set of parameters such 
as the number of epochs or batch sizes (that affect the accuracy) 
for a certain application and execution environment [35]. The 
process involves modified two inputs of the algorithm, and 
monitoring their impact on accuracy. For example, for a given 
set of parameters (e.g., three different batch sizes or number of 
epochs) we can increase the number of GPUs for a given task 
and keep all the other parameters the same. Then we monitor 
the resulting accuracy as a function of the processing power for 
the different model parameters. Additionally, we can scale the 
batch sizes without significantly reducing the accuracy. 
Depending on the number of data samples, we can use different 
functions of scaling (e.g., linear, cubic) based on the number of 
GPUs and monitor the resulting accuracy. A small resource 
overprovisioning can be used to ensure that the allocated 
resources will always be adequate for a given accuracy. 

In our modeling, it was natural to assume that the amount of 
the different type of required resources proportionally depends 
on the number (or rate) of the samples. The proportionality 
constants that convert samples to requirements are given by the 
entries in  𝑅௝௞௔ . Of course, the  𝑅௝௞௔ values depend on the type 
of algorithm 𝑗 (e.g., parameters G, M, V, B will be different for 
DML image or voice recognition), on the compression 
techniques used to encode an image or voice sample, etc. More 
specifically, a task 𝑡௝௞ has processing workload 𝐺௝௞௔𝑆௝௞ 
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(measured, e.g., in number of FLOP) that has to be executed 
within a time period 𝑃௢. Assuming perfect pipelining of 
computation and communication, the task requires processing 
rate 𝐺௝௞௔𝑆௝௞ 𝑃௢⁄ = 𝐺௝௞௔ ∑ 𝜆୷௬∈௒ೕೖ

 in, e.g., FLOP per sec, or 

samples processed per sec. If pipelining is not used, the required 
processing rate should be increased by 1+ω, to account for the 
communication overhead (the same work has to be completed 
within time P0/(1+ω)). Similarly, a task requires memory 
𝑀௝௞௔𝑆௝௞, storage 𝑉௝௞௔𝑆௝௞ (as the samples have to be stored for 

the entire duration 𝑃௢) and aggregation processing 𝛩௝௞௔𝑆௝௞. The 

required ingress bandwidth constant of proportionality 𝐵௝௞௔  
can be set equal to the number of bits needed to represent a 
sample (representing a measurement, an image, a sentence, 
etc.). The total ingress data required for the worker node 
running task 𝑡௝௞ will then be 𝐵௝௞௔𝑆௝௞ , and the ingress rate 

𝐵௝௞௔𝑆௝௞/𝑃௢. When assigning tasks to resources, we will use this 
total ingress bandwidth requirement as an allocation criterion 
(ignoring the number of links on the path connecting the worker 
with the specific devices that feed data to it).  

C. Edge-Cloud Resource Infrastructure Model 

The infrastructure on which the tasks will be executed, 
consists of an edge and a cloud network. The edge network 
includes a set of nodes 𝑁 that can be used by the tasks. More 

specifically, each edge node 𝑛 has finite 𝑅௡
ீ௤

  processing (GPU 
or CPU) model 𝑞 capacity (e.g., in FLOP per sec or 
samples/sec), 𝑅௡

ெ memory, 𝑅௡
௏  storage, 𝑅௡

஻ incoming b/w to 
receive the data from the devices and 𝑅௡

௵ aggregator processing 
capacity. Obviously, the sum of the required resources of all the 
tasks that are assigned to a node should not exceed the node’s 
capacity. The cloud network, on the other hand, is assumed to 
have infinite resources. One difference between the edge and 
the cloud are the respective monetary processing and bandwidth 
costs. The cost to use a model q processing unit is defined as 
𝐶ா

௤ at the edge and 𝐶஼
௤ at the cloud. The cost of ingress b/w is 

defined as 𝐶ா
௕௪ at the edge and 𝐶஼

௕௪ at the cloud. Finally, 
another differentiator between the edge and the cloud is 
propagation delay. Since the edge network is much closer to the 
devices, the propagation delay to the edge, denoted by 𝛥ா, is 
expected to be significantly lower than the respective delay to 
the cloud, denoted by 𝛥஼. Certain algorithms j (e.g., ML 

inference jobs) may have stringent constraints on the maximum 
acceptable propagation delay, denoted by 𝛿௝ (𝛿௝ = ∞ for delay 
insensitive jobs). This should be accounted for by the resource 
allocation algorithm. The propagation delay is less important 
for DML training scenarios, where computation requirements 
and processing times are generally larger. Nevertheless, a 
similar constraint can be introduced in the formulation in a 
straightforward way for the training scenarios as well. Typical 
values for the delay and the monetary costs of the edge and the 
cloud [36][37][38][39] are given in Fig. 3. More details for 
these values are provided in Section IV. 

The goal of the resource allocation algorithm is to reserve the 
appropriate number of resources for the tasks (including the 
specific edge node where each task will be processed), while 
minimizing certain objectives and satisfying all the constraints.  

IV. RESOURCE ALLOCATION ALGORITHMS 

A. ILP Algorithm 

In this subsection we present an ILP algorithm for assigning 
edge and cloud resources to the tasks. The algorithm receives 
certain inputs, and using some related constraints aims to 
allocate the network’s resources (the variables of the 
algorithm), while satisfying the objective. The formulation 
assumes one aggregation (parameter) server for each ML 
training job, but can be modified in a straightforward way to 
account for other algorithmic instances, e.g., DML with 
multiple aggregation servers or for all-reduce architectures. The 
algorithm provides a solution that remains valid for as long as 
the input parameters are valid. Whenever the parameters change 
significantly (e.g., the generation rates 𝜆୷ in samples/sec for 
device y) in a way that renders current resources inadequate to 
finish the tasks on time, the algorithm is re-executed to yield a 
new solution. During this re-execution of the algorithm (either 
of the ILP or of the heuristic to be given in this or following 
subsection, respectively), one may opt to treat the variables 
indicating the allocation of the other tasks as fixed, so that the 
other tasks are unaffected. Another possibility is to penalize the 
difference between the current and the new solution so that 
these differences are minimized.  

The objective of the resource allocation problem is to 
minimize the total cost to serve the jobs and to maximize their 
accuracy, subject to delay constraints and also constraints on 
the available edge resources. Note that the two individual 
objectives are contradictory. To maximize accuracy, additional 
resources are required to finish the computations within the 
training period 𝑃௢

௖௢௠௣, also increasing the cost. We employ a 
weight 𝑊 to control the importance of each individual objective 
(cost, accuracy) in the objective function of the ILP algorithm. 

 
Inputs: 

𝑁, 𝑅௡
ீ௤ , 𝑅௡

ெ, 𝑅௡
௏ , 𝑅௡

஻, 𝑅௡
௵ , 𝐽, 𝑇௝ , 𝑄, 𝐶ா

௤, 𝐶ா
௕௪,𝐶஼

௤, 𝐶஼
௕௪, 𝛿஼, 𝛥௝, 𝑊, 

𝐴, 𝐴௝, 𝜆௝ 
Variables: 

𝜉௡
௝௞௤௔, 𝜉஼

௝௞௤௔ 
 

 
Fig. 3  Indicative values of edge and cloud delay, 

processing and bandwidth costs 
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The symbolism in binary variable 𝜉௡
௝௞௤௔ means that there is a 

different variable 𝜉 for every different node 𝑛, for every 
different algorithmic job 𝑗, for every different task 𝑘, for every 
different GPU model 𝑞, and for every different accuracy 𝛼. 
Objective: 

The objective is to minimize the total cost for serving the 
jobs and to maximize the accuracy. The relative importance of 
each individual objective is controlled by a weight W. The cost 
of each job depends on the amount of b/w, the model of GPU 
and whether it is served at the edge or the cloud: 

 

𝑚𝑖𝑛

⎝

⎜
⎜
⎜
⎜
⎛(1 − 𝑊) ෍ ෍ ෍ ෍ ൮

෍ 𝜉௡
௝௞௤௔

𝜆୨୩൫𝐶ா
௕௪𝐵௝௞௔ + 𝐶ா

௤
𝐺௝௞௤௔൯

௡

+𝜉௖
௝௞௤௔

𝜆୨୩൫𝐶஼
௕௪𝐵௝௞௔ + 𝐶஼

௤
𝐺௝௞௤௔൯

൲

்ೕ௔௤௝

−𝑊 ෍ ෍ ൮
෍ 𝜉௡

௝௞௤௔
𝑎௝

௡

+𝜉௖
௝௞௤௔

𝑎௝

൲

்ೕ௝ ⎠

⎟
⎟
⎟
⎟
⎞

 

         (9) 
 

Subject to the following constraints: 
 Each task of a job should be served once with one accuracy 

option, at the edge or at the cloud and each task should use 
only one model of GPU:  

∀𝑗, ∀𝑡௝௞: ෍ ෍ ෍ 𝜉௡
௝௞௤௔

௔௤௡∈ே

+ ෍ ෍ 𝜉௖
௝௞௤௔

௔௤

= 1          (10) 

 
 Each edge node should have enough (#GPUs, memory, 

storage, bandwidth, aggregator) capacity to serve the 
assigned tasks. So, for all nodes we sum all the resources 

that a job uses (determined by variables 𝜉௡
௝௞௤௔), and this 

sum should be less than the capacity of that node: 

∀𝑛 ∈ 𝑁: ෍ ෍ ෍ ෍ 𝜉௡
௝௞௤௔

𝐺௝௞௔𝜆୨୩

௔௤௧ೕೖ௝

≤ 𝑅௡
ீ௤  

∀𝑛 ∈ 𝑁: ෍ ෍ ෍ ෍ 𝜉௡
௝௞௤௔

𝑀௝௞௔

௔௤௧ೕೖ௝

≤ 𝑅௡
ெ 

∀𝑛 ∈ 𝑁: ෍ ෍ ෍ ෍ 𝜉௡
௝௞௤௔

𝑉௝௞௔𝜆୨୩

௔௤௧ೕೖ௝

≤ 𝑅௡
௏         (11) 

∀𝑛 ∈ 𝑁: ෍ ෍ ෍ ෍ 𝜉௡
௝௞௤௔

𝐵௝௞௔𝜆୨୩

௔௤௧ೕೖ௝

≤ 𝑅௡
஻ 

∀𝑛 ∈ 𝑁: ෍ ෍ ෍ ෍ 𝜉௡
௝௞௤௔

௔௤௧ೕೖ௝௫

≤ 𝑅௡
௵ 

 In order for a delay sensitive (e.g., inference) job to be 
served to the cloud, its maximum acceptable delay should 
be respected: 

∀𝑗௜ , ∀𝑡௝௞ ∶  ෍ 𝜉௖
௝௞௤

௤

𝛿௝ ≤ 𝛥஼                               (12) 

 The minimum required accuracy of the related jobs should 
be respected: 

∀𝑗௫, ∀𝑡௝௞: ෍ ෍ ෍ 𝜉௡
௝௞௤௔

𝑎௝

௔௤௡∈ே

+ ෍ ෍ 𝜉௖
௝௞௤௔

𝑎௝

௔௤

≥ 𝛼௝
௠௜௡   (13) 

 
In Eq. (9), the objective is to obtain a low total cost of serving 

all the jobs (first part) with high accuracy (second part). The 
first part of the right-hand side of the equation refers to the cost 
of a job if it is served at an edge node n, while the second part 
corresponds to the cost of a job served at the cloud. The edge 
(or cloud) cost consists of the b/w 𝐵௝௞௔𝜆jk required by each task, 

times the per unit cost of b/w at the edge 𝐶ா
௕௪ (or at the cloud 

𝐶஼
௕௪), plus the model q processing units 𝐺௝௞௤௔𝜆௝௞ of each task, 

times the cost of each processing unit 𝐶ா
௤ at the edge (or 𝐶஼

௤ at 
the cloud respectively). In the second part of Eq. (9) we subtract 
(thus maximize) the (weighted) accuracy of the tasks that are 
served at the edge and at the cloud. Equation (10) ensures that 
all tasks of all jobs will be served at the edge or at the cloud. 
The set of equations in (11) constrains the sum of resources 
(processing, memory, storage, b/w and aggregators in case of 
training jobs) used by the tasks at an edge node, to be less or 
equal than the respective capacity of that edge node. In the case 
of all-reduce or other architecture, the last equation is removed. 
Equation (12) guarantees that if a delay-sensitive job is served 
at the cloud, then the maximum acceptable delay of the job is 
less than the delay of the cloud. Finally, Eq. (13) ensures that if 
a job has a minimum required accuracy, this will be respected. 

The solution of the algorithm consists of the binary values of 

all 𝜉௡
௝௞௤௔, 𝜉஼

௝௞௤௔ variables. So, if for 𝑛 = 1, 𝑗 = 1, 𝑡 = 1, 𝑞 =

1, 𝑎 = 1, the related 𝜉ଵ
ଵଵଵଵ is equal to 1, this means that at the 

first node of the edge the first task of the first job is served, 
using the first option of the available GPU models, and the first 
option of the available accuracy options. To infer related 
statistics such as the percentage use of a node’s resources or the 
mean accuracy of the tasks, we can sum over the set of decision 
variables in the following way. For a specific node 𝑛 we sum 
all 𝜉 variables for all the jobs, tasks, etc., each multiplied by the 
related resources that the specific task requires. The result is the 
resources of node 𝑛 that are occupied by tasks assigned to it. To 

calculate the mean accuracy of the tasks, we sum all 𝜉௡
௝௞௤௔ and 

𝜉஼
௝௞௤௔, again for all possible combinations of the parameters, 

with the 𝜉 values being weighted by the % accuracy that 
accuracy options 𝑎 correspond to, and dividing by the number 
of tasks, to obtain the mean accuracy achieved by the tasks. 
Finally, to calculate the total monetary cost of all the tasks, we 
again sum over all possible 𝜉 values, and we employ the first 
part of Eq. (9) that corresponds to the monetary cost. 

The ILP algorithm can provide an optimal solution for the 
resource allocation problem. However, in certain instances the 
complexity of the problem may result in unacceptable running 
times. For example, in the case where we have a large number 
of edge nodes, jobs, tasks, GPU models and accuracy options, 
the number of binary variables will be large. This will result in 
a substantial amount of time to create the constraint equations, 
prepare the ILP solver and find a solution. In these cases, an 
efficient heuristic algorithm can provide faster a solution that, 
under certain circumstances, can also be near-optimal. 

B. Heuristic algorithms 

We considered two kinds of heuristic algorithms: a greedy 
one, and one based on simulated annealing [40]. The greedy 
algorithm is described in the respective listing. Its input is 
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similar to the ILP algorithm. The difference is that the greedy 
version receives as input the order in which the tasks will be 
allocated. The algorithm first pre-calculates the minimum 
amount of resources required by a task; this will be used at later 
steps of the algorithm. Then the objective cost to allocate each 
task at either the edge or the cloud is pre-calculated. Afterwards, 
for the given ordering of the jobs, the algorithm tries 
sequentially to assign each task to the appropriate location. If 
the location with the least cost is the cloud, then it simply 
assigns it there, since the cloud has infinite resources. If the 
location with the least cost is the edge, then it starts searching 
the edge nodes iteratively, until it finds a node with adequate 
resources. If such a node is found, the task is allocated, and the 
node’s available resources are decreased by the number of 
resources the task requires. If the node does not have enough 
resources to serve any other task, the node is removed from the 
respective list. In the case that there are no available edge 
resources to serve the task, then it is served by the cloud.  

The order in which the heuristic algorithm (sequentially) 
considers the tasks, affects the solution obtained. A simulated 
annealing algorithm can be used to search for better solutions 
(different serving orders) according to the total objective cost. 
Simulated annealing iteratively searches for solutions to 
approximate the global optimum of a function. At each step the 
algorithm considers some neighboring states/solutions 
according to a parameter called “temperature”. At the beginning 
of the iterations the temperature is set to a high value. The 

algorithm randomly considers a new state at some distance from 
the current solution. The higher the temperature, the higher the 
distance of the new candidate state. As the iterations increase, 
the temperature decreases, and the algorithm converges to the 
final solution. There are additional nuances in the application 
of the algorithm [40]. In our case, for a given number of 
iterations, the algorithm randomly changes the serving order of 
a certain number of tasks. The higher the temperature, the larger 
number of tasks change order. The candidate solution is then 
considered to be served according to the aforementioned greedy 
algorithm. When the iterations end, the algorithm returns the 
best objective cost it has found, and the specific allocation of 
the tasks at the edge and at the cloud. 

C. Optimality and complexity of the algorithms 

The resource allocation problem at hand is a combinatorial 
optimization problem. We are given a set of tasks. We must 
figure if, where, how many, and under what options can the 
tasks be allocated at the edge (or at the cloud). A simpler 
allocation problem would be bin packing. In this case, items of 
different sizes (in our case tasks with only one resource 
requirement) must be packed into a finite number of bins, each 
of a fixed given capacity (in our case one type of edge node 
resource). This is a known NP-complete problem, implying that 
our problem is also NP-complete, since even its simplified 
version is NP-complete.  

The ILP formulation given in Section IV.A provides the 
optimal solution, when tractable and solved with an exact 
method (e.g., branch and bound, cutting planes). However, the 
required time may be non-polynomial in general. 

The complexity of the greedy algorithm mainly depends on 
the total number of tasks that have to be allocated. The 
algorithm first computes the cost of serving each task at the 
edge or the cloud for all possible CPU/GPU models 𝑞 and 
accuracies 𝑎. If a task has to be served at the edge, a total of 𝑛 
nodes have to be searched in the worst case. When a node does 
not have enough resources to serve any task, it is removed from 
the list. Also, the algorithm selects the first node that has 
enough resources to serve the task. In any case, the complexity 
of the greedy algorithm is 𝑂(ห𝑇௝ห·|Q|·|𝐴| + ห𝑇௝ห·|𝑁|). The 
simulated annealing, tries a number of different orderings 𝜓, so 
its complexity is 𝑂൫ห𝑇௝ห·|Q|·|𝐴| + ห𝑇௝ห·|𝑁|·𝜓൯. Regarding the 
optimality, if the edge resources are enough to serve all the tasks 
that have to be served at the edge according to the objective 
cost, a simple greedy algorithm provides a near-optimal 
solution. Otherwise, the solution is (highly) likely to be 
suboptimal, depending on the deficit of the edge resources. 
Note that in many cases, the simulated annealing cannot find 
the optimal solution, regardless of the number of iterations. The 
reason is that in each step, the algorithm decides to allocate a 
task by minimizing the individual objective cost of the task. 
This cost depends on the chosen accuracy and location (edge or 
cloud). However, the overall optimal policy may sometimes 
involve making an individually suboptimal allocation decision 
for certain tasks. For, example, a task may have to be served at 
the edge, and with the best possible accuracy (meaning a large 
number of GPUs) in order to minimize its individual objective 

Greedy resource allocation algorithm  
Inputs: 𝛵௝ , 𝑄, 𝐴, 𝑁, 𝑅௝௞ , 𝑅௡

ீ௤
, 𝑅௡

ெ , 𝑅௡
௏ , 𝑅௡

஻ , 𝑅௡
௵  

Output: The allocation of all jobs at the edge/cloud, respective 
metrics such as cost, usage statistics etc. 
Procedure: 
1:    Allocate tasks with strict constraints (accuracy, delay)  
2:    Find min task resource requirements (𝑚𝑖𝑛𝑅) among all tasks  
3:    for task 𝑡௝௞   
4:      success=0 
5:         for a_gpu_model ∈ 𝑄 
6:               for an_accuracy ∈ 𝐴 
7:        Calcul cost (cost+acc) to serve at cloud or edge 
8:        Select least expensive option (location, gpu, accuracy) 
9:              end for 
10:       end for 
11:       if  location==edge 
12:  for node n∈ N 
13:        if  𝑅௡

௫ <𝑅௝௞  
14:            Allocate 𝑡௝௞  to n 
15:                      Update the current resources of node n 
16:            success = 1   
17:                      break  
18:        end if 
19:                  if  𝑅௡

௫ < 𝑚𝑖𝑛𝑅 
20:            Remove n from N 
21:                  end if 
22:              end for 
23:         end if 
24:         if  success == 0  
25:              Allocate 𝑡௝௞  to cloud 
26:         end if 
27:    end for 
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cost. However, the overall optimal allocation may actually be 
to serve it at the edge with a little worse accuracy, thus less 
required GPUs, so that certain edge resources are left for other 
tasks to also be served at the edge. Note that if a task has to be 
definitely served with a specific targeted accuracy, this is taken 
into account by the algorithm. These scenarios are difficult and 
computationally expensive to be considered by a heuristic 
algorithm.  

D. Implementation of the algorithms 

To implement the resource allocation algorithms, the 
following inputs must be calculated: the vector of resource 
requirements 𝑅௝௞  of each task and the vector of available 
resources 𝑅𝑛 of each node. In Section III.B.1 we mentioned the 
use of profiling to determine the vector of resource 
requirements. As far as vector 𝑅𝑛 is concerned, we assume that 
before each resource assignment takes place, all edge nodes will 
communicate their current resource availability, so that the 
allocation algorithm will employ an updated figure.   

E. Convergence of the algorithms 

Regarding the ML convergence properties, they depend on 
the type of algorithm used, the specific architecture, its 
parameters, etc. [33]. We don’t look into the convergence 
properties in any detail, as it is outside the scope of our paper. 
Convergence properties are, however, modeled and accounted 
for in our work through the resource requirement coefficient 
vectors. These vectors characterize the ML task at hand, as they 
define the resource usage (number of resources, time used, 
epochs, etc.) required to achieve a specific accuracy.  

Regarding the ILP convergence, note that it is not guaranteed 
to find the optimal solution in polynomial time. However, in 
our experiments we noticed that the ILP solver was able to find 
optimal solutions (as demonstrated by the optimality gap of the 
solution given by the ILP solver) in a few seconds or minutes 
(depending on the scenario) as describe in the evaluation 
section. Whether or not this time is acceptable, depends on the 
specific use case. If it is not acceptable, the optimality 
requirement can be relaxed. 

The aforementioned algorithms allocate resources at the edge 
or the cloud with the objective to minimize the total cost and 
maximize the accuracy, while satisfying the constraints and the 
delay requirements of the jobs. Since there is a large number of 
optimization parameters, the solution to the problem is not 
trivial. In the following section we examine various scenarios 
and evaluate the trade-offs in each case. 

V. EVALUATION RESULTS 

To evaluate our resource allocation framework and quantify 
the edge-cloud cost relationships, we performed a number of 
simulation experiments. We used Python and the Pyomo [41] 
optimization software to code the ILP, and IBM CPLEX [42] 
to solve the problem on a desktop computer with a quad-core 
CPU at 4 GHz with 16 GB RAM. 

A. Simulation parameters 

To demonstrate the running times of the algorithms in 

resource demanding circumstances, we initially assumed a 
large, 60-node edge network with finite resources. Each edge 
node has 5 racks, 1 rack has 10 servers, and 1 server has 4 low 
cost and 2 higher cost GPUs, for a total of 200 low cost and 100 
higher cost GPUs per node. Each edge node is also considered 
to have the following resources available exclusively for 
distributed computation purposes: 25 GB RAM, 10 TB of 
storage, 10 Tbps incoming bandwidth and 6000 CPU physical 
cores (that could correspond to approximately 100 CPUs). We 
also assumed a cloud network with infinite resources. 

We considered a scenario consisting of a total of 100 training 
image recognition ML jobs. The size Bj of each sample (image) 
of a job j is chosen uniformly from the following set of values: 
[0.4, 0.8, 1.2, 1.6, 2, 2.4] MBs / sample. The available GPU 
models q were NVIDIA DGX-1 with 1 (low cost) or 8 (higher 
cost) GPU V100 16G. The respective cost of these GPUs at the 
cloud is $2.08/hour and $16.7/hour [36]. The b/w cost to 
transfer data to the cloud is $0.01/GB [36]. More specifically, 
the respective processing instance name in Amazon is 
p3.2xlarge or p3.16xlarge, and the pricing corresponds to 
reserved instances. The required b/w of each task 𝑡௝௞ is derived 
by multiplying the generation rate 𝜆௝௞ of samples/sec by the size 
Bj in MBs/sample and by the duration of period 𝑃௢ in seconds. 
This figure equals to the amount of data that have to be 
transferred within one period. The calculation of the required 
storage and memory is relatively trivial and does not play a 
significant (monetary) role in the resource allocation problem, 
so it will be ignored in the performance results. 

We assume that the jobs do not have a minimum required 
accuracy. This allows for clear evaluation of the allocation 
trade-offs between resource costs and accuracy. We examined 
a set of different parameters to evaluate the trade-offs between 
processing and b/w cost at the edge and at the cloud. More 
specifically, we assumed different: i) edge vs cloud bandwidth 
costs, ii) edge vs cloud processing costs, iii) number of epochs. 
According to [37] the edge’s b/w costs can be approximately 
0.1 times the cloud’s. We therefore assumed that the edge b/w 
cost 𝐶ா

௕௪ could be 𝜌௕௪⋲[0.5, 0.1] times the cost 𝐶஼
௕௪  to transfer 

the data to the cloud, that is, 𝐶ா
௕௪=𝜌௕௪𝐶𝐶

𝑏𝑤. Moreover, according 
to [38], the edge processing costs 𝐶ா

௤ can be approximately 
𝜌௤=1.5 times the cloud processing costs 𝐶஼

௤, that is, 𝐶ா
௤=𝜌௤𝐶𝐶

𝑞. 
We therefore assumed that the processing costs at the edge 
could be 𝜌௤⋲[1.5, 2] times more than that of the cloud.  

Each of the 100 training jobs consists of either 3, 4,…, 7 ML 
image recognition tasks, uniformly distributed. The sum of the 

TABLE II 
IMPORTANT SIMULATION PARAMETERS 

 
Symbol Value Symbol Value 

N 60 nodes 𝑃 30 sec 
J 100 jobs |𝑇௝௫| 3, 4,…,7 tasks 

     λ 
15 

samples/sec 
𝛱௤  

166, 566 
samples/sec 

𝑅௡
ீ   300 GPUs 𝑅௡

஻ 10 Tbps 
𝐶஼

௕௪ $0.01/GB 𝐶஼
ீ $2.08, $16.7/hour 
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 sample production rates of the devices providing data to task 
tjk is 𝜆௝௞ = ∑ 𝜆௬௬∈௒ೕೖ

 =15 samples/sec. We consider that the 

duration of the training period is 𝑃௢ = 30 seconds, yielding 
𝑆௝௞ = 150 samples processed in each period. The exact number  
of the ML tasks per job, the 𝑆௝௞ and the 𝑃௢ do not play an 
important role to the simulation and the resulting trade-offs. 
They mainly affect the magnitude of the problem (i.e., how 
many processing, b/w, etc., resources each task requires, and 
not the decision for the allocation of the jobs at the edge or 
cloud). We also assume that each ML task could be served with 
two different accuracies 𝐴 = {𝛼௚௢௢ௗ , 𝛼௟௢௪}. Next, we will use 
realistic GPU performance figures to determine the number of 
aforementioned NVIDIA GPU units 𝑈௝௞௤௔ required per task 
and per period, based on the number of samples 𝑆௝௞ of each task 
tjk processed per period and the accuracy αj. To do this, we have 
to take into account the total samples that have to be processed 
during each period 𝑃௢, which is equal to the number of samples 
𝑆௝௞ multiplied by the number of epochs 𝐻௝௞ (i.e., iterations over 
the same number of samples). This figure has to be processed 
by the GPU units (with the performance measured in 
samples/sec[44]), within 𝑃௢ seconds. The computational 
performance 𝛱௤

௔ (of  𝑞 model and 𝑎 accuracy) of 1 GPU V100 
16G unit for image recognition training according to [44] is 
𝛱௤

௔ = 166 or 566 samples/sec for single-precision floating-
point math – FP32 or mixed precision accuracy respectively. 
We assume that the training is fully pipelined, i.e., the 
computation and communication times fully overlap. The 
training performance of a resource q consisting of 8 GPU V100 
units is 𝛱௤

௔ = 1210 or 4160 samples/sec respectively. If a 
sample has to be processed 𝐻௝௞ times (epochs), the total number 
of GPU units required for the ML task is:  

𝑈௝௞௤௔ = ቜ
 𝑆௝௞𝐻௝௞

𝑃௢𝛱௤
௔

ቝ = ቜ
 𝜆௝௞𝐻௝௞

𝛱௤
௔

ቝ                  (14) 

(rounded above so that it is integer). 
The number of epochs H required for certain ML benchmarks 

to reach the required accuracy varies from 5 to approximately 
50 epochs [34]. In other cases, a larger number of epochs (e.g., 
2000) may be required. Since we assume continuous learning 
with many training datasets, a low number of epochs can be 

employed. On a long enough timeline, the accuracy of each ML 
model will converge to the required. We assume that the 
number of epochs H can be [1, 100, 200, 300, 400, 500, 600]. 
The total running time of the ILP algorithm for these realistic 
parameters was 11 seconds. In Section V.B.3 we provide more 
details about the running time of the ILP and the heuristics for 
an even larger problem. 

Finally, we do not assume any inference jobs for the 
evaluation due to space limitations, although we conducted 
related simulations. The results are similar to the training case. 
The main difference is that the GPU performance in the case of 
inference depends on the batch size. The bigger the batch size 
(e.g., number of consecutive images that we want to perform 
image recognition), the better is the performance of the GPU. 
Thus, the less important are the processing costs for the 
allocation of inference jobs.  

B. Simulation Results 

1) Edge vs Cloud allocation decisions 
First, we examined how the different values of some assumed 

parameters affect the allocation of a training task at the edge or 
at the cloud. In Fig. 4 we show the number of training tasks (496 
in total) allocated at the cloud as a function of the number of 
epochs and for different edge/cloud processing and b/w costs. 
For simplicity reasons, we do not depict the allocation of the 
remaining tasks at the edge. In Fig. 4a, the processing cost ratio 
of edge to cloud is 𝜌௤=1.5. When the number of epochs is small 
(thus, relatively little processing is required), all (or most) tasks 
are served at the edge, since the b/w costs are lower than the 
processing costs. As the number of epochs increases, some 
tasks are served at the cloud, depending on the b/w cost ratio. 
The increased number of epochs means that the total processing 
cost of a task play a more important role than the b/w cost to the 
allocation of the tasks. For the b/w edge/cloud cost ratio of 
𝜌௕௪=0.1, the allocation does not change between 200 and 400 
epochs. This is due to the greater importance the b/w costs have 
compared to the processing, under these circumstances. Also, 
even though the difference of edge and cloud processing costs 
is small, for large number of epochs the processing costs are so 
much greater than the bandwidth costs, that many tasks are 
served at the cloud. Note that as we will see in Fig. 5, the cloud 
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serves smaller (in terms of Mbytes) tasks. In Fig. 4b the edge 
processing costs are even more expensive than the cloud’s 
(𝜌௤=2). We notice that the allocation of tasks tips towards the 
cloud more quickly. The different b/w costs still seem to play a 
relatively significant role for the allocation of the tasks. Despite 
the edge processing costs being twice the cloud’s, the edge is 
still more preferable until at least 200 epochs. Overall, from Fig. 
4 we can conclude that the edge is more preferable to serve tasks 
with relatively low processing requirements. The different b/w 
cost ratios in some cases can play a sizeable difference in the 
allocation of the tasks. In Fig. 4b for example, the cloud can 
serve in some cases more than two times more tasks when the 
ratio is 𝜌௕௪ is 0.5 as opposed to 0.1.  

Fig. 5 depicts the mean size in GBs for 500 epochs of a job’s 
task that is served at either the edge or the cloud when the 
edge’s processing costs are 𝜌௤=1.5 times the cloud’s. Similar 
results can be drawn for different epochs and processing costs 
(as long as some tasks are served at the edge and others at the 
cloud). The size of a task depends on the generation rate 𝜆௬ in 
samples/sec of its related devices, the duration of  𝑃௢, and the 
size of each task’s sample. The first two variables are the same 
for all the jobs we considered. Thus, the differentiating factor is 
the size of a task’s sample. Note also that we have assumed a 

random number of tasks per job, implying that the definite size 
of a job depends also on the exact number of the tasks. 
However, this does not significantly affect the decision on the 
allocated location of a job. The increased number of tasks not 
only means more data to transfer (hence increased b/w costs), 
but also more samples to calculate (hence analogous increase 
on the processing requirements). Since we have assumed that 
the performance of a GPU in samples/sec is constant regardless 
of the size of a sample, the differentiating factor in whether a 
task will be served at the edge or at the cloud is the size of its 
samples. We notice that the edge tends to serve tasks with large 
size. It seems that in order for a task to be served at the cloud, 
it has to be significantly smaller than the tasks that are typically 
served at the edge. The trends are similar for different edge 
processing costs. Also, when the number of epochs increases, 
the contribution of the processing costs also increases. 
Therefore, a task has to be larger to be served at the edge. Note 
also, that we considered an image recognition training scenario, 
where samples are relatively large. In different applications the 
size of the samples can be smaller, leading to less required b/w, 
and different job distribution at the edge and cloud. For 
example, we also evaluated Automated Speech Recognition 
training. In this scenario, the performance of the low-cost GPU 
is around 600 sequences/sec, while the size of a sample (word) 
is very small, and the b/w costs are insignificant. In this 
scenario, all jobs were served at the cloud when the edge 
processing costs were greater than the cloud’s, regardless of any 
other parameter. 

 
2) Monetary cost evaluation 

In this subsection we investigate the effect the different 
parameters have on the monetary cost of the jobs served at the 
edge and at the cloud. Fig. 6 presents the total cost to serve all 
jobs for one training round, decomposed to edge and cloud b/w 
and processing costs and for different number of epochs. In Fig. 
6a we assumed edge to cloud b/w cost ratio 𝜌௕௪=0.1, and edge 
to cloud processing costs of 𝜌௤=1.5. The main cost contributor 
is the processing. As the number of epochs increases, the edge 
(and later cloud) processing costs play more important role in 
the total cost of the jobs. The (inexpensive) edge b/w costs are 
actually a sizeable part of the total edge costs for 1 and 100 

 
Fig. 6a Total decomposed cost of jobs for edge/cloud 
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epochs (38.5% and 17.2%, respectively). For 600 epochs, the 
cloud processing costs are a considerable fraction (76.8%) of 
the overall cloud costs. So, in lower number of epochs the edge 
is more preferable. When the edge to cloud b/w cost ratio is 0.5 
(Fig. 6b), the edge b/w costs play an even more important role. 
For the case of 1 and 100 epochs, the b/w costs are 75.88% and 
54.2%, respectively, of the total edge costs. As the number of 
epochs increases, so does the contribution of processing costs 
(both edge and cloud). For 600 epochs, the cloud processing 
costs are approximately 62.5% of the overall cloud costs.  

 
3) Algorithm Comparisons 

In this subsection we will first compare the optimality of the 
heuristic algorithms to the ILP algorithm. We will then compare 
the performance of each algorithm in terms of monetary cost to 
achieve a certain accuracy. As we mentioned in the previous 
section, when the edge has enough resources to serve all the 
appropriate tasks, then a simple greedy algorithm provides the 
optimal solution. So, in this subsection we limit the amount of 
edge resources (assumed only one edge node), to clearly 
compare the optimality of the algorithms.  

In Fig. 7 we can see the gap of the greedy and the simulated 
annealing algorithm from the optimal solution that the ILP 
algorithm provides. For zero iterations, the simulated annealing 

is a greedy algorithm. In this case, the gap to the optimal 
solution is 14.7%. For 100 iterations, the gap quickly reduces 
to 12.4%. After that, the reduction is much slower. For 2000 
iterations the gap is 11.8%. The gap does not reduce very much 
with the increased iterations for the reasons we had mentioned 
in the previous section (about the optimality of the heuristics). 

In Fig. 8 we compare the performance of the ILP algorithm 
to the simulated annealing and the greedy algorithm. In this 
scenario, we assumed a fixed edge to cloud GPU and b/w cost 
ratio of 1.5 and 0.1 respectively, and a range of different values 
for W: [0.2, … , 0.4]. For this range of values, we plot the 
relationship between the mean accuracy of all the served ML 
tasks and their total monetary cost at the edge and cloud. Again, 
the edge resources are not enough to serve all the tasks. There 
is no standard way to predict the exact trade-off between 
accuracy and monetary cost for different values of 𝑊. For 
example, for larger amount of training jobs the total monetary 
cost is larger. Therefore, a smaller value of 𝑊 may be required 
to achieve the same accuracy. From this graph, one can also see 
the monetary costs of ML apps with different accuracy 
requirements. For example, certain security related ML apps 
typically have high accuracy requirements. The effect and the 
trade-off between accuracy and monetary cost of different ML 
apps can be quantified using such a graph.  

As far as the comparison of the three algorithms, the ILP 
algorithm can achieve the best accuracy with the lowest 
monetary cost. For the baseline 80% accuracy, the related costs 
are $2, $2.44 and $2.55 for the ILP, simulated annealing and 
greedy respectively. So, the ILP algorithm can serve the tasks 
with the same accuracy, but at 18% and 21.5% lower cost 
respectively. Moreover, for roughly the same cost ($2.7) the 
ILP algorithm can achieve 87% percent mean accuracy, 
compared to the 80% of both heuristics. To achieve the best 
accuracy all the algorithms have as expected similar monetary 
cost, since this case is the most expensive option and the 
margins for economic decisions are very low. Using this case, 
we can also compare the monetary cost of an algorithm that 
optimizes only the accuracy, versus the alternatives that also 
take into account the monetary cost at the objective. For 
example, to achieve 90% accuracy, the monetary cost is $3.15. 

 
Fig. 7 Effect of the number of simulated annealing 

iterations to the gap from the optimal solution 

8

9

10

11

12

13

14

15

16

0 100 400 800 1400 2000

%
 G

ap
 F

ro
m

 O
pt

im
al

 S
ol

ut
io

n

Simulated Annealing Iterations

 
Fig. 8 Monetary cost and Accuracy performance 

comparison 

W≤0.2

W=0.25

W=0.3

W≥0.4

W=0.25

75

80

85

90

95

100

1 2 3 4 5

M
ea

n 
A

cc
ur

ac
y 

of
 a

ll 
ta

sk
s

Cost in $

ILP

Annealing

Greedy

 
 

Fig. 9 Running time comparison 

0,17
0

20

40

60

80

100

120

140

100 400 800 1400 2000

ILP Greedy Simulated Annealing

R
un

ni
ng

 
tim

e 
in

 s
ec



15 
TNSM-2022-05733.R2 

The algorithm that achieves the best accuracy requires 
significant additional costs ($4.38).   

In Fig. 9 we compare the running times of the ILP, the greedy 
and the simulated annealing algorithms. To demonstrate the 
suitability of the algorithms in larger problem instances, we 
assumed a total of 1000 jobs while keeping all other simulation 
parameters the same as defined in section V.A. The running 
time of the ILP algorithm includes the time to prepare all the 
necessary equations and constraints, the time to prepare the 
solver, and the time to actually solve the problem (which is the 
time reported by the solver). The latter is actually a (small) 
fraction of the total required time described above. As we can 
see in the figure, the ILP requires the largest amount of time to 
find a solution. The greedy algorithm can provide very quickly 
a suboptimal solution. As the iterations of the simulated 
annealing increase, a proportionally larger amount of time is 
required to provide a solution. After a certain point, the 
additional iterations and increased running time do not offer 
significant benefits in terms of the objective cost (Fig. 7). In 
conclusion, the ILP algorithm can provide a solution in a rather 
short amount of time even for large problem instances. 
However, in cases of time-critical jobs, even this time could be 
unacceptable. In even larger instances with increased number 
of jobs, large pool of available GPU models, accuracy options, 
etc., the ILP running time may be prohibitively large. In these 
cases, a greedy algorithm can be used to provide a faster 
solution that is usually near-optimal. If the optimality gap is 
significant, a simulated annealing algorithm can be used to 
reduce it, while keeping the total running time relatively low. 
Generally, for each given problem, its dimensionality and its 
timing constraints, a suitable solution algorithm should be 
chosen. 
 
 4) Accuracy vs delay trade-offs 

In this subsection we focus on the trade-off between accuracy 
and delay requirements. More specifically, we assume an 
increasing number of tasks with strict delay requirements. 
These tasks have to definitely be served at the edge, thus 
occupying the limited edge resources, leaving less resources 
available for the rest of the tasks that could benefit (in terms of 
monetary cost) from the edge. We assume that a ratio 𝑟௝ =

[0.1, 0.2, … , 0.8] of the jobs are inference jobs requiring 1 
processing unit and having strict delay requirements. We also 
limited the number of edge nodes to one, so that the edge 
resources are not enough to accommodate all tasks that would 
otherwise have been served at the edge. In Fig. 10 we see that 
as the number of delay-critical tasks increases, the mean 
accuracy of the tasks decreases. The allocation algorithm 
decides to lower the accuracy of certain tasks (if their 
constraints allow it), to decrease their resource requirements so 
that the edge can serve more tasks. Overall, we can see that 
there are significant trade-offs between accuracy, edge/cloud 
monetary costs, and delay requirements that play significant 
role in the allocation of the tasks. 

VI. CONCLUSIONS 

In this paper we examined the problem of resource allocation 
for distributed computation applications. We proposed a 
framework to allocate resources for jobs at the edge–cloud 
continuum. The objective was to optimize the required 
monetary cost and accuracy to serve the jobs, while respecting 
possible stringent timing constraints. We examined various 
optimization parameters pertained to processing/bandwidth 
costs, accuracy and delay in both edge and cloud resources. We 
proposed an ILP algorithm and also examined certain heuristics 
to solve the resource allocation problem. We evaluated the 
framework using realistic simulation parameters for a DML 
scenario. The results indicate that the processing costs play an 
important role in the allocation of a job at the edge or at the 
cloud. The cloud bandwidth costs and the delay constraints can 
also be significant in certain scenarios. The heuristic algorithms 
can provide a quick solution that is close to that of the ILP 
(indicative gap to optimal solution ~12%). Nevertheless, the 
allocation optimality of the ILP can provide significant 
monetary and accuracy benefits. Future work includes the 
possibility that a job can be served (partially) at the edge 
devices. Also, future work includes the modeling of energy 
consumption as well as prediction of the future workload to 
better manage the available network resources. 
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