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Abstract
Networks are always evolving to meet the needs of progressing and novel applica-
tions. To this end, improved network capacity, latency and security are required. 
Monitoring is key to achieving these objectives. It is a cornerstone for the uninter-
rupted network operation and the applications’ QoS management. Network tomog-
raphy uses a subset of monitoring information, corresponding to partial view of the 
network state, to estimate wide-sense network performance metrics. In this paper, 
we present a novel machine learning (ML) formulation for Network Tomography. 
It is novel in that its features are designed under the assumption that: (i) the exist-
ence of certain links of the network is not known (e.g., due to security reasons), 
(ii) the routing is dynamic (non-deterministic), i.e., for the same origin–destination 
node pair, a different route may be selected depending on the state of certain links. 
These assumptions are typically present in modern networks. The formulation can 
be used to estimate both additive and non-additive performance metrics. We evalu-
ate our proposal using different ML algorithms: neural networks (NNs), Gaussian 
regression and linear regression with interactions. Our simulations indicate that our 
ML formulation has better estimation accuracy compared to traditional algebraic or 
other ML approaches that cannot or do not take into account these two hypothe-
ses. Regarding the accuracy of the examined ML algorithms, the differences mainly 
depend on the additive or not nature of the network metrics.
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1 Introduction

Cloud and edge computing infrastructures play an increasingly important role in 
today’s society. They offer a whole range of services, such as online commerce, 
smartphone applications, video streaming and gaming. Also, in the post-pandemic 
environment they support to a much greater extent essential sectors of the society 
in the context of remote work. Their heavy use and rapid deployment makes them 
more complex, heterogeneous and difficult to manage. The performance of the edge-
cloud continuum determines the efficiency of the whole Information and Communi-
cation Technology (ICT) infrastructure, and the perceived Quality of Service (QoS) 
of the deployed applications. The heterogeneity of the networks coupled with the 
increased traffic volumes and rates, make their real time (dynamic) management 
both challenging and necessary. Multiple factors can affect network performance, 
such as: packet loss, abnormal delay, delay variance, bad load distribution and poor 
behavior of network operating systems or user applications. These factors can result 
in performance degradation or even hard failures (resulting in network downtime). 
Consequently, the network costs can significantly and unexpectedly increase. There-
fore, it is critical to provide advanced network monitoring tools able to reflect and 
analyze changes in the network state.

As is the case with any system, a network has to be observable in order to be 
manageable and stable. Network tomography (NT) [1] is a fundamental tool for 
this purpose. NT refers to large-scale network inference. It involves estimating 
network (path) performance metrics based on traffic measurements at a limited 
subset of network nodes. Indicative monitoring data set includes (but is not lim-
ited to): throughput, delay, jitter, packet delivery ratio, congestion, bandwidth for 
specific paths. These end-to-end metrics are obtained from link-level data accord-
ing to some associative operator. Some of these metrics are additive per link (e.g., 
delay, jitter). Other metrics can be transformed to an additive form (e.g., use the 
log function in the case of the packet delivery ratio or reliability), or they are 
non-additive (e.g., the congestion level or the bandwidth, depends on the worst 
link of a path, involving a min operator).

NT improves the observability of the network, using the same amount of infor-
mation. In other words, NT can reduce the monitoring needs for the whole net-
work. Thus, it increases efficiency, reduces equipment and operating costs and 
can help verify service level agreements. The more accurate is the knowledge of 
the network state obtained through NT, the better positioned is the Orchestration 
layer to maximize the efficiency of resource (e.g., network, compute, and storage) 
utilization in mixed cloud/fog-edge/HPC environments. For example, in real time 
communications it is important to estimate in advance the quality of a connection 
before actually establishing it over a specific path [2]. NT can provide the means 
for this purpose, as it can leverage known information to provide a related esti-
mate. Moreover, certain security events and anomalies can be promptly detected 
and dealt with, before they significantly affect the operation of the network.

Monitoring can be passive or active. In active monitoring, certain probes are 
purposefully deployed to measure the required network parts. These probes create 
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extra traffic. Therefore they have to be carefully deployed so as to not signifi-
cantly alter the original network state. In passive monitoring, (part of) the exist-
ing traffic is monitored. In all cases, the need to keep the monitoring cost low 
implies that the number of probes that are deployed or of existing connections 
that are measured, is kept as small as possible.

A major point of concern is the complexity of the monitoring solution. In large 
scale networks, vast amounts of monitoring data are generated, making the cor-
relation of the data a very difficult task. Therefore, efficient algorithms need to 
be developed to infer the appropriate metrics from a minimum amount of data. 
Another point of concern is that in complex networks a path may cross different 
and heterogeneous subnetworks. Under these circumstances, the complete net-
work topology is usually not completely known by a single actor. Each individual 
subnetwork topology is not fully advertised for security and confidentiality rea-
sons. So, a path that is monitored or whose performance we want to estimate may 
cross different networks and contain an unknown number of links. This makes 
difficult or even impossible the use of traditional NT algebraic methods. These 
methods assume complete knowledge of the network topology, where the links 
of the network are typically represented in a matrix. A solution could be to use a 
ML algorithm that takes into account the origin and destination node to provide a 
more accurate estimate as in [3]. However this is not enough in many scenarios. 
In modern networks the routing between an origin and a destination node may be 
dynamic (non-deterministic), as it may change based on the state of congestion in 
the network. So, the same origin and destination node may be routed through dif-
ferent intermediate links, depending on their load or other administrative policies. 
Therefore, the knowledge of only two nodes of a path is not enough to provide an 
accurate estimate of meaningful performance metrics. This should also be taken 
into account when designing a NT algorithm.

In this paper we propose a novel ML formulation for NT. The features of the 
ML algorithm are designed to take into account the peculiarities of modern net-
works where the topology may or may not be completely known and the routing 
may be static or dynamic. Moreover, the features of the ML formulation can pro-
vide the required information to estimate both additive metrics, and non-additive 
metrics. We demonstrate through simulation experiments that the accuracy of our 
proposal is excellent in a variety of scenarios. In many cases it is far better than 
that of other ML or pure algebraic approaches. The improved accuracy can help 
the network operator have a better view of the network conditions and make bet-
ter optimization decisions. Thus, the overall network efficiency and the applica-
tions’ QoS are improved.

It is worth noting that this paper is an extension of [4]. We significantly extended 
our previous work: We added additional background on NT, we enriched the prob-
lem formulation, we evaluated our ML formulation using two additional ML algo-
rithms, and we included additional results for a second network topology. The rest 
of the paper is organized as follows. In Sect. 2 we present the related previous NT 
work. In Sect. 3 we describe the network scenario assumed. Then we introduce the 
proposed ML formulation. In Sect.  4 we present the simulation experiments and 
evaluate the performance of our proposal. Finally, Sect. 5 concludes the paper.



 Journal of Network and Systems Management           (2023) 31:73 

1 3

   73  Page 4 of 20

2  Related Work

The term NT was first mentioned in [1]. The initial problem statement was to 
estimate node-to-node network traffic intensity from link measurements. The sub-
sequent research is vast and ongoing. We therefore will provide a short summary 
of it here. More information can be found in the references of the mentioned work 
and surveys. Note that when we refer to delay in this paper, we assume that it 
comprises of propagation delay and queueing delay. The path delay is the sum 
of the delays of the links that comprise it. In [5] the authors developed statistical 
techniques to estimate loss rates on internal links based on losses observed by 
multicast receivers. They leveraged the correlations between observations to infer 
the performance of paths between branch points in the tree spanning a multicast 
source and its receivers. In [6], the authors used unicast end-to-end traffic meas-
urements and developed techniques to estimate link delay distribution. Passive 
network tomography was first introduced in [7]. The authors assumed the meas-
urement of end-to-end performance metrics of existing traffic, and researched the 
problem of identifying lossy links. Reference [8] focused on characterizing end-
to-end additive metrics. The authors find a minimal set of k linearly independent 
paths that can describe the metrics of all the other paths. Reference [9] studies a 
variation of NT. The objective is to identify the lossiest network links using only 
uncorrelated end-to-end measurements. Using binary metrics, an inference algo-
rithm is proposed that, with high likelihood, identifies the worst performing links. 
The authors in [10] used multiple and simple one-way measurements among 
pairs of nodes. Then they estimated the one-way delay between network nodes. 
In doing so they used a global objective function that is affected by the network 
topology and not just by individual measurements. The work in [11] employed an 
algorithm typically used in finance: the General Method of Moments. The tech-
nique proved to be favorable for inferring link delays. Reference [12] focused on 
the problem of identifying link level metrics from end-to-end metrics of selected 
paths. The authors developed a low-complexity algorithm to construct linearly 
independent, cycle-free paths between monitors without examining all can-
didate paths. The authors of [13] assumed a similar problem statement. They 
investigated the conditions under which the link level metrics could be acquired, 
depending on the network topology and the number and location of the monitors. 
In [14] various variations are surveyed, such as link delay inference through mul-
ticast end-to-end measurements, origin–destination matrix inference and topol-
ogy identification. Survey [15] describes subsequent developments in NT. It also 
presents network coding and compressed sensing to improve estimation accuracy, 
computational complexity, amount of probing and operational cost.

Another topic is that of failure detection using NT. In this scenario, NT per-
tains to identifying whether a network node has failed given binary (normal or 
failed) end-to-end path metrics. In [16] the authors researched the conditions that 
need to be satisfied in order to identify a bounded number of node failures. They 
also quantified the maximum number of identifiable node failures and the largest 
node set within which failures can be localized for a given number of failures. 
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In [17] the authors provided upper bounds on the maximum number of identifi-
able failed nodes, considering a certain number of monitored paths, constraints 
on the network topology, the routing scheme, and the maximum path length. 
Recently, ML has been applied to the field of NT. The authors of [18] proposed a 
NT approach for non-deterministic routing where the measured flows for a given 
origin–destination node pair may cross different paths. In [19] a NN is trained to 
infer additive metrics in an SDN/NFV environment. The authors in [3] also pro-
pose the use of NN to infer metrics based only on the origin and destination node 
pair, and also to reconstruct the network topology. In [20], assuming in-vehicle 
network monitoring, NNs are again applied to estimate the performance of an 
unmonitored part of a network. Finally, in [21] the same principles are applied to 
the domain of network slicing.

In this paper we consider that the network topology information may be incomplete 
as in [3]. Therefore, the exact routing, the exact links that a path contains, may not 
be known. At the same time, the routing may be dynamic (non-deterministic) as in 
[18]. This means that two paths that serve the same origin and destination node may 
be routed differently: the may contain a different (sub)set of links. We also assume that 
the set of the monitored paths at each destination is a given. So, we want to make the 
most of the available information. We designed a set of ML features that improve the 
accuracy of the performance metrics estimations under these assumptions. Our contri-
butions are:

• We present a NT approach based on ML, which accounts for incomplete knowledge 
of the underlying network topology and for dynamic routing.

• Using end-to-end measurements we infer link-level metrics (both additive and cer-
tain non-additive) for known links. In case a path crosses unknown parts of the 
topology the metrics are derived for a subset of the path links.

• Using the above knowledge, we estimate performance metrics for unestablished or 
unmonitored paths, even with both incomplete topology knowledge and dynamic 
routing. We perform simulations using two realistic network topologies.

• We consider three ML algorithms (NNs, Gaussian regression, linear regression 
with interactions). We compare their accuracy under the aforementioned network 
scenarios.

Our proposal is different to [3] in that we employ additional ML features to account 
for the unknown parts of the network. The features are particularly useful in cases as in 
[18], where the routing is dynamic. This provides better accuracy for certain scenarios 
as we will demonstrate in the simulations. To the best of our knowledge, there is no 
previous NT formulation that considers both dynamic (non-deterministic) routing and 
partial network topology knowledge.
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3  Network Tomography

In this section we first describe the network scenario that we consider and the 
related formal notation. Next, we define the problem of the evaluation of additive 
metrics. We present a basic algebraic method that can be used to solve the prob-
lem. Next we define the problem of other associative metrics evaluation. After-
wards, we describe our proposed ML formulation, the employed features, and the 
ML algorithms that we used to evaluate our framework.

3.1  Network Notation

We consider a network N = (V , L) where V denotes the set of nodes and L the 
set of known directed links (thus, both (i, j) and (j, i) are present in L if nodes i 
and j are connected through a unidirectional link). We assume a set P of paths 
already established in the network. Vector x ∈ ℜ! contains the link level param-
eters. The routing matrix of the established paths is defined as the binary matrix 
GP ∈ {0, 1}!×" , where GP[p, l] = 1 when path p contains link l, and is 0, other-
wise. Consider the end-to-end vector of parameters !" ∈ ℜ! . Vector !" can rep-
resent different performance parameters (e.g., delay or jitter, etc.). The entries of 
!" are obtained from the link parameters according to some monotonic associa-
tive operator ⊕ , that is !" = ⊕L

l=1
GP[p, l]x[l] . By monotonic we mean that either a 

⊕b ≥ a for all a, b ≥ 0 , or that a⊕ b ≤ a for all a, b ≥ 0 (but not both). Each entry 
of the path metrics vector is characterized by the manner it is obtained from the 
link parameter components (that is, by the associative operator ⊕ ). For example, 
two common end-to-end path metrics (delay, bandwidth) are defined in the fol-
lowing ways respectively:

• !" =
∑L

l=1
GP[p, l]x[l], xl ≥0

• !" = minl=1,…,L GP[p, l]x[l], xl ≥0

3.1.1  Additive Metrics Evaluation

If the link-level vector parameters x ∈ ℜ! are additive per link, vector !" can 
be written as a linear combination of link-level vector parameters x , so that 
!" = GPx . We assume that we want to estimate the end-to-end parameters of a set 
M of paths (either new or unmonitored ones), denoted by vector !" ∈ ℜ! , given 
that we know their routing GM ∈ {0, 1}!×" . Then, we have:

Consider, for example, the network of Fig. 1, where a set of P = {p1, p2} paths 
are already established and correspond to submatrix GP and the known end-to-
end QoS values yP = {y1, y2} . The values in vector !" can be different for different 
applications and use cases. The path to be established is denoted by M = {m3} 

(1)y =

[
!"
!#

]
=

[
GP

GM

]
x
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whose end-to-end value y3 we want to estimate. We assume that all the (three) 
links the paths use are known. The routing can be described as:

Since the new path m3 contains links that are already in use by other paths, it is pos-
sible to estimate its end-to-end value. This can be achieved using the Moore–Pen-
rose inverse (.)+ of GP (complexity O(!3) ), that is:

3.1.2  Other Associative Metrics Evaluation

Certain metrics such as the congestion level, capacity or bandwidth of a path are 
non-additive per link. In these cases the worst performing link of a path deter-
mines the performance of the whole path. The case of bandwidth estimation can be 
expressed as:

where i is a matrix row, so for every row we select the minimum column element. 
Symbol ° denotes the element-wise product of two matrices. In the above equa-
tion the vector x is unknown, so the estimation of a non-additive metric from the 

(2)
⎡
⎢
⎢⎣

y1
y2
y3

⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

1 1 0

0 1 1

1 0 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

x1
x2
x3

⎤
⎥
⎥⎦

(3)̂!" = GMG
+
P
!#

(4)!" = min
1<=i<=P

(
GM◦x

)

Fig. 1  A network with 2 established monitored paths and one candidate (or unmonitored), sharing one 
known link and one origin node. Parts of the topology (crossed) may be unknown
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end-to-end metrics is not straightforward. The estimation task is non-linear. It bears 
some similarities to certain failure localization algorithms. These algorithms either 
calculate binary metrics for all the network links, or locate one failed link and esti-
mate its value. Equation (4) can be approximated using a ML algorithm. The algo-
rithm can be trained from end-to-end metrics to estimate the maximum (or mini-
mum) value of a link in a path, corresponding to the calculation of the congestion 
level (or bandwidth) of a path respectively. In the next subsection we present a ML 
formulation that can be used to determine both additive and non-additive metrics.

3.2  ML Network Tomography

The algebraic formulation of Eq. (3) is normally used when the network topology is 
completely known. It is not expected to work well when certain links are not known. 
As we have already mentioned, this is the case in many of the modern networks. In 
this section we present a ML formulation that takes this into account. The features 
are chosen to summarize in a heuristic way the important characteristics of the paths 
with respect to the estimation problem. We organize the feature matrix Q so that 
each row corresponds to a path p ∈ P, while the columns represent (link or node, 
feature) pairs, for the links or nodes of the path and the values of the chosen features. 
In particular, we choose two kinds of features. The first set of features consists of all 
the known links of the topology (we define it as a set ! ). The second set of features 
consists of all the path nodes that can be origin or destination. More specifically, we 
define S as a ! × " link-level feature matrix designed to take into account the known 
links that a path contains. Element Spl , corresponds to path p and a known link l, and 
is set equal to 1 if path p contains link l, and equal to zero, otherwise. This feature is 
the equivalent of the routing matrix GP . We also define the node-level feature matrix 
A to represent information regarding the origin and destination node of a path. In 
particular, A is a ! × " node-level feature matrix. Element Apv is equal to 1 if path p 
starts or ends at node v, and is set to zero, otherwise. Note that this formulation does 
not specifically take into account which node is origin and which one is destination. 
However, the information is indirectly captured by the ML algorithm as the set L 
contains both directions of a link (directed links). We also consider an additional 
feature to represent the ML bias term (denoted by BT). The bias term can account 
for monitoring errors or noise that cannot be reduced by any other means. We con-
catenate all the link-level feature matrices into one feature matrix defined as:

Similar to Eq. (1), QP corresponds to the set of features related to the end-to-end 
observed QoS values !" . The features are designed to capture as much information 
as possible to evaluate the metric at hand. The absence of knowledge of certain links 
through which the path passes (unknown links) is counterbalanced by the knowledge 
of the origin and destination node of a path. Moreover, this formulation is better 
than assuming only the origin and destination node of a path as features. The knowl-
edge of even a small subset of the links that a path contains can greatly increase the 
accuracy of the estimation. After the features have been defined, an appropriate ML 

(5)Q = [ BT S A ]!x(1+"+#)
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algorithm can be used to find the relationship between the features and the observed 
output. The use of matrix A as a feature matrix, makes the problem non-linear. In the 
following subsections we present three machine learning (ML) algorithms that are 
expected to work well under the specific circumstances.

3.3  Neural Networks

A NN is a set of connected functions that interpret a set of inputs into a desired kind 
of output. A NN can be trained to learn a function f through which a set of features 
explain a respective set of observations. In our case we have:

A fully connected NN consists of an input layer, one (or more) hidden layer(s), and 
an output layer. Each node of one layer is fully connected to all the nodes of the 
next layer. This enables data propagation from one layer to another. Each layer mul-
tiplies the input by a weight matrix and adds a bias term. The hidden layers can be 
wider (have more nodes) than the input and output. In these cases, the NN may be 
able to learn more complex relationships between the features and thus have bet-
ter accuracy. A trial-and-error approach is usually required to find the most suitable 
architecture. NNs have the potential to represent complex functions and thus esti-
mate both additive and certain non-additive metrics. In our case the specific prob-
lem at hand is not very complicated. Therefore, a relatively shallow NN architecture 
is expected to have good estimation accuracy. In general, a given trained model is 
expected to perform well without the need for retraining, unless the network state 
changes significantly. More information about NNs can be found in [22].

3.4  Gaussian Process Regression

A Gaussian process (GP) is a set of random variables. Any subset of these vari-
ables is jointly Gaussian. A GP is a stochastic process that can be used to model and 
approximate nonlinear continuous functions. An application of a GP is regression. 
The function f of Eq. 6 is modeled as a GP defined by a mean and a covariance (also 
called kernel) function. The mean function equals to the average of all functions in 
the distribution for a specific input. The kernel function models the dependence of 
function values for different inputs. In contrast with other ML models, a GP regres-
sion model is generally non-parametric. Thus the number of model parameters is not 
fixed. For example in a NN the number of hidden-layers must be specified before-
hand. In GP the parameters grow as the amount of data increases. However, there 
still are some parameters that can be optimized, such as length scales. More details 
about GP regression can be found in [23].

3.5  Linear Regression with Interactions

Linear regression fits a set of inputs to a respective set of outputs using a linear 
model. An interaction occurs when a variable can affect the output in a different 

(6)!" = f (QP)
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way depending on the value of another variable. For example, assume a simple 
two-node network with one link. Then S =

[
s1
]
 and A =

[
a1 a2

]
 . The objective of 

a simple linear regression model is to calculate the most appropriate thetas ( ! ), 
such that:

Interactions can be added in the sense of product pairs. Then:

In our case, the feature vectors S and A depend on each other, since certain links 
are directly connected (or not) to specific nodes. As we will see in the simulations, 
interaction effects help to provide an accurate estimate in a variety of scenarios. Ref-
erence [24] studies specifically regression with interactions.

In the next section we present the evaluation of different architectures and 
compare our proposed tomography framework to alternatives.

(7)yP = !0 + !1 × s1 + !2 × a1 + !3 × a2

(8)
yP = !0 + !1 × s1 + !2 × a1 + !3 × a2 + !12(s1 × a1)

+ !13(s1 × a2) + !23(a1 × a2)

Fig. 2  The DT topology
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4  Results

To evaluate our proposed formulation, we performed a number of simulation experi-
ments. We assumed the Deutsche Telecom (DT) topology of Fig. 2 with 12 nodes 
and 20 unidirectional links. We also considered the National Science Foundation 
Network (NSFNET) topology of Fig. 3 with 14 nodes and 22 unidirectional links.

In the figures, the length of each link in km is also depicted. We considered that 
the required estimations metrics are: (i) the delay, which is additive per link, and (ii) 
the bandwidth, which is non-additive and depends on the worst link of the path (min 
operation over the links of the path). We set the delay of each link to be numerically 
equal to its length. So, the delay of a path is equal to the sum of the delays of its 
links. Without loss of generality, we set the bandwidth of each link to be numeri-
cally equal to its length. The bandwidth of a path equals to the minimum bandwidth 
of the links that it contains. For the DT topology, we assumed various different loads 
of 100,  200,  300,  400,  500 connections with uniformly chosen source-destination 
nodes. For the NSFNET topology we assumed up to 1000 connections. In the simu-
lations we will explain why NFSNET requires a larger amount of connections. For 
each source-destination pair we used a k-shortest path algorithm with k = 1, 2, 3 to 
decide the routing. When k > 1 the specific route for each source-destination pair 
was chosen uniformly over these k paths. We also assumed an increasing number of 
unknown links. For a given link that is considered unknown, we removed its related 
value from the routing matrix G, and from the feature matrix S.

Simulations were performed in MATLAB using a quad core CPU@3GHZ. We 
used 90% of the established paths for training, and 10% for testing. We exclude from 
the testing set any path that contains a link that is not used at all in the training set. 
This case typically arises in small training datasets. In a practical setting, this sce-
nario could appear for example in a new network where there are insufficient related 
data. In these cases active monitoring can be used to obtain the necessary informa-
tion. We employed a trial-and-error approach to find the most suitable architecture 
and hyperparameters that exhibit good accuracy. We run 100 independent iterations 

Fig. 3  The NSFNET topology
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and averaged the results for each case. The training of the NN was performed using 
2000 epochs. The ReLu activation function and the Mean Square Error (MSE) loss 
function were employed. Three total layers were used. The size of the first two was 
equal to two times the number of features. The size of the third layer was equal 
to the number of features. The linear interaction algorithm contained a linear term 
for each predictor, an intercept and all products of pairs of the predictors, with no 
squared terms. The Gaussian regression algorithms used a rational quadratic kernel 
(covariance) function and a constant basis function: a vector of basis coefficients 
whose length is the number of predictors is added to the model.

4.1  Additive Metrics Evaluation

First, we evaluated the three different ML algorithms that employed the features 
described in section III.B. In Fig. 4 we present the estimation accuracy results for 
the estimation of the delay in the DT topology. We plot the accuracy in terms of 
mean absolute error (MAE) as a function of the number of established paths in 
the network. In Fig. 4a, k = 1 , so each source-destination pair can only be served 
by one path (static routing). The accuracy of the three algorithms is very similar 
and increases as the number of paths increases (more data leads to better training). 
As k increases (Fig. 4b and c), a source-destination pair may be routed over differ-
ent paths (non-deterministic or dynamic routing). This means that the algorithms 
should be able to correlate a larger amount of information to provide an accurate 
output (i.e., the origin and destination pair by themselves do not contain the required 
information for an accurate estimation). Again, all algorithms seem to have similar 
performance. However, a larger amount of established paths is required to achieve 
good accuracy. The reason is that the algorithms need additional information to 
understand the dynamic routing (the relationship between the features and the out-
puts). Overall, linear regression with interactions has better accuracy than the other 
algorithms. One possible explanation is that the estimation of the delay is additive 
per link. Linear regression is expected to work well under these circumstances. The 
interactions help to interpret the additional features of the origin and destination 
node when needed (i.e., in cases of dynamic routing). NNs and Gaussian regression 
are particularly good in the approximation of non-linear relationships. As we will 
see in the results of the b/w estimation they achieve better accuracy.

Fig. 4  Accuracy comparison (delay metric) of three ML algorithms for different number of paths and a k 
= 1, b k = 2, c k = 3 (DT topology)
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We then compared the accuracy of four algorithms: (i) our proposed ML for-
mulation, (ii) a ML formulation where the features are only the links of the paths, 
(iii) a ML formulation where the features are only the origin and destination nodes 
of the paths, and (iv) a traditional algebraic matrix inversion solution. All ML for-
mulations used linear regression with interactions, that was shown to have better 
accuracy. Note than when we mention confidence interval, we refer to the 95% con-
fidence interval. Figure  5 presents the MAE of the four examined algorithms for 
different number of measured paths in the DT topology. In Fig. 5a, where k = 1 , we 
notice that a simple matrix inversion can achieve good accuracy even with a rela-
tively small number of measured paths. The algorithms that are based on LR require 
a larger number of established paths to be trained so as to have good accuracy. The 
LR that uses only the links as features, achieves slightly better accuracy earlier than 
the proposed LR (in this scenario). The reason is that the proposed LR has more 
features thus requiring a larger training set. The LR that only uses the origin and 
destination node requires the largest training set. The reason is that the algorithm 
needs to be trained with all possible combinations of origin and destination nodes in 
order to be able to provide an accurate estimate. For 500 established paths, all algo-
rithms have MAE approximately 10−4 , the maximum error is less than 10−3 delay 
units and the confidence interval is in the order of ± 10−4 . In Fig. 5b and c, where 
we have k > 1 , the simple matrix inversion method still achieves the best accuracy in 
all cases (the MAE and the maximum error are similar to the case where k = 1 ). The 
LR that relies only on the origin and destination node does not have enough infor-
mation to provide an accurate estimate. Its accuracy is not depicted in these figures, 

Fig. 5  Accuracy (for the delay metric) of the proposed ML formulation and alternatives for different 
number of paths and a k = 1, b k = 2, c k = 3 (DT topology)

Fig. 6  Accuracy (for the delay metric) of the proposed ML formulation and alternatives for different 
number of paths and a k = 1, b k = 2, c k = 3 (NSFNET topology)
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but is examined in Fig. 7. The other algorithms require larger number of established 
paths to achieve comparable accuracy, since the non-deterministic routing requires 
more training data in order for the LR to understand it. In the case of 500 paths, 
the MAE of both algorithms are approximately the same, and it is in the order of 
10−1 for k = 2 and 3 × 10−1 for k = 3 . The maximum error is approximately 200 and 
300 and the confidence interval is in the order of ± 1 and ± 2 for k = 2 and k = 3 , 
respectively.

In Fig. 6 we can see again the accuracy (in terms of MAE) of our proposal com-
pared to alternatives as in Fig. 5, but for the NSFNET topology. We can see simi-
lar trends as in Fig. 5. The difference here is that a significantly larger amount of 
established paths compared to the DT is required to achieve good accuracy. This 
can attributed to a few reasons. The NSFNET topology has 2 additional links and 2 
additional nodes. This means that additional paths are required to understand both 
the deterministic routing ( k = 1 ), and the dynamic routing ( k > 1 ) respectively. For 
the case of the DT topology, when k = 1 , there are 56 unique paths between all the 
nodes. In the NSFNET topology, there are 82 unique paths. When k = 3 there are 
168 and 246 paths for the DT and NSFNET respectively. Finally, the NSFNET 
topology has a number of significantly longer links than the DT topology. This 
means that the MAE will by definition be larger, even when all other comparison 
parameters are the same. Nevertheless, the accuracy of the proposed algorithm in the 
NSFNET topology is still good. When k = 1 approximately 700 paths are required 
to achieve similar accuracy to the DT (using 500 paths). When k > 1 , approximately 
1000 paths are required for the accuracy to be comparable to that of the DT topol-
ogy (again using 500 paths). The reason as we mentioned above is the additional 
routing combinations that the NSFNET topology has.

In Fig. 7 we assumed 500 established paths in the DT topology and we examine 
the MAE of the algorithms for an increasing number of unknown links. In Fig. 7a, 
k is equal to 1. Note that the blue line of the proposed LR is under the yellow one 
of the LR that employs as features only nodes. The matrix inversion and the neural 
network that relies only on the links contained on a path, exhibit the worst accuracy 
as the number of unknown links increases. The reason is that these algorithms do 
not have the appropriate information to compensate for the missing topology knowl-
edge. The proposed LR has a bit better MAE than the LR that uses only the origin 
and destination node as features. The MAE and the maximum error of our proposal 

Fig. 7  Accuracy (delay metric) of the algorithms for different number of unknown links and a k = 1, b k 
= 2, c k = 3 (DT topology)
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is consistent for almost all the cases of unknown links. The algorithm is able to com-
pensate for the unknown network links by using the origin and destination node to 
estimate the delay of each path. In Fig. 7b and c we have k > 1. We notice that the 
proposed LR still achieves good accuracy even with 12 unknown links. After that, 
its accuracy deteriorates rapidly, and with 20 unknown links (all the links of the 
network), its accuracy is (as expected) equal to the LR whose features are only the 
origin and destination node. For both k = 1 and k = 2, the MAE is approximately 2 
until the unknown links are 12. The maximum error is above 200 in almost all cases 
and the confidence interval is ± 2. As we can see, the combination of the features 
of the proposed LR work really well in this scenario. The two classes of features 
can work together and provide estimates even for a large number of unknown links, 
and under non-deterministic routing ( k > 1 ). This is particularly useful in modern 
network scenarios where the topology of the network may not be completely known 
due to security reasons and also connections with the same origin and destination 
nodes may be routed differently over the physical topology.

In Fig. 8 we assumed 1000 established paths in the NSFNET topology, and we 
again examined the accuracy for an increasing number of unknown links. As we 
can see, the algorithms have in this case the same behavior as in the case of the 
DT topology. The only difference is that additional established paths are required to 
achieve similar accuracy, for the same reasons as described in Fig. 6.

Fig. 8  Accuracy (delay metric) of the algorithms for different number of unknown links and a k = 1, b k 
= 2, c k = 3 (NSFNET topology)

Fig. 9  Accuracy comparison (b/w metric) of three ML algorithms for different number of paths and a k 
= 1, b k = 2, c k = 3
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4.2  Non-additive Metrics Evaluation

In this subsection we focus on the estimation of bandwidth, which is a non-additive 
metric.

In Fig. 9 we can see the accuracy comparison of the three ML algorithms using 
our proposed ML formulation, as in the case of Fig. 4. Here we can see that the LR’s 
accuracy is a bit worse than that of GS and NN. Nevertheless, the accuracy of the 
three algorithms converge for 500 paths. The bandwidth estimation is a non linear 
estimation task and this is probably why LR performs worse compared to the case 
of the delay estimation. Overall, NN and GS have a bit better accuracy than LR even 
for 500 paths. Therefore, we chose NN for the subsequent experiments.

In Fig. 10, we compare the accuracy of the proposed formulation to two other 
alternatives. In Fig. 10a, where k = 1, we can see that all algorithms achieve excel-
lent accuracy with a relatively low number of measured paths. The MAE for 500 
paths is less than 10−3 for all the algorithms, the maximum error is less than 10−2 
and the confidence interval ± 10−5. In Fig. 10b and c where k > 1, the accuracy of 
the NN that uses only the origin and destination nodes is again not good, since it 
still lacks the necessary information to provide an accurate estimate. The other two 
algorithms have similar performance. Their MAE is in the order of 10−2 and 10−1, 
the maximum error is 32 and 100 and the confidence interval ± 10−1 and ±5 × 10−1 
for k = 2 and k = 3 respectively.

In Fig. 11 we examine again the bandwidth estimation accuracy of our proposal 
compared to alternatives as in Fig.  10, but for the NSFNET topology. We notice 
similar trends as in the case of the delay estimation in DT and NSFNET: additional 

Fig. 10  Accuracy (for the b/w metric) of the proposed ML formulation and alternatives for different 
number of paths and a k = 1, b k = 2, c k = 3 (DT topology)

Fig. 11  Accuracy (for the b/w metric) of the proposed ML formulation and alternatives for different 
number of paths and a k = 1, b k = 2, c k = 3 (NSFNET topology)
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paths are required to achieve good estimation accuracy. For 1000 paths the MAE 
is in the order of 10−5 , 10−2, 10−1, the maximum error is 10−4 , 250 and 300 and 
the confidence interval ±2 × 10−5, ±8 × 10−1, ± 2 for k = 1, k = 2 and k = 3 
respectively.

Finally, in Figs. 12 and 13 we considered 500 and 1000 established paths in 
DT and NSFNET topology respectively. We again examined the MAE of the 
three algorithms for an increasing number of unknown links. For all the algo-
rithms we notice behavior similar to the case of Figs. 7 and 8. In the case of the 
DT topology, for k = 1 the MAE, the maximum error and the confidence interval 
of the proposed NN is in the order of 10−5, 10−3 and ± 10−5 respectively. For k > 1 
the accuracy deteriorates after 12 unknown links. Until then the proposed ML 
formulation can provide accurate estimates (MAE: 10−1, max. error: 50 and conf. 
interval: ± 10−1 ). In the case of NSFNET topology, for k = 1 the MAE and the 
maximum error are in the same order as in the DT topology (albeit with differ-
ent number of established paths). For k > 1 the accuracy is good until 8 unknown 
links. After that, the accuracy deteriorates rapidly. For k = 3 the deterioration is 
even more significant. Still, the accuracy is good compared to the alternatives. 
For a larger amount of established paths, the performance could be even better.

Overall, the results indicate that our proposed ML formulation can achieve 
good estimation accuracy for both additive and the non-additive metrics exam-
ined and for different topologies. When compared to other ML formulations, our 

Fig. 12  Accuracy (b/w metric) of the algorithms for different number of unknown links and a k = 1, b k 
= 2, c k = 3 (DT topology)

Fig. 13  Accuracy (b/w metric) of the algorithms for different number of unknown links and a k = 1, b k 
= 2, c k = 3 (NSFNET topology)
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proposal has substantially better performance in almost all cases. In the case of 
delay estimation, a simple matrix inversion has better accuracy when the network 
topology is completely known. When the topology knowledge is incomplete, our 
proposal is significantly more accurate.

5  Conclusions

In this paper we presented a novel ML formulation for Network Tomography 
under the assumptions of partial topology knowledge and dynamic (non-deter-
ministic) routing. We designed ML features that suit these assumptions that are 
present in modern networks. We evaluated three different ML algorithms that 
employ the same features: NNs, Gaussian regression and linear regression with 
interactions. The results indicate significant improvement in estimation accuracy 
for both additive and non-additive metrics when compared to other approaches. 
The improvement is prominent in cases where the number of unknown links is 
large and there are many different routing decisions for a given source-destination 
pair. Linear regression with interactions had the best performance in the case of 
delay estimation. Gaussian regression and NNs had better accuracy for the task of 
bandwidth estimation. Future work includes the localization of failures.
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