
Securitization of cloud, edge and IoT

communications through hardware

accelerations/offloadings

Boris Pismenny, J.J. Vegas Olmos,

Yoray Zack and Liran Liss

NVIDIA Corporation

Software Architecture

Yokneam, Israel

Afra Dömeke, Catalina Ioana Stan,

Carlos Rubio Garcia, and Idelfonso

Tafur Monroy

Department of Electrical Engineering

Eindhoven University of Technology

Eindhoven, The Netherlands

Panagiotis Kokkinos, Aristotelis

Kretsis, and Manos Varvarigos

Institute of Communication and

Computer Systems National Technical

University of Athens, Athens, Greece

Abstract—Networking is enabling a continuum comprising

cloud, edge and last-mile systems. This continuum allows

services and applications to join the fabric at any point and have

access to processing power independently of the location of

entrance. To enable this paradigm, we need to make sure we

have a networking fabric capable of transporting and access

network resources seamlessly and communication channels that

are securitized, ensuring confidentiality and integrity of data. A

challenge in securitization is that it takes computing resources

away, and hence it may reduce the overall network

performance. Hardware accelerations or offloads enable to

reduce the burden on processing resources of securitization

processes; in this contribution, we present how IPsec and TLS

protocols provide a tool for a high level of securitization of the

communication channels and approaches to accelerate/offload

those protocols.

Keywords—securitization, encryption, cloud computing, edge

computing, IoT, communications, acceleration

I. INTRODUCTION

Communication networks rely on control processing units
(CPUs) as main engine to support the control and
management of all the network stack. For example, if we
consider the Open System Interconnection model (OSI
model), every single operation that any of the layers conduct
use CPU cycles. As networks become more complex in terms
of layer composition and supported traffic due to diverse
applications, the amount of needed CPU cycles grows.
Needless to say, we can scale network capacity by increasing
the amount of CPU clocks the CPU can conduct per unit of
time – however, aspects such as cost, price, power
consumption or parallelization trade-offs make the capacity of
CPUs plateau in this respect. Hence, it is very relevant to
adopt measures to off-load CPU processes and execute them
on dedicated system-on-chips (SoC), either in the form of
field-programmable gate arrays (FPGAs) or application-
specific integrated circuits (ASICs). For example, in artificial
intelligence (AI), machine learning (ML) or deep learning
(DL), graphic processing units (GPUs) are found to be much
more efficient in conducting processing tasks than CPUs.

In the area of networking, one of the most demanding CPU
activities is the securitization of communications [1]. When a
connection is established between two network elements, data
transmitted over that link is normally encrypted, a process
through which data is encoded so that it remains hidden from

or inaccessible to unauthorized users or third parties. The gold
standard of for encoding is the Advanced Encryption Standard
(AES), which is a set of specifications for the encryption of
electronic data established by the National Institute of
Standards and Technology (NIST) in 2001 [2]. AES is a
symmetric key cipher, which means the same secret key is
used for both encryption and decryption, and both the sender
and receiver of the data need a copy of the key. By contrast,
asymmetric key systems use a different key for each of the
two processes. The advantage of symmetric systems like AES
is their speed because a symmetric key algorithm requires less
computational power than an asymmetric one. AES can be
used in three flavors: 128-bit, 192-bit, and 256-bit. Each type
uses 128-bit blocks, with the difference lying in the length of
the key. As the longest, the 256-bit key provides the strongest
level of encryption (2256 combinations). The three AES
varieties are also distinguished by the number of rounds of
encryption. AES 128 uses 10 rounds, AES 192 uses 12
rounds, and AES 256 uses 14 rounds. AES 256 uses 40%
more system resources than AES 192.

In the context of long-distance communication links,
perhaps the utilization of AES or other encryption
methodologies do not impact the overall performance in
relation to relevant metrics such as power consumption,
latency or simply scalability of the network. However, when
considering last-mile networks supporting 5G or beyond
communication channels or Internet-of-Things (IoT)
networks with thousands of disperse network components
providing streams of data, the securitization of the network by
adding encryption becomes a real challenge [3]. In edge
computing platforms, which are now placed close to the last-
mile in order to provide low-latency AI-driven services,
encryption is a must to ensure isolation and protection among
the different users, applications or services utilizing the
platform. In the cloud infrastructure, encryption becomes
even more relevant since the underlying fabric may be very
heterogeneous and is certainly rich in point-to-point links.
Figure 1 presents the overall network architecture
highlighting these three segments and how securitization is
present in all of them.

The remainder of this paper is organized as follows:
Section II presents the technologies used for confidentiality
and integrity of communications. Section III and Section IV
present the features of those technologies and their
acceleration/offloads approaches. Finally, Section V provides
some short conclusions. During the workshop a tech deep dive
will be provided, including experimental results.

This work has been partly funded by the SERRANO (ID 101017168),

IoTalentum (ID 953442) and BRAINE (ID 876967) projects, funded by the
European Commission.

Fig. 1. Cloud infrastructure, edge platforms and last-mile networks co-existing in a seamless continuum fully securizited.

II. CONFIDENTIALITY AND INTEGRITY OF COMMUNICATIONS

Current networks provide security functionalities at layer
2 OSI and 3 OSI. At layer 2 OSI, internet protocol security
(IPsec) serves to authenticated and encrypt packets of data to
provide secure encrypted communications between two
network elements over an Internet Protocol (IP) network. At
layer 3 OSI, transport layer security (TLS) are cryptographic
protocols designed to provide communications security over
a computer network, with an emphasis on privacy and data
integrity between the communicating network elements.
Table I shows the summary of technical aspects in relation to
confidentiality and integrity of IPsec and TLS.

TABLE I. SUMMARY OF IPSEC AND TLS TECHNICAL COMPARISON

Feature IPsec TLS

Authentication Yes Yes

Integrity Yes Yes

Confidentiality Yes Yes

Configuration Complex Straightforward

Interoperability problems Yes No

TCP apps support All Some

UDP support Yes Only Data gram TLS

PKI No Yes

Compression Yes Only OpenSSL

Client-specific software Yes No

Multi-environment support Sometimes Yes

Apps filter No Yes

IPsec includes protocols for establishing mutual
authentication between agents at the beginning of a session
and negotiation of cryptographic keys to use during the
session. IPsec can protect data flows between a pair of hosts
(host-to-host), between a pair of security gateways (network-
to-network), or between a security gateway and a host
(network-to-host). IPsec uses cryptographic security services
to protect communications over IP networks. It supports
network-level peer authentication, data-origin authentication,
data integrity, data confidentiality (encryption), and replay
protection. On the other hand, TLS are a set of cryptographic
protocols designed to provide communications security over
network units. TLS in itself runs on top of reliable transport
protocols (e.g., TCP), aiming primarily to provide privacy
and data integrity.

Hence, IPsec and TLS can work together, and by doing
so, we can effectively create point-to-point virtual private
network (VPN)-like tunnels between network elements,
which is a very powerful paradigm providing confidentiality
and integrity of communications even within the shortest or
smallest communication links. The following two sections
describe approaches to offload the IPsec and TLS protocols
reduce the CPU requirements that they impose, hence

allowing for a higher network scalability while maintaining
all the technical specifications of both technologies.

III. IPSEC OFFLOADING

Network elements access the network fabric through
network interface cards (NICs), which take care of all
network operations. NICs that include system-on-chip
processors, a dedicated GPU for network and a switching
element are data-processing units (DPUs); DPUs are in fact
the smallest data centers. When it comes to IPsec, it is
desirable to provide both full data-path encryption offload
and standalone encryption-only offload. In TLS, DPUs
provide standalone encryption-only offload as not to offload
L4 functionality, such as TCP.

In DPUs, the encryption is done in-line, which means that
data traversing the network experiences the implemented
protocols on-the-move, rather than at rest. Inline encryption
approach is ideal for network processing as the overhead to
perform offload is minimal compared to any available
acceleration alternative: on-CPU or off-CPU.

• On-CPU acceleration using dedicated Instruction Set
Architecture (ISA) extensions, such as Intel AES-NI, are
widely used to improve AES cipher performance showing
~7x improvement. But, even the highly optimized AES-
NI cannot avoid the overheads imposed by encryption and
still accounts for significant portions of CPU cycles to
compute. For instance, measuring the cycles spent on TLS
encryption using AES-NI for an IPerf TLS benchmark
shows that more than 50% of cycles are spent
encrypting/decrypting data.

• Off-CPU acceleration using dedicated PCIe cards, such as
Intel Quickassist Technology (QAT), are common for
many compute heavy operations such as RSA, SHA,
AES-CBC, and AES-GCM. But, we find that off-CPU
accelerators are less efficient compared to on-CPU
accelerators (Table II). Additionally, off-CPU
accelerators require significant parallelism to operate
effectively and to obtain it programmers often need to re-
engineer their code for more parallelism.

TABLE II. ENCRYPTION BANDWIDTH (MB/S) OF AES-NI (ON-CPU)

VS. QAT (OFF-CPU) ACCELERATORS. RESULTS FOR 16KB BLOCKS WITH 1

OR 128 THREADS USING A SINGLE CORE (2.40GHZ INTELXEON E5-2620 V3

CPU)

Cipher QAT 1
thread

QAT 128
threads

AES-NI 1 thread

AES128-CBC-SHA1 249 3144 695

AES128-GCM 249 3109 3150

AI/DL/ML
training

Cloud
Infrastructure

Fast

Interconnect

Fast Compute

Fast Compute

Ipsec/TLS
securization

Ipsec/TLS
securization

GPU-based fabric for AI

Ipsec/TLS
securization

Edge Platform

Edge Platform

Edge Platform

DPU

Dedicated SoC and
GPU for networking

Flexible
Processing

VMVM VM VM

Ipsec/TLS
securization

Last-mile
Aerial

vRAN

5G

Gateways IoT

IPsec encryption has two modes of operation: transport (see

Figure 2) and tunnel, and they can be partly or fully

offloaded.

Fig. 2. NIST Round 3 PKE algorithms. ESP: Encapsulating Security

Payload.

• Partial IPsec data-path offload: encryption/decryption.

• Full IPsec data-path offload: ESP
encapsulation/decapsulation, encryption/decryption,
replay-protection on receive, sequence number
generation on transmit.

Partial offload provides good performance while
maintaining maximum flexibility. Software
encapsulates/decapsulates packets, while also handling IP
fragmentation and other exceptional cases in a timely
manner. Full offload provides maximum performance as it
offloads more functionality, however it is also limited to the
features available in hardware. The most important
limitations are replay window size and limited support for IP
fragmentation using software fallback for reassembly which
may result in packet loss due concurrent arrival of fragmented
and non-fragmented packets that go through separate paths.
Therefore, the applicability of full offload is mainly for
tunnels that can guarantee no fragmentation, such as traffic
between virtual machines (VMs) in data-centers. The
following subsections briefly describe each approach.

A. Partial IPsec encryption offload

In partial IPsec offload, DPU hardware encrypts ESP
packet data as it goes through the wire (Figure 3). Packets are
sent from software as plaintext ESP packets that contain the
ESP header but not the ESP trailer. In turn, the NIC
encrypts/packet data, replaces plaintext with ciphertext, and
adds the ESP packet trailer with its authentication tag field.
On receive, the process is symmetrical. Packet are received
decrypted with an indication of authentication tag check
result. These are passed to software which decapsulates ESP
headers and passes inner packet data to higher layers while
skipping decryption if hardware already performed it.

Encryption offload enables DPU hardware to observe
packet fields in plaintext and operate on them, providing
additional performance critical offloads such as checksum
and segmentation. Composing partial IPsec encryption
offload with segmentation and checksum offload requires
DPU parsing to skip intermediate ESP headers and update the

checksum according to the correct set of transport and
network headers. Furthermore, segmentation offload requires
DPUs to advance ESP header sequence numbers and
initialization vectors (IVs) with each packet, and to encrypt
packets accordingly.

Key management is mostly unaffected by IPsec
offloading. The IPsec keying daemon notifies the DPU driver
about new security associations (SAs), and the driver will
verify SAs, and offload/unoffload them accordingly.

Fig. 3. IPsec partial offload.

B. Full IPsec offload

In full IPsec offload, the NIC performs all IPsec protocol
operations: (de)encapsulation, replay protection, sequence
number generation, (de)encryption, and notifying software
about the need to change keys when some user defined limits
are reached (Figure 5.5.2).

On transmit, software sends TCP/UDP packets that are
oblivious to IPsec. The DPU HW identifies packets that
require IPsec using the offloaded selectors and applies IPsec
transport/tunnel mode to these packets using offloaded SAs.

Similarly, on receive, ESP packets are decrypted, replay
checked, decapsulated, and passed to their target. The inner
TCP/UDP packets are received as plaintext as if no IPsec
encapsulation took place.

Key management is mostly unaffected by full IPsec
offloading. The IPsec keying daemon notifies the DPU driver
about new SAs and selectors, and the driver will verify they
can be offloaded, and offload/unoffload them accordingly.

Fig. 4. IPsec full protocol offload. NIC HW perform IPsec

encapsulation/decapsulation, encryption/decryption, replay-protection, and

ESP sequence number generation

C. Transparent full IPsec offload

The killer application of full IPsec offload is to provide
IPsec as a service to VMs, such that their single-root
input/output virtualization (SRIOV) traffic gets automatically
encrypted when it goes to the wire. This service is provided
with zero CPU overhead, and it can scale well with the
number of VMs.

Full offloading of IPsec without supporting IP
fragmentation requires the use of an overlay (Table III). IP
fragments must be avoided as DPU HW cannot (de)encrypt
them, but this may be impossible when unaware VMs
send/receive packets without knowledge of full IPsec
offloading. To overcome this issue, DPUs use an overlay
(virtual extensive local area network - VXLAN, generic
routing encapsulation - GRE, etc.). Such overlays offloads
are already provided today by DPUs, and they guarantee no
fragmentation as packets are encapsulated in IP/UDP with the
IP don’t fragment bit set.

TABLE III. VM’S TCP PACKET (ORANGE) IS ENCAPSULATED IN

VXLAN THAT IS ENCAPSULATED AND ENCRYPTED WITH TRANSPORT

MODE ESP (BLUE). THE OUTER HEADERS ARE ADDED BY NIC HARDWARE.

Et

h

I

P

ES

P

UD

P

VXLA

N

ETH

inne

r

IP

inne

r

TCP

inne

r

Ap

p

dat

a

ESP-

traile

r

 Encrypted

 Authenticated

IV. TLS OFFLOADING

TLS is a widely-deployed protocol used for securing TCP
connections on the Internet. TLS is also a required feature for
HTTP/2, the latest web standard. Kernel implementation of
TLS (kTLS) provides new opportunities for offloading the
protocol into the hardware. TLS data-path offload allows the
DPU to accelerate encryption, decryption and authentication
of AES. TLS offload handles data as it goes through the
device without storing any data, but only updating context. If
the packet cannot be encrypted/decrypted by the device, then
a software fallback handles the packet. There are two main
goals when offloading TLS encryption, decryption, and
authentication:

• TCP transparency

• Handling loss and reordering

DPUs aim for transmission control protocol (TCP)
transparency to achieve interoperability with existing
network stacks and avoid the pitfalls of existing TCP Offload
Engines (TOEs) that depend on offloading all ≤Layer 4
functionality and struggle to keep up with constantly
changing TCP/IP features such as congestion control. This
approach is called autonomous TLS offload for it is
independent of other layer offloading.

Figure 5 presents the software architecture at a high-level
and contrasts our autonomous TLS offload with the state-of-
the-art TLS baseline. On transmit, applications use the TLS
baseline to encapsulate data in records and encrypt/decrypt
data on the CPU as part of TLS library operations, and then
pass data down to the TCP/IP stack which segments it
according to the network Maximum Transmission Unit
(MTU) and sends it to the wire. In contrast, in autonomous
TLS offload, data is passed through the TLS library

unmodified. The TLS library only encapsulates data with its
record header and trailer; filling the header while leaving the
trailer to be filled by DPU HW. The TCP/IP stack operation
is unmodified and TLS records are segmented as before.
Finally, as DPU HW sends data to the wire, it replaces
plaintext with ciphertext and fills the authentication tag at the
trailer. As a result, packets on the wire look the same as if no
offload took place. The receive path is symmetric; the DPU
decrypts packets as they are received, providing plaintext
data in TCP segments that are passed to the host. In addition,
the receive path provides an indication of authentication
success via a single bit of information. The TLS layer verifies
that this bit is set for all offloaded packets to ensure that
offload was successful, and that decrypted data is
authenticated.

.

Fig. 5. Autonomous TLS offload.

V. CONCLUSIONS

The paper presents a brief overview of IPsec and TLS
hardware offloading as a mean to securitize cloud, edge and
IoT communications while maintaining network
performance. During the workshop presentations a deep dive
into the technology and its impact on systems will be
presented; in particular, experimental results on the different
aspects described in the paper will be presented and
discussed.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the
European Commission for partly funding this research
(SERRANO 101017168, IoTalentum 953442 and BRAINE
876967). J.J. Vegas Olmos would like to thank Miguel
Sanchez from Mitsubishi Electric for fruitful discussions on
encryption and privacy. B. Pismenny would like to thank
Adam Morrison from Tel Aviv University and Dan Tsafrir
from Technion and VMware Research for their fruitful
discussions on the topics of IPsec, TLS and autonomous
offloads.

REFERENCES

[1] S. Soliman et al., “Efficient implementationof the AES algorithm for
security applications,” IEEE International System-on-Chip
Conference, April, 2017.

[2] National Institute of Standards and Technology, https://www.nist.gov/

[3] M. Zhong et al., ”5G and IoT: towards a new era of communications
and measurements,” IEEE Instrumntation and Measurements
Magazine, vol. 22, Issue 6, December, 2019.

[4] B. Pismenny, H. Eran, A. Yehezkel, L. Lirss, A. Morrison, and D.
Tsafrir, “Autonomous NIC offloads,” In proceedings of the 26th ACM
International Conference on Architectureal Support for Programming
Languages and Operating Systems, Detroit, MI, USA, April, 2021.

