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Abstract—Smart buildings provide an important opportunity
for large-scale development of demand response, due to their
existing flexibility that can be harvested through internet-of-
things technologies with minimal cost of new equipment. How-
ever, after taking an energy management action, the resulting
energy consumption of a building depends on several uncertain
factors. Thus, the consumption of the smart building is not
directly controllable and, contrary to the typical approach taken
in the literature, it cannot be modeled as a decision variable in
practice. In this paper, we consider the problem of coordinating
the stochastic load control actions of multiple smart buildings
under such endogenous uncertainties. We model the problem as a
Multi-agent Markov Decision Process and, after reformulations,
we bring it to a solvable decomposed form. Our simulations
compare the proposed approach with a myopic approach that
does not consider future uncertainties, and also quantify the
trade-off between cost-effectiveness and computational time in
terms of the look-ahead horizon length.

Index Terms—smart buildings, stochastic control, demand
response, multiagent systems, Markov Decision Process

I. INTRODUCTION

A. End-use flexibility

In traditional energy systems, all actions concerning energy
balancing and cost optimization take place exclusively on
the supply side while the demand side passively consumes
energy, being unaware of the system’s state and real-time
operational costs. The increasing penetration of Renewable
Energy Sources (RES), presents a new reality where en-
ergy supply becomes contingent to weather conditions. This
transition brings challenges that relate to lower levels of
supply side dispatchability and higher levels of uncertainty.
An envisioned remedy is to draw on the flexibility capabilities
of the demand side, by leveraging modern information and
communication technologies.

Integrating and managing the distributed flexible resources
is a major topic of research. Especially the introduction of
new electricity markets, that can incorporate the characteristics
of demand-side flexibility into their market design, forms a
predominant challenge. A recent review of energy flexibility
markets, [1], provides a relevant introduction to such topics,
while [2] provides a discussion and review focused on market
models and mechanisms for local electricity markets.
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An early modelling framework can be found in [3], where
each flexible resource is characterized by a utility function
and its local constraints, while the system’s cost depends
on the aggregated consumption of all flexible resources. The
authors present a standard Lagrangian decomposition towards
coordinating the dispatch decisions of the energy consumers
via the iterative exchange of price signals. Later works in
this direction, elaborate more on the user models [4], [5],
on the strategic aspects of user participation [6], [7], and
on the inclusion of distribution network constraints into the
market mechanism [8], [9], while [10] proposes a game-
theoretic mechanism that accounts for truthful participation
in a constraints-informed low voltage flexibility market.

While the studies mentioned above use deterministic mod-
els, a second branch of the literature takes various types of un-
certainty into account. The relevant studies can be categorized
into three approaches: scenario-based stochastic programming,
learn-to-optimize, and model-free methods.

In the first approach, the decisions are stochastically opti-
mized using scenarios of uncertainty realization and scenario-
dependent decision variables. The scenario tree grows expo-
nentially in the number of look-ahead stages. However, when
the uncertainty is exogenous (i.e., the uncertain parameters
evolve independently of our control decisions), this issue can
be managed by applying scenario-reduction techniques. For
example, electricity prices or RES generation are factors of
uncertainty that do not depend on the energy management
decisions. Thus, the resulting uncertainty can be managed by
considering a set of representative scenarios for the decision
horizon’s prices or RES generation. In this path, [11] presents
a hybrid robust-stochastic approach for the scheduling of an
electric vehicles’ fleet, under uncertain electricity prices and
real-time charging needs. The authors in [12], stochastically
optimize the dispatch of different energy devices (electrical
and gas-fired) under uncertain electricity and gas prices. In
[13], the authors consider a community of prosumers and a
set of predefined scenarios for the community’s RES output.
A stochastic day-ahead market is cleared towards scheduling
the day-ahead commitments of each prosumer. In [14], the
authors present the generic modelling framework for two-stage
stochastic market-clearing of economic dispatch problems,
using realization scenarios for uncertain parameters. As elab-
orated in [15], the number of scenarios needed to adequately
capture the characteristics of a stochastic process is usually too
large, rendering the associated stochastic programming prob-
lem computationally intractable. Conclusively, the optimality
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of such methods depends on the number of scenarios sampled
and hence is in trade-off with the method’s computational time.

In the learn-to-optimize approach, a realization scenario for
the (exogenously) uncertain parameters is again sampled, but
utilized to solve a deterministic dispatch problem offline. By
solving multiple such problem instances, one can create a
dataset where an instantiation of the uncertain parameters is
mapped to a particular optimal dispatch solution. A machine
learning algorithm can be trained on that dataset, offline, so
as to learn to predict a good dispatch, online, once provided
with an up-to-now uncertainty realization. In this direction,
[16] presents a stochastic gradient boosting trees approach
that learns to solve the optimal power flow problem in a
low-voltage distribution grid. The authors in [17] take this
approach a step further by using the partial derivatives of the
dispatch optimization problem to train a sensitivity-informed
neural network. Finally, in [18] a neural network is trained on
the optimal dual variables of the economic dispatch problem
instead of the primal, which is shown to enhance performance
while guaranteeing constraint satisfaction.

Model-free methods take a black-box approach where the
decision-maker tries different actions with the purpose of
gradually learning a good policy. In [19], a demand response
aggregator faces a cost function for electricity, and a disutility
cost from its users. The aggregator decides the retail price
using Q-learning. Q-learning is also used in [20], towards
controlling the power consumption of residential appliances.
The authors configure the algorithm with a forecasting module
that predicts the realization of uncertain parameters. In [21],
the authors take on the problem of deciding the dispatch
of electricity appliances, in a setting where the electricity
price depends on the aggregated consumption. An actor-critic
architecture is proposed, with the critic neural network placed
at a coordinator, whereas an actor neural network is placed
with each user. Thus, the users decide on local actions but
system-wide knowledge is integrated through the critic. An
advantage of model-free methods is that they can handle
endogenous uncertainty (uncertain factors that depend also on
the control decisions), and in fact they do not even require sta-
tistical knowledge over the uncertainty. The downside of such
methods is that an online learning process can be prohibitively
costly, while (near-)optimality and constraint satisfaction are
not guaranteed.

B. The case of smart buildings

Of all distributed resources capable of providing flexibility,
smart buildings constitute a particularly interesting case, as
buildings account for about 40% of global energy use, and can
readily offer control capabilities by using the already available
flexibility of existing assets. Moreover, this flexibility can be
drawn at a very small cost and with minimal new equipment by
using Internet-of-Things (IoT) technologies. In particular, con-
ventional electricity-consuming assets can be configured with
sensors, actuators and controllers, such that data-collection and
energy management decisions become possible. An overview
of IoT solutions for smart energy management in buildings can
be found in [22]. In the face of this opportunity, a number of

studies have presented IoT-based solutions for building energy
management systems (EMS).

Demonstrations of real-life smart buildings, with IoT-based
EMS, have been presented in [23] and [24]. In [25], the authors
propose a thermostat control for air-conditioning units in a
smart building. These works use heuristic algorithms to make
energy management decisions, e.g. based on labeled device
priorities. In [26], the energy consumption of the appliances of
a smart home is predicted using a neural network. By using the
neural network as a prediction module, the authors scheduled
the home’s appliances using a genetic algorithm.

The authors in [27] explain the difficulty of formulating
an accurate physics-based thermal model for a building. Such
difficulties have motivated multiple related studies that use
reinforcement learning techniques for building EMS. A review
paper focusing especially on such studies can be found in [28].
Towards addressing the problem of thermal model develop-
ment, the authors in [29] propose an IoT-informed learning
module that automatically constructs a building thermal model,
describing how indoor temperature changes under different
environmental conditions and thermostat control actions. Simi-
larly, [30] presents a method on deriving a stochastic model for
the building’s consumption evolution, based on measurement
data. In particular, the authors discretized the building’s state
variables (namely the building’s energy consumption) into
different levels, and experimentally estimated the probability
of transitioning to each consumption level at the next time in-
stance, given that the building is at a certain consumption level
at the present time. It was shown that 10-20 consumption levels
were adequate to represent a fairly accurate building model.

In contrast to physics-driven modeling methods, a learning-
based IoT solution does not need a domain expert to manually
design a thermal model for each particular building, but can
operate in a plug-and-play fashion, dramatically enhancing
the widespread deployment of building EMS in practice.
Combined with the minimal cost needed for new equipment,
IoT-based smart buildings form an opportunity towards the
large-scale adoption of end-use flexibility technologies.

C. Research gap and contribution

By contrasting the literature on coordination frameworks
for multiple flexible resources, discussed in subsection I-A,
against the literature on real-life building EMS, discussed
in subsection I-B, one can notice a bold difference: The
former uses simplified models, such as first order tempera-
ture dynamics, and sophisticated algorithmic techniques for
energy management decisions. On the other hand, the latter
focuses more on implementation aspects for IoT-based energy
management (usually for a single building), while the EMS
decisions are based on heuristic/meta-heuristic algorithms or
on model-free methods, suggesting that physics-based building
models are not practical or suitable for real-life building EMS.
Reasons include:

• Estimating the actual power consumption resulting from
an energy management action is difficult in practice, as
a building’s energy consumption is influenced by vari-
ous internal and external factors (e.g. room occupancy,
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available daylight, user behavior) that create considerable
uncertainties [27].

• Thermostat control is preferable to power control for
thermal devices, as the latter can interfere with user
comfort and/or cause equipment damage [25].

• Constructing physics-based transition models for each
building appliance is impractical, as they require domain-
knowledge and building-specific or appliance-specific
technical studies [29].

The emerging research question is: how can we coordinate
a set of multiple smart buildings to jointly provide coordinated
energy management services under the real conditions of
endogenous multistage uncertainty? In this paper, we adopt
statistical models for buildings (e.g. as proposed in [29], [30]),
and propose a coordination mechanism that is able to ac-
commodate the inherent uncertainty of IoT-informed building
EMS. By adopting such models, we depart from the existing
literature of economic dispatch studies (subsection I-A) that
model the consumption of a flexible resource (building) as
a control variable. In contrast, we adopt the more realistic
approach, where a building’s EMS can only configure a set
of actions (e.g. altering thermostat setpoints, dimming lights,
etc) that affect the building’s consumption stochastically, but
do not determine it decisively. Moreover, the EMS ensures
the building’s smooth operation, e.g. avoids dysfunctional
situations that cause user discomfort. More specifically, when
asked to save energy the EMS chooses which loads can be
curtailed without compromising the building’s smooth oper-
ation. Conclusively, a building’s energy consumption is only
partially controllable in practice.

Putting a smart building into economic operation, by affect-
ing thermostats, dimming lights and curtailing non-essential
loads, stochastically affects the building’s energy consumption,
which in turn affects the decision on the next actions, and so
on. This endogenous uncertainty does not allow for scenario
reduction methods to be applied, since the uncertainty real-
ization at each stage is entangled with the decision variables
of that stage. For this reason, a realization scenario cannot
be generated independently from the decision variables, which
impedes the applicability of learn-to-optimize methods as well.
The predominant formal framework for multistage decisions
under uncertainty is that of Markov Decision Processes (MDP)
– a cornerstone of Artificial Intelligence - while in the presence
of multiple interacting agents (i.e., buildings), the relevant
framework is called a Multiagent MDP (MMDP).

In what follows, we model the economic dispatch problem
of a set of smart buildings as an MMDP. By leveraging the
available statistical information, we present an optimal solu-
tion method, while handling the curse of dimensionality that
typically characterizes MMDPs without resorting to model-
free methods. The preliminaries of MDPs are presented in the
next section (Section II). Accordingly, Section III presents the
modeling of a single smart building as an MDP. In Section IV,
we formulate the problem and present the proposed approach
towards reaching the optimal solution. Section V presents the
simulation setting and results, whereas Section VI concludes
this paper.

II. PRELIMINARIES AND NOTATION

An MDP comprises a set of states, a set of actions, a transi-
tion function, a cost function, and a set of decision stages. We
use calligraphic letters, and brackets to denote sets. Namely,
S = {s1, s2, ...} denotes the set of states, A = {a1, a2, ...}
the set of actions, and T = {1, 2, ..., T} the set of decision
stages within a finite horizon. Parenthesis brackets are used
to define a tuple of variables. Namely, s ≜ (x, y, z) means
that a state s ∈ S is defined by the state variables x, y, z,
and a ≜ (u, v, w) means that an action a ∈ A is defined by
the action variables u, v, w. Also, f(s, a) ≡ f(x, y, z, u, v, w)
means that f is a function of the state and action variables of
s and a.

Suppose that at some stage t ∈ T , the control agent finds
itself in some state s ∈ S. By taking an action a ∈ A, the agent
suffers a cost, defined by the cost function c(t, s, a), while in
the next stage t + 1 the system transitions to a next state ŝ
with probability p(ŝ|t, s, a). The set of all such probabilities
(for all possible stage-state-action-state tuples) constitutes the
MDP’s transition function. A policy is a mapping from states
to actions, i.e., a particular way of deciding an action once
presented with any system state. The solution concept of an
MDP is to identify an optimal policy, i.e., a policy that min-
imizes the expected cost over the whole horizon of decision
stages. Equivalently, this model can also be seen as a finite
horizon discrete-time dynamical system, where the policy is
the control law [31].

An optimal policy can be defined in terms of the so-called
value function v(s, t) of each state and stage, as prescribed by
the Bellman equation:

v(s, t) = min
a∈A

{
c(t, s, a) +

∑
ŝ∈S

p(ŝ|t, s, a) · v(ŝ, t+ 1)

}
. (1)

Intuitively, a state’s value is the optimal (over actions) expected
cost when starting at that state, consisting of the here-and-
now cost c(t, s, a) of taking action a, plus the future cost of
transitioning, with probability p(ŝ|t, s, a), to a state ŝ that has
a value v(ŝ, t+ 1).

In the case where different action variables are controlled by
different agents, we have an MMDP. An MMDP is not trivially
decomposable into a set of MDPs, since the optimal agents’
actions are generally coupled through the joint cost and joint
transition functions. Let N denote the set of agents. We use
s = (sn)n∈N , or ŝ, to denote a joint state and a = (an)n∈N
to denote a joint action. The respective set S of joint states,
is defined by the Cartesian product of local state sets Sn, as
in S ≜ ×n∈NSn, and similarly for the set of joint actions.
The cardinality of S is |S| = |Sn||N |. This reveals the typical
challenge in MMDPs, which is the curse of dimensionality,
i.e., the fact that the number of joint states and joint actions
grows exponentially in the number of agents, which renders
the tracking of all MMDP states and actions impractical.

III. SYSTEM MODEL

Let us consider a set N = {1, 2, ..., N} of buildings and a
set T = {1, 2, ..., T} of timeslots within a finite horizon (e.g.
a day). A smart building n ∈ N features an EMS that, through
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certain measures, can configure a mode for the building’s
operation in the upcoming timeslot. More specifically, the
EMS can bring the building into one of four modes, namely
Normal (undisturbed) operation, Economic (energy saving)
operation, Emergency operation (only critical loads are
served) and, finally, Charging operation where the building
consumes more than its normal demand, e.g., by charging
batteries or preheating rooms in order to take advantage of a
low-price time. These operational modes define the building’s
Action space

An =

{Normal, Economic, Emergency, Charging},
(2)

where an action variable an,t ∈ An denotes the operational
control action chosen by the building’s EMS at timeslot t.
Note that regular buildings ν ∈ Nreg ⊂ N , that do not feature
control capabilities, can be modeled as a special case of this
representation by fixing aν,t = Normal, for all t ∈ T .

At each timeslot t, the building’s operational mode µn,t
is directly determined by the action chosen in the previous
timeslot and therefore takes its values from the set Mn ≡ An.
The building’s energy consumption is discretized into L levels
{e1n, e2n, ..., eLn}, such that the actual building’s consumption is
rounded to a level ln,t ∈ Ln = {1, 2, ..., L} corresponding to a
consumption of eln kWh in t. Thus, the building’s State space
is defined by

Sn = Mn × Ln, (3)

where a state tuple sn,t ≜ (µn,t, ln,t) defines the building’s
operation mode and energy demand level at a timeslot t.

After an action is taken, the system transitions to the next
timeslot, and the building reaches a new state ŝn,t+1 ≜
(µn,t+1, ln,t+1). The new operational mode is directly defined
by the action an,t chosen in the previous timeslot, i.e.

µn,t+1 = an,t. (4)

The building’s new consumption level ln,t+1 stochastically
depends on the building’s previous state sn,t and on the
action taken, based on the following descriptions. First, let us
define a continuous variable ẽn,t+1(sn,t, an,t) to denote the
building’s expected energy consumption at t+1 as a function
of sn,t, an,t. For an,t = Normal, the building’s expected con-
sumption ẽn,t+1(sn,t,Normal) is derived through a stochastic
process that will be defined shortly. If action Economic is
chosen at t instead, then the building will operate in eco-
nomic mode in t + 1, resulting in an energy curtailment of
βn,t+1(Economic) · ẽn,t+1(sn,t,Normal) with respect to
the building’s would-be expected consumption under normal
operation in t+ 1, as in

ẽn,t+1(sn,t,Economic) =

(1− βn,t+1(Economic)) · ẽn,t+1(sn,t,Normal), (5)

where βn,t+1(Economic) ∈ (0, 1), such that the cur-
tailed demand is a percentage of the building’s would-
be normal consumption ẽn,t+1(sn,t,Normal). Similarly, for
an,t = Emergency, we have a curtailment factor of

βn,t+1(Economic) < βn,t+1(Emergency) < 1, while, for
normal operation, we obviously set βn,t+1(Normal) = 0. Fi-
nally, for µn,t = Charging, we have βn,t+1(Charging) <
0. In general, the expected consumption in a timeslot t+ 1 is
a function of the building’s operation mode at t+ 1 (defined
by the action taken in t), and the building’s consumption at
t+ 1 under the Normal operation mode, as in

ẽn,t+1(sn,t, an,t) =

(1− βn,t+1(an,t)) · ẽn,t+1(sn,t,Normal). (6)

As for the building’s expected consumption under normal
operation ẽn,t+1(sn,t,Normal), this is defined as

ẽn,t+1(sn,t,Normal) =

ζn,t · ẽn,t + γn,t + δn,t(an,t−1) · βn,t(an,t−1) · ẽn,t. (7)

The first term of (7), models the building’s loads consuming at
state sn,t, (i.e. timeslot t), that continue to consume at ŝn,t+1

(i.e., t + 1). Clearly, we always have ζn,t ≤ 1. The second
term, γn,t, denotes the new demand arrivals at the end of t.
The last term models the backlog demand that was not served
in t and requests to be served in t+ 1. The backlog demand
for t+ 1 is a percentage δn,t ∈ [0, 1] of the demand curtailed
at t, which depends on the action taken at t − 1, as defined
previously. Note that, in (7), we can replace an,t−1 with µn,t,
based on (4), so that the Markov property is preserved.

Given the expected consumption defined by Eq. (6), we can
now present how the transition function is built. By examining
all possible consumption levels in Ln, we calculate a distance
metric

d(l, ẽn,t+1) = |eln − ẽn,t+1| (8)

for each l ∈ Ln. We then set the probability
p(ŝn,t+1|t, sn,t, an,t) of state ŝn,t+1 = (µn,t+1, ln,t+1) as

p(ŝn,t+1|t, sn,t, an,t) =0, for µn,t+1 ̸= an,t
1/d(ln,t+1,ẽn,t+1)∑
l∈Ln

(
1/d(l,ẽn,t+1)

) , for µn,t+1 = an,t.
(9)

Intuitively, Eq. (9) assigns higher probability to consumption
levels close to the expected consumption, and lower proba-
bility to distant levels, while the building’s operational mode
transitions deterministically based on Eq. (4), i.e. for modes
different than the selected action, the probability is zero. Based
on the above, the Transition function: Sn2 × An × T →
[0, 1], from state-timeslot-action-state tuples to probabilities,
is fully defined.

A graphical illustration of the building’s transition is pro-
vided in Fig. 1. In the figure’s example, the building finds itself
in a certain consumption level (in yellow) in timeslot 1, and
expects a peak demand in timeslot 2 and a valley in timeslot
3 under normal operation (grey). By putting the building into
economic operation in timeslot 2, the expected consumption is
flattened since there is an energy curtailment in timeslot 2, and
a respective rebound of the backlog demand in timeslot 3. The
uncertainty is depicted in the figure by the horizontal arrows
(in blue for the chosen action and in grey for no action), where
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Fig. 1: Transition of a building’s expected energy consumption
in three timeslots. Horizontal arrows illustrate the probability
magnitudes of each consumption level under normal operation
(grey) and under Economic mode for Timeslot 2 (blue).

the size of each arrow expresses the probability of the building
actually landing in the respective energy consumption level.

A Cost function cn : Sn × An × T → R is implemented
in the EMS agent, mapping a timeslot-state-action triple
(t, sn,t, an,t) to a monetary cost. This cost relates to expenses
or user dissatisfaction that stem from deploying the control
action an,t from state sn,t at timeslot t. The methods to be
presented can accommodate a large variety of relevant cost
functions. However, for exemplary purposes, we present one
plausible choice:

cn(t, sn,t, an,t) =

ωn,t(µn,t) + ηn(µn,t, an,t) + θn · C

(∑
n∈N

eln

)
. (10)

The first term expresses the disutility of the building for
operating at mode µn,t at t. Naturally, it is ωn,t(Normal) =
ωn,t(Charging) = 0, and ωn,t(Emergency) >
ωn,t(Economic) > 0, for each n and t. The second term
poses a penalty η for bringing the building into a restricted
mode for two timeslots in a row. Namely, it is ηn(µn,t, an,t) =
0 if µn,t or an,t is Normal or Charging, and for the rest
of the cases, it is

ηn(Emergency,Emergency) >

ηn(Economic,Emergency) >

ηn(Emergency,Economic) >

ηn(Economic,Economic).

The last term refers to the energy cost of the whole set of
buildings, where θn is a factor denoting n’s share of the total
cost C

(∑
n∈N eln

)
, such that∑

n∈N
θn = 1. (11)

This share of energy cost, can refer to various use cases
of aggregation schemes, e.g., a community of buildings that
jointly participate in the wholesale market. For the function

C(·) we adopt the quadratic cost function typically used in
the related literature:

C

(∑
n∈N

eln

)
= w1 ·

∑
n∈N

eln +w2 ·

(∑
n∈N

eln

)2

. (12)

Such quadratic cost functions are widely used to model the
fuel cost of the system’s marginal generator or to increasingly
penalize deviations from a given dispatch profile.1

IV. PROBLEM FORMULATION AND SOLUTION METHOD

Our objective is to calculate a joint policy π that minimizes
the total expected cost, as in

min
π

{
Eψ∼π

[∑
n∈N

cn

]}
, (13)

where ψ ∼ π is the set of joint State-Action trajectories,
conditioned over joint policy π. By mentally extending Fig.
1 into multiple timeslots, buildings, and action choices, the
problem at hand can be visualized as a path selection in a
tree graph. From a mathematical viewpoint, this formulation
can also be viewed as a generalization of the (determinis-
tic) demand scheduling problem frequently encountered in
the smart grid literature: When there is no uncertainty, i.e.
p(ŝn,t+1|t, sn,t, an,t) = 1 for some state ŝn,t+1 and every
(t, s, a), then we have a deterministic scheduling problem.

Recall that S ≜ ×n∈NSn stands for the set of joint states
and A ≜ ×n∈NAn the set of joint actions. The Bellman equa-
tion of the MMDP defines the optimal solution by instantiating
a value function vs,t that represents the expected future cost
when starting at a particular joint state s ≜ (sn,t)n∈N ∈ S and
timeslot t. This value function adheres to a recursive definition,
where the value vs,t of a state at t, depends on the here-
and-now cost

∑
n∈N cn(t, sn,t, an,t) of the optimal actions,

and on the expected future cost
∑

ŝ∈S p(ŝ|t, s,a) · vŝ,t+1,
which consists of the value vŝ,t+1 of the next state ŝ times the
conditional probability of reaching ŝ by taking action a from
state s at t. This definition allows us to formulate problem
(13), as the calculation of the state values through a linear
program:

max
vs,t

{∑
t∈T

∑
s∈S

vs,t

}
(14)

s.t. vs,t ≤
∑
n∈N

cn(t, s,a) +
∑
ŝ∈S

p(ŝ|t, s,a) · vŝ,t+1,

∀s ∈ S, t ∈ T /{T}, a ∈ A,
(15)

while, for t = T , we set vs,t =
∑
n∈N cn. Observe that

constraint (15) enforces the value function definition.
The challenge with problem (14)-(15) is that the number

of variables vs,t grows exponentially with the number of
buildings, since we need one such variable for every possible

1In the latter case the cost function takes the form w2 ·
(∑

n∈N eln −D
)2

where D is the target consumption. For our purposes, the inclusion of a
constant term D would not affect the proposed approach. Thus the method to
be presented is applicable to both the use cases mentioned.
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joint state. Towards handling this intractability, we proceed
with building a decomposable reformulation of problem (14)-
(15). First, we consider the dual problem, which reads as

min
xt,s,a

{∑
t∈T

∑
s∈S

∑
a∈A

(
xt,s,a ·

∑
n∈N

cn(t, s,a)

)}
(16)

s.t.
∑
â∈A

xt+1,ŝ,â =
∑
s∈S

∑
a∈A

p(ŝ|t, s,a) · xt,s,a,

∀t ∈ T /{T}, ŝ ∈ S. (17)

In the dual program, variables xt,s,a represent the probability
that the system finds itself in joint state s, timeslot t, and
takes joint action a. By using Eq. (11), we can write the term∑
n∈N cn(t, s,a) as∑
n∈N

cn(t, s,a) =
∑
n∈N

c∗n(t, s,a) + C

(∑
n∈N

eln

)
, (18)

where

c∗n(t, s,a) = ωn,t(µn,t) + ηn(µn,t, an,t). (19)

The term
∑
n∈N c∗n(t, s,a) is directly decomposable to local

(per building) states and actions. Towards handling the term
C
(∑

n∈N eln
)
, we introduce the auxiliary continuous vari-

ables Ẽt (one per timeslot), to represent the expected aggregate
consumption at timeslot t. Under these considerations, let us
define local variables xn,t,sn,t,an,t

which, with slight abuse of
notation, we will write as xn,t,s,a. Using these local variables,
we can reformulate problem (16) as

min
xn,t,s,a

{ ∑
n∈N

∑
t∈T

∑
s∈Sn

∑
a∈An

(
xn,t,s,a · c∗n(t, s,a)

)

+
∑
t∈T

C(Ẽt)

}
(20)

subject to∑
â∈An

xn,t+1,ŝ,â =
∑
s∈Sn

∑
a∈An

p(ŝn,t+1|t, sn,t, an,t) · xn,t,s,a,

∀n ∈ N , t ∈ T /{T}, ŝ ∈ Sn
(21)∑

n∈N

∑
s∈Sn

∑
a∈An

xn,t,s,a · eln ≤ Ẽt, ∀t ∈ T /{1}.

(22)

where p(ŝn,t+1|t, sn,t, an,t) is given by Eq. (9). We also define
each building’s initial state, s∗n,1 by setting∑

a∈An

xn,1,s∗n,1,a
= 1 (23)∑

s̸=s∗n,1

∑
a∈An

xn,1,s,a = 0. (24)

Observe that, in problem (20)-(24), the decision variables of
different buildings are coupled only via the constraints (22).
This allows us to decompose the problem into a set of local
subproblems. Specifically, we bring the term∑

n∈N

∑
s∈Sn

∑
a∈An

xn,t,s,a · eln − Ẽt

into the objective function along with a Lagrange multi-
plier, and use the Alternate Direction Method of Multipliers
(ADMM) to iteratively update the decision variables (in paral-
lel) and the multipliers. Let k denote the iteration number and
λ
(k)
t the respective multiplier for t. The algorithm’s updates

read as
For each building n:

x
(k+1)
n,t,s,a = argminxn,t,s,a{∑
t∈T

[ ∑
s∈Sn

∑
a∈An

(
xn,t,s,a · c∗n(t, s,a)

)
+ λ

(k)
t ·

( ∑
s∈Sn

∑
a∈An

xn,t,s,a · eln

+
∑

i∈N/{n}

∑
s∈Si

∑
a∈Ai

x
(k)
i,t,s,a · e

l
i − Ẽ

(k)
t

)

+
ρ

2
·
( ∑
s∈Sn

∑
a∈An

xn,t,s,a · eln

+
∑

i∈N/{n}

∑
s∈Si

∑
a∈Ai

x
(k)
i,t,s,a · e

l
i − Ẽ

(k)
t

)2
]}

subject to (21), (23), (24). (25)

Expected Aggregated Demand Ẽt:

Ẽ
(k+1)
t = argminẼt{∑

t∈T
C(Ẽt) + λ

(k)
t ·

( ∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a · eln − Ẽt

)

+
ρ

2
·
( ∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a · eln − Ẽt

)2
}
.

(26)

Lagrange multiplier λt:

λ
(k+1)
t =

λ
(k)
t + ρ ·

( ∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k+1)
n,t,s,a · eln − Ẽ

(k+1)
t

)
.

(27)

The variable updates presented above are iteratively exe-
cuted until the convergence criterion is met, i.e.,∣∣∣∣∣∑

n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a · eln − Ẽ

(k)
t

∣∣∣∣∣ ≤ ε, ∀t ∈ T . (28)

Notice that the local problem (25) of a building n is optimized
based only on the building’s local variables xn,t,s,a. The
summation

∑
s∈Sn

∑
a∈An

xn,t,s,a within the last (quadratic)
term of (25) creates bilinear terms that can, however, be
sidestepped by introducing auxiliary variables yn,t, as in

x
(k+1)
n,t,s,a = argminxn,t,s,a,yn,t{∑
t∈T

[ ∑
s∈Sn

∑
a∈An

(
xn,t,s,a · c∗n(t, s,a)

)
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Fig. 2: Flowchart and information exchange of the proposed
algorithm.

+ λ
(k)
t ·

(
yn,t +

∑
i∈N/{n}

∑
s∈Si

∑
a∈Ai

x
(k)
i,t,s,a · e

l
i − Ẽ

(k)
t

)

+
ρ

2
·
(
yn,t +

∑
i∈N/{n}

∑
s∈Si

∑
a∈Ai

x
(k)
i,t,s,a · e

l
i − Ẽ

(k)
t

)2
]}

subject to

yn,t =
∑
s∈Sn

∑
a∈An

xn,t,s,a · eln, ∀t ∈ T .

(21), (23), (24). (29)

Therefore, the final form of the problem is a decomposed
convex program, which the ADMM algorithm can tackle
efficiently. The algorithm is implemented in a rolling horizon
fashion for a simulation horizon T of 24 timeslots, where
in each timeslot t ∈ T the system looks T timeslots ahead,
i.e. at each stage the system is optimized for the period
[t,min{T, t + T}]. After the optimal decisions are reached,
the system transitions to the next timeslot t + 1, where each
building’s initial consumption and mode are determined by the
decisions made in t, and the system is optimized for the period
[t+ 1,min{T, t+ 1 + T}], and so on.

The procedure is demonstrated graphically in Fig. 2 with red
arrows depicting the information flows. The aggregation mod-
ule sums the expected consumptions

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a ·

eln of buildings for each timeslot to derive the aggregated
expected profile

(∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a ·eln

)
t∈T

. The
convergence checker compares this profile with the auxiliary
variable Ẽ(k)

t (calculated by the cost optimizer module as in
(26)) and checks the criterion (28). If the criterion is met,
the buildings are signaled to apply the decided actions. Other-
wise, the multipliers are updated, using (27) and the updated
values of λt, Ẽ

(k)
t and

∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a · eln, for

each timeslot, are communicated to the buildings to repeat
the procedure.

TABLE I: Distributions of setting’s parameter values

Parameter Average Value Standard deviation

βn,t(Normal) 0 0
βn,t(Economic) 0.15 0.02
βn,t(Emergency) 0.25 0.02
βn,t(Charging) -0.15 0.02
δn,t(Normal) 0 0

δn,t(Economic) 1 0
δn,t(Emergency) 1 0
δn,t(Charging) 0.5 0.1
ωn,t(Normal) 0 0

ωn,t(Economic) 10 3
ωn,t(Emergency) 30 10
ωn,t(Charging) 0 0

ηn,t(Economic,Economic) 10 3
ηn,t(Emergency,Economic) 20 5
ηn,t(Economic,Emergency) 20 5
ηn,t(Emergency,Emergency) 50 10

Observe that a building is able to derive the term∑
i∈N/{n}

∑
s∈Si

∑
a∈Ai

x
(k)
i,t,s,a · eli by simply subtracting

its own profile from the expected aggregate consumption∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a · eln received. Note that the

buildings do not share their local information with other build-
ings or with any other party, since only the aggregated term is
needed for all the other modules (i.e. the convergence check,
the multipliers update and the cost optimizer). This property
allows the proposed algorithm to fully maintain the buildings’
privacy, since it is well-established that the aggregation module
can be implemented in a fully distributed fashion e.g. using
Distributed Hash Tables (see [6] for a detailed elaboration).

In the next section we present an evaluation setup and
discuss the algorithm’s performance with respect to various
metrics and design choices.

V. SIMULATION SETTING AND RESULTS

We considered a setting with |N | = 50 buildings. The
consumption of each building is discretized into |Ln| = 10
levels with equal distance amongst them. Assuming buildings
of an average living area of 500 sq. meters, a base consumption
e0n for each building is chosen randomly from [5, 15] kWh,
based on the average consumption of European buildings [32].
The consumption of level l is set to eln = e0n + l · e0n · 0.2.
The values of parameters βn,t, δn,t, ωn,t, ηn,t are generated
by random normal distributions (the same distributions for all
buildings and timeslots), depending on the chosen action, as
presented in Table I2. The cost function parameters were set
as w1 = 0.02,w2 = 0.004. All experiments were run in a i5-
7300U CPU, 2.60GHz laptop computer with 8GB of RAM,
using the CPLEX solver and the Pyomo environment.

In the first simulation, the algorithm was run in rolling
horizon with a look-ahead period of T = 10 timeslots and
for different demand patterns. The different demand patterns
are generated by changing the values of parameters ζn,t and
γn,t (i.e. the percentage of consumption that continues from
t to t + 1 and the amount of new demand). In Fig. 3, we
present the system’s aggregated energy consumption, under

2In this paper we have assumed that statistical information for each
building’s consumption behavior is available. In a real system, the prerequisite
step would be to estimate the MDP parameters using historical data for each
building. A method on how to derive the values for the MDP parameters,
based on measurement data, is presented in [30].
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Fig. 3: Aggregated energy consumption throughout the horizon
for different demand patterns.
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Fig. 4: Convergence behavior under different values of ρ.

the always normal operation and under the optimal decisions,
throughout the horizon T . Four cases were considered for the
normal demand: peak demand in the middle of the horizon
(upper left), demand valley in the middle of the horizon (upper
right), continually increasing demand (lower left), continually
decreasing demand (lower right). We can observe the algo-
rithm’s tendency to flatten the aggregated consumption. For
the rest of the experiments the peak demand case was used.

The respective consumption of a single building demon-
strates similar patterns to the ones of Fig. 3, although the
consumption of buildings with higher values of ωn tends to
be closer to their normal consumption, while the consumption
of buildings with higher values of ηn exhibits more abrupt
oscillations, since the algorithm avoids to put the building in
a restricted mode for two timeslots in a row, resulting in an
immediate rebound effect.

The number of iterations needed for the ADMM algorithm
to converge, depends on the value of parameter ρ. In Fig. 4,
we present the value of the residual

max
t∈[0,T]

{∣∣∣∣∣∑
n∈N

∑
s∈Sn

∑
a∈An

x
(k)
n,t,s,a · eln − Ẽ

(k)
t

∣∣∣∣∣
}

as a function of the iteration k for different cases of ρ. The
case of ρ = 0.001 is always convergent when used with a
tolerance of ε = 1.

By leveraging the optimality guarantees of the ADMM,
the proposed method is able to achieve the optimal solution.
Nevertheless, two factors can cause inefficiencies in practice:
inaccurate assessment of the system’s transition function, and
a limited look-ahead horizon. In the next experiment we
evaluate the method’s performance under inaccurate transition
functions and for different lengths of the look-ahead horizon.

Towards testing the sensitivity/robustness of the method
to forecast inaccuracies, we use an error factor, such that
the parameters β̃n,t, γ̃n,t, δ̃n,t, ζ̃n,t that are used to build the
estimated transition function, differ from the actual ones
within the error factor. For example, if the error is 10%,
then the algorithm is executed with a value β̃n,t that is
chosen randomly between 0.9βn,t and 1.1βn,t. The same
applies to all four parameters. While the decisions are taken
using the resulting (altered) transition function, the actual
transitions happen based on the true transition function. We
tested the system for errors of 10%, 20% and 30%. With
respect to the chosen number of look-ahead timeslots T, it is
subject to a trade-off between the method’s optimality and the
method’s computational time. For shorter look-ahead horizons
the decisions are more myopic (i.e. suboptimal).

The results for different error factors and various lengths
for the look-ahead horizon are presented in Fig. 5. The case
of zero error and a full look-ahead T = |T | represents the
optimal solution. Note that for T = 1, the proposed algorithm
reduces to the myopic approach that is often undertaken in
the literature (e.g. [3]). Therefore, the figure demonstrates
a comparison between the proposed method and the typical
myopic approach, showcasing the cost savings gained by the
proposed method’s consideration of future uncertainty. As
observed by the figure, a 10% error has a very small effect
on the method’s optimality. The reason is that a small error is
usually not enough to alter the decided actions. Nevertheless,
higher levels of inaccuracy can negatively impact the method’s
optimality. Interestingly, for an error factor of 30% a longer
look-ahead horizon does not help anymore, and it may even
have a negative impact. The reason is that, with high levels
of inaccuracy, a longer look-ahead horizon propagates the
accumulated error of more timeslots, causing higher amounts
of inaccuracy. For more accurate forecasts, though, the longer
the look-ahead horizon, the better the method’s performance.

On the other hand, increasing the look-ahead period in-
creases the complexity of local problems (29), resulting in
higher computational times per algorithm iteration. In Fig.
6, we present the average computational time needed for a
decision in a given timeslot t, as a function of the number
of buildings, and for various cases of the look-ahead horizon
length. As observed, the algorithm scales well with the number
of buildings, which is expected since the local problems (29)
are solved in parallel. With a longer look-ahead horizon, the
computational time naturally increases, although it remains
within acceptable levels for power systems applications.

VI. CONCLUSIONS

In this paper, we modeled the energy consumption be-
havior of a smart building as a Markov Decision Process.
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Fig. 5: System cost as a function of the look-ahead horizon
length for different cases of forecast accuracy.
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The considered problem was the coordination of multiple
smart buildings’ energy management under uncertainty and
partial consumption controllability. An iterative algorithm was
proposed for making globally optimal local decisions under
uncertainty. We compared the proposed approach with the
myopic approach that is often adopted in the literature and
in practice. Our results demonstrate the cost-effectiveness of
taking future uncertainties into account and quantify the trade-
off between cost-effectiveness and computational time, as a
function of the look-ahead horizon length.

Among the strengths of the proposed algorithm is the ability
to scale well to large numbers of buildings and the compat-
ibility with the characteristics of smart buildings configured
with internet-of-things solutions for energy management. On
the other hand, the method necessitates the availability of
statistical information over the buildings’ transition dynamics.
Such information, however, is easy to derive if there is an
extended network of sensors deployed. A threat that one need
to be aware of, is the sensitivity of the method’s performance
with respect to inaccuracies in the modeling of the building’s
transition dynamics. Overall, we believe that the low cost
of new equipment for smart buildings, combined with our
promising results towards practical and cost-effective building
coordination, could provide an important opportunity towards
large-scale development of demand-side flexibility.

Future work can integrate the proposed method with
appliance-level models of building energy consumption, while
an important milestone is to test the proposed technique in
hardware-in-the-loop simulations, using actual IoT-configured
smart buildings.
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