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Abstract—Networking is enabling a continuum comprising 

cloud, edge and last-mile systems. This continuum allows 

services and applications to join the fabric at any point and have 

access to processing power independently of the location of 

entrance. To enable this paradigm, we need to make sure we 

have a networking fabric capable of transporting and access 

network resources seamlessly and communication channels that 

are securitized, ensuring confidentiality and integrity of data. A 

challenge in securitization is that it takes computing resources 

away, and hence it may reduce the overall network 

performance. Hardware accelerations or offloads enable to 

reduce the burden on processing resources of securitization 

processes; in this contribution, we present how IPsec and TLS 

protocols provide a tool for a high level of securitization of the 

communication channels and approaches to accelerate/offload 

those protocols. 
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I. INTRODUCTION 

Communication networks rely on control processing units 
(CPUs) as main engine to support the control and 
management of all the network stack. For example, if we 
consider the Open System Interconnection model (OSI 
model), every single operation that any of the layers conduct 
use CPU cycles. As networks become more complex in terms 
of layer composition and supported traffic due to diverse 
applications, the amount of needed CPU cycles grows. 
Needless to say, we can scale network capacity by increasing 
the amount of CPU clocks the CPU can conduct per unit of 
time – however, aspects such as cost, price, power 
consumption or parallelization trade-offs make the capacity of 
CPUs plateau in this respect. Hence, it is very relevant to 
adopt measures to off-load CPU processes and execute them 
on dedicated system-on-chips (SoC), either in the form of 
field-programmable gate arrays (FPGAs) or application-
specific integrated circuits (ASICs). For example, in artificial 
intelligence (AI), machine learning (ML) or deep learning 
(DL), graphic processing units (GPUs) are found to be much 
more efficient in conducting processing tasks than CPUs.  

In the area of networking, one of the most demanding CPU 
activities is the securitization of communications [1]. When a 
connection is established between two network elements, data 
transmitted over that link is normally encrypted, a process 
through which data is encoded so that it remains hidden from 

or inaccessible to unauthorized users or third parties. The gold 
standard of for encoding is the Advanced Encryption Standard 
(AES), which is a set of specifications for the encryption of 
electronic data established by the National Institute of 
Standards and Technology (NIST) in 2001 [2]. AES is a 
symmetric key cipher, which means the same secret key is 
used for both encryption and decryption, and both the sender 
and receiver of the data need a copy of the key. By contrast, 
asymmetric key systems use a different key for each of the 
two processes. The advantage of symmetric systems like AES 
is their speed because a symmetric key algorithm requires less 
computational power than an asymmetric one. AES can be 
used in three flavors: 128-bit, 192-bit, and 256-bit. Each type 
uses 128-bit blocks, with the difference lying in the length of 
the key. As the longest, the 256-bit key provides the strongest 
level of encryption (2256 combinations). The three AES 
varieties are also distinguished by the number of rounds of 
encryption. AES 128 uses 10 rounds, AES 192 uses 12 
rounds, and AES 256 uses 14 rounds. AES 256 uses 40% 
more system resources than AES 192.  

In the context of long-distance communication links, 
perhaps the utilization of AES or other encryption 
methodologies do not impact the overall performance in 
relation to relevant metrics such as power consumption, 
latency or simply scalability of the network. However, when 
considering last-mile networks supporting 5G or beyond 
communication channels or Internet-of-Things (IoT) 
networks with thousands of disperse network components 
providing streams of data, the securitization of the network by 
adding encryption becomes a real challenge [3]. In edge 
computing platforms, which are now placed close to the last-
mile in order to provide low-latency AI-driven services, 
encryption is a must to ensure isolation and protection among 
the different users, applications or services utilizing the 
platform. In the cloud infrastructure, encryption becomes 
even more relevant since the underlying fabric may be very 
heterogeneous and is certainly rich in point-to-point links. 
Figure 1 presents the overall network architecture 
highlighting these three segments and how securitization is 
present in all of them.  

The remainder of this paper is organized as follows: 
Section II presents the technologies used for confidentiality 
and integrity of communications. Section III and Section IV 
present the features of those technologies and their 
acceleration/offloads approaches. Finally, Section V provides 
some short conclusions. During the workshop a tech deep dive 
will be provided, including experimental results.
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Fig. 1. Cloud infrastructure, edge platforms and last-mile networks co-existing in a seamless continuum fully securizited.  

II. CONFIDENTIALITY AND INTEGRITY OF COMMUNICATIONS 

Current networks provide security functionalities at layer 
2 OSI and 3 OSI. At layer 2 OSI, internet protocol security 
(IPsec) serves to authenticated and encrypt packets of data to 
provide secure encrypted communications between two 
network elements over an Internet Protocol (IP) network. At 
layer 3 OSI, transport layer security (TLS) are cryptographic 
protocols designed to provide communications security over 
a computer network, with an emphasis on privacy and data 
integrity between the communicating network elements. 
Table I shows the summary of technical aspects in relation to 
confidentiality and integrity of IPsec and TLS. 

TABLE I.  SUMMARY OF IPSEC AND TLS TECHNICAL COMPARISON 

Feature IPsec TLS 

Authentication Yes Yes 

Integrity Yes Yes 

Confidentiality Yes Yes 

Configuration Complex Straightforward 

Interoperability problems Yes  No 

TCP apps support All Some 

UDP support Yes Only Data gram TLS 

PKI No Yes 

Compression Yes Only OpenSSL 

Client-specific software Yes No 

Multi-environment support Sometimes Yes 

Apps filter No Yes 

 

IPsec includes protocols for establishing mutual 
authentication between agents at the beginning of a session 
and negotiation of cryptographic keys to use during the 
session. IPsec can protect data flows between a pair of hosts 
(host-to-host), between a pair of security gateways (network-
to-network), or between a security gateway and a host 
(network-to-host). IPsec uses cryptographic security services 
to protect communications over IP networks. It supports 
network-level peer authentication, data-origin authentication, 
data integrity, data confidentiality (encryption), and replay 
protection. On the other hand, TLS are a set of cryptographic 
protocols designed to provide communications security over 
network units. TLS in itself runs on top of reliable transport 
protocols (e.g., TCP), aiming primarily to provide privacy 
and data integrity.  

Hence, IPsec and TLS can work together, and by doing 
so, we can effectively create point-to-point virtual private 
network (VPN)-like tunnels between network elements, 
which is a very powerful paradigm providing confidentiality 
and integrity of communications even within the shortest or 
smallest communication links.  The following two sections 
describe approaches to offload the IPsec and TLS protocols 
reduce the CPU requirements that they impose, hence 

allowing for a higher network scalability while maintaining 
all the technical specifications of both technologies. 

III. IPSEC OFFLOADING  

Network elements access the network fabric through 
network interface cards (NICs), which take care of all 
network operations. NICs that include system-on-chip 
processors, a dedicated GPU for network and a switching 
element are data-processing units (DPUs); DPUs are in fact 
the smallest data centers. When it comes to IPsec, it is 
desirable to provide both full data-path encryption offload 
and standalone encryption-only offload. In TLS, DPUs 
provide standalone encryption-only offload as not to offload 
L4 functionality, such as TCP.  

In DPUs, the encryption is done in-line, which means that 
data traversing the network experiences the implemented 
protocols on-the-move, rather than at rest. Inline encryption 
approach is ideal for network processing as the overhead to 
perform offload is minimal compared to any available 
acceleration alternative: on-CPU or off-CPU. 

• On-CPU acceleration using dedicated Instruction Set 
Architecture (ISA) extensions, such as Intel AES-NI, are 
widely used to improve AES cipher performance showing 
~7x improvement. But, even the highly optimized AES-
NI cannot avoid the overheads imposed by encryption and 
still accounts for significant portions of CPU cycles to 
compute. For instance, measuring the cycles spent on TLS 
encryption using AES-NI for an IPerf TLS benchmark 
shows that more than 50% of cycles are spent 
encrypting/decrypting data. 

• Off-CPU acceleration using dedicated PCIe cards, such as 
Intel Quickassist Technology (QAT), are common for 
many compute heavy operations such as RSA, SHA, 
AES-CBC, and AES-GCM. But, we find that off-CPU 
accelerators are less efficient compared to on-CPU 
accelerators (Table II). Additionally, off-CPU 
accelerators require significant parallelism to operate 
effectively and to obtain it programmers often need to re-
engineer their code for more parallelism. 

TABLE II.  ENCRYPTION BANDWIDTH (MB/S) OF AES-NI (ON-CPU) 

VS. QAT (OFF-CPU) ACCELERATORS. RESULTS FOR 16KB BLOCKS WITH 1 

OR 128 THREADS USING A SINGLE CORE (2.40GHZ INTELXEON E5-2620 V3 

CPU) 

Cipher QAT 1 
thread 

QAT 128 
threads 

AES-NI 1 thread 

AES128-CBC-SHA1 249 3144 695 

AES128-GCM 249 3109 3150 
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IPsec encryption has two modes of operation: transport (see 

Figure 2) and tunnel, and they can be partly or fully 

offloaded.   
 

 

Fig. 2. NIST Round 3 PKE algorithms. ESP: Encapsulating Security 

Payload. 

• Partial IPsec data-path offload: encryption/decryption. 

• Full IPsec data-path offload: ESP 
encapsulation/decapsulation, encryption/decryption, 
replay-protection on receive, sequence number 
generation on transmit. 

Partial offload provides good performance while 
maintaining maximum flexibility. Software 
encapsulates/decapsulates packets, while also handling IP 
fragmentation and other exceptional cases in a timely 
manner.  Full offload provides maximum performance as it 
offloads more functionality, however it is also limited to the 
features available in hardware. The most important 
limitations are replay window size and limited support for IP 
fragmentation using software fallback for reassembly which 
may result in packet loss due concurrent arrival of fragmented 
and non-fragmented packets that go through separate paths. 
Therefore, the applicability of full offload is mainly for 
tunnels that can guarantee no fragmentation, such as traffic 
between virtual machines (VMs) in data-centers. The 
following subsections briefly describe each approach. 

A. Partial IPsec encryption offload 

In partial IPsec offload, DPU hardware encrypts ESP 
packet data as it goes through the wire (Figure 3). Packets are 
sent from software as plaintext ESP packets that contain the 
ESP header but not the ESP trailer. In turn, the NIC 
encrypts/packet data, replaces plaintext with ciphertext, and 
adds the ESP packet trailer with its authentication tag field. 
On receive, the process is symmetrical. Packet are received 
decrypted with an indication of authentication tag check 
result. These are passed to software which decapsulates ESP 
headers and passes inner packet data to higher layers while 
skipping decryption if hardware already performed it. 

Encryption offload enables DPU hardware to observe 
packet fields in plaintext and operate on them, providing 
additional performance critical offloads such as checksum 
and segmentation. Composing partial IPsec encryption 
offload with segmentation and checksum offload requires 
DPU parsing to skip intermediate ESP headers and update the 

checksum according to the correct set of transport and 
network headers. Furthermore, segmentation offload requires 
DPUs to advance ESP header sequence numbers and 
initialization vectors (IVs) with each packet, and to encrypt 
packets accordingly. 

Key management is mostly unaffected by IPsec 
offloading. The IPsec keying daemon notifies the DPU driver 
about new security associations (SAs), and the driver will 
verify SAs, and offload/unoffload them accordingly. 

 

 

Fig. 3. IPsec partial offload. 

B. Full IPsec offload 

In full IPsec offload, the NIC performs all IPsec protocol 
operations: (de)encapsulation, replay protection, sequence 
number generation, (de)encryption, and notifying software 
about the need to change keys when some user defined limits 
are reached (Figure 5.5.2). 

On transmit, software sends TCP/UDP packets that are 
oblivious to IPsec. The DPU HW identifies packets that 
require IPsec using the offloaded selectors and applies IPsec 
transport/tunnel mode to these packets using offloaded SAs. 

Similarly, on receive, ESP packets are decrypted, replay 
checked, decapsulated, and passed to their target. The inner 
TCP/UDP packets are received as plaintext as if no IPsec 
encapsulation took place. 

Key management is mostly unaffected by full IPsec 
offloading. The IPsec keying daemon notifies the DPU driver 
about new SAs and selectors, and the driver will verify they 
can be offloaded, and offload/unoffload them accordingly. 

 

 

Fig. 4. IPsec full protocol offload. NIC HW perform IPsec 

encapsulation/decapsulation, encryption/decryption, replay-protection, and 

ESP sequence number generation 



C. Transparent full IPsec offload 

The killer application of full IPsec offload is to provide 
IPsec as a service to VMs, such that their single-root 
input/output virtualization (SRIOV) traffic gets automatically 
encrypted when it goes to the wire. This service is provided 
with zero CPU overhead, and it can scale well with the 
number of VMs. 

Full offloading of IPsec without supporting IP 
fragmentation requires the use of an overlay (Table III). IP 
fragments must be avoided as DPU HW cannot (de)encrypt 
them, but this may be impossible when unaware VMs 
send/receive packets without knowledge of full IPsec 
offloading. To overcome this issue, DPUs use an overlay 
(virtual extensive local area network - VXLAN, generic 
routing encapsulation - GRE, etc.). Such overlays offloads 
are already provided today by DPUs, and they guarantee no 
fragmentation as packets are encapsulated in IP/UDP with the 
IP don’t fragment bit set. 

TABLE III.  VM’S TCP PACKET (ORANGE) IS ENCAPSULATED IN 

VXLAN THAT IS ENCAPSULATED AND ENCRYPTED WITH TRANSPORT 

MODE ESP (BLUE). THE OUTER HEADERS ARE ADDED BY NIC HARDWARE. 
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IV. TLS OFFLOADING 

TLS is a widely-deployed protocol used for securing TCP 
connections on the Internet. TLS is also a required feature for 
HTTP/2, the latest web standard. Kernel implementation of 
TLS (kTLS) provides new opportunities for offloading the 
protocol into the hardware. TLS data-path offload allows the 
DPU to accelerate encryption, decryption and authentication 
of AES. TLS offload handles data as it goes through the 
device without storing any data, but only updating context. If 
the packet cannot be encrypted/decrypted by the device, then 
a software fallback handles the packet. There are two main 
goals when offloading TLS encryption, decryption, and 
authentication: 

• TCP transparency 

• Handling loss and reordering 

DPUs aim for transmission control protocol (TCP) 
transparency to achieve interoperability with existing 
network stacks and avoid the pitfalls of existing TCP Offload 
Engines (TOEs) that depend on offloading all ≤Layer 4 
functionality and struggle to keep up with constantly 
changing TCP/IP features such as congestion control. This 
approach is called autonomous TLS offload for it is 
independent of other layer offloading. 

Figure 5 presents the software architecture at a high-level 
and contrasts our autonomous TLS offload with the state-of-
the-art TLS baseline. On transmit, applications use the TLS 
baseline to encapsulate data in records and encrypt/decrypt 
data on the CPU as part of TLS library operations, and then 
pass data down to the TCP/IP stack which segments it 
according to the network Maximum Transmission Unit 
(MTU) and sends it to the wire. In contrast, in autonomous 
TLS offload, data is passed through the TLS library 

unmodified. The TLS library only encapsulates data with its 
record header and trailer; filling the header while leaving the 
trailer to be filled by DPU HW. The TCP/IP stack operation 
is unmodified and TLS records are segmented as before. 
Finally, as DPU HW sends data to the wire, it replaces 
plaintext with ciphertext and fills the authentication tag at the 
trailer. As a result, packets on the wire look the same as if no 
offload took place. The receive path is symmetric; the DPU 
decrypts packets as they are received, providing plaintext 
data in TCP segments that are passed to the host. In addition, 
the receive path provides an indication of authentication 
success via a single bit of information. The TLS layer verifies 
that this bit is set for all offloaded packets to ensure that 
offload was successful, and that decrypted data is 
authenticated. 

. 

Fig. 5. Autonomous TLS offload. 

V. CONCLUSIONS 

The paper presents a brief overview of IPsec and TLS 
hardware offloading as a mean to securitize cloud, edge and 
IoT communications while maintaining network 
performance. During the workshop presentations a deep dive 
into the technology and its impact on systems will be 
presented; in particular, experimental results on the different 
aspects described in the paper will be presented and 
discussed.   
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