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Abstract

An experimental framework for managing 5G and beyond networks through cloud-native
deployments and end-to-end monitoring is presented. The framework uses containerised
network functions in a Kubernetes cluster across a multi-domain network spanning cloud
and edge hosts. End-to-end monitoring is demonstrated through Grafana dashboards
that showcase both infrastructure resources and radio metrics in two scenarios involving
UPF re-selection and user mobility. As a third scenario, the authors demonstrate how a
decision engine interacts with the experimental platform to perform zero-touch con-
tainerised application relocation, highlighting the potential for enabling dynamic and
intelligent management of 5G networks and beyond.
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1 | INTRODUCTION

5G and beyond (B5G) networks are set to address the de-
mands of a fully connected and mobile society, enabling a wide
variety of services and applications over the same infrastruc-
ture. Further, 5G adopts edge computing as a key paradigm,
evolving from centralised architectures towards multiple
points-of-presence (PoPs) of edge nodes. In turn, this enables
multi-access edge computing (MEC) applications for low-
latency and high bandwidth like virtual and augmented reality
(VR/AR). In this context, projects like MARSAL [1, 2] pro-
pose a new paradigm of elastic virtual infrastructures that
integrate transparently a variety of novel radio access,
networking, management, and security technologies to deliver
end-to-end transfer, processing, and storage services in an
efficient and secure way.

To materialise this vision for 5G and B5G networks, three
elements are key: (1) cloud-native deployments within the

5G mobile communication, computer networks, decision making, mobile computing, radio access networks,

network function (NF) virtualisation (NFV) paradigm, (Z) end-
to-end monitoring, and (¢27) intelligence to efficiently capitalize
on the data gathered via monitoring to perform the best zero-
touch network management decision. As for the former,
cloud-native infrastructures make it possible to share infra-
structure resources, enabling their dynamic allocation to meet
the service level agreements (SLAs) of existing and future
demanding use cases. Cloud-native technologies also reduce
time to market, respond sooner to customer demands, and
facilitate the lifecycle management and automation of the
network. Therefore, they are widely regarded as the future of
vertical application development with enhanced flexibility,
scalability, and reduced cost.

Monitoring is the second key aspect this paper deals with.
Indeed, a paramount factor for 5G is end-to-end real-time
monitoring, gathering infrastructure metrics (i.e.,, compute,
storage, and network) as well as domain-specific metrics of
components such as gNBs or MEC services. Gathering these
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metrics supportts the lifecycle management of services running
over the 5G network and favours intelligent reconfiguration
and alerting to involved tenants and stakeholders, spanning
from infrastructure owners, operators, slice ownets, ot setvice/
application developers. Certainly, multi-tenant networks must
support network slices, which require monitoring key perfor-
mance indicators (KPIs) commonly belonging to different
technological domains and managed by different entities. For
instance, a network operator shall focus on the KPIs of the
components running the network slice (e.g,, RAN, cloud/edge,
routers), while the slice owner may consider high-level KPIs
(e.g,, end-to-end delay) for SLA validation [3]. In both cases,
monitoring turns into an imperative aspect.

The third element of chief importance is intelligence via
what has been coined as a decision engine (DE). By utilising a
DE that has access to monitored metrics (e.g., CPU con-
sumption) plus additional constraints that can be added as
input (e.g., cost of hosting an application), the most appro-
priate node can be selected for deploying a given application.
This can lead to improved performance, reduced latency, and
cost savings, making it an attractive option for managing large-
scale cloud-native network deployments. In addition, a DE can
help to ensure that the deployment of an application is aligned
with the overall goals and constraints of the infrastructure
manager, such as minimising costs or maximising
performance.

Even though there ate valuable works in the literature on
cellular networks devoted to cloud-native deployments,
monitoring, and the intelligence behind it, only a few of them
(partially) treat the three aspects together. In contrast, this
paper deals with the three aspects by presenting a cloud-native
experimental platform for edge-enabled 5G and beyond net-
works endowed with an end-to-end monitoring system and a
DE to make the most efficient use of the gathered data. The
contributions can be summarised as follows:

® Cloud-native 5G core deployment with Open5GS in a
multi-PoP Kubernetes cluster, where each NF runs as a
separate containerised NF (CNF).

® End-to-end containerised monitoring gathering both infra-
structure and radio/RAN metrics via CNFs.

® Integration of a commercial gNB (Amarisoft Callbox) into
the 5G testbed and development of a custom sampling
function for pulling gNB mettics (e.g., downlink/uplink bit
rate).

® Showecasing of the monitoring system through the visual-
isation of different metrics in Grafana dashboards. Two toy
scenarios are considered; one for UPF re-selection and the
other for UE mobility.

® Intelligence layer (DE) on top of the experimental infra-
structure that enables the best possible placement for ap-
plications and NFs based on the data gathered by the
monitoring system.

The rest of the article is structured as follows. Section 2
discusses the related wotk, while section 3 describes the main
components of the experimental platform and the edge-enabled

testbed. Next, section 4 depicts the end-to-end monitoring
system and section 5 depicts the DE. Then, section 6 showcases
and validates the whole framework. Finally, conclusions are
collected in section 7.

2 | RELATED WORK

There are several works in the literature separately dealing with
cloud-native 5G deployments, end-to-end monitoring systems
for 5G networks, or intelligent algorithms for the placement of
applications and network functions. However, none of them
fully address the three aspects together as we discuss what’s
next.

As for cloud-native deployments, a method to orchestrate
and manage a container-based C-RAN using Kubernetes and
OpenAirlnterface (OAI) is presented in ref. [4]. Authors in ref.
[5] introduce an open-source infrastructure for 5G RAN
development, where DevOps simplifies the deployment of
end-to-end applications to the edge. Also, Kube5G is proposed
in ref. [6] for building and packaging a cloud-native telco NF
through nested layers, and a 5G cloud-native environment
based on Kubernetes and Openshift Operator is introduced in
ref. [7]. Recently, an integration of KubeFed for deploying
workloads in multiple clusters and Network Service Mesh for
providing connectivity across cluster boundaries has been
proposed in ref. [8]. The aforementioned works make valuable
efforts towards cloud-native deployments. However, none of
them realize a full 5G core, but different variations of 4G's
evolved packet core (EPC). Further, they do not focus on
monitoring.

As for papers dealing with monitoring, authors in ref. [9]
present SONATA, a multi-PoP monitoring framework of NFV
services involving both containers and virtual machines.
However, monitoring is discussed from an architectural
perspective, and no actual 5G core is deployed. Instead, au-
thors in refs. [10, 11] present an approach to deliver moni-
toring and telemetry mechanisms as a service using
Prometheus and Netdata over an Open5GS network, but no
containerisation is provided. Similarly, a monitoring framework
introducing metrics collectors deployed per network slice using
Prometheus is devised in ref. [3], but no containerised
deployment of the 5G core is provided either. In ref. [12],
authors investigate the effect of inter-NF dependencies in
terms of resource consumption in a Free5GC network
deployed in Kubernetes. However, only limited monitoring
(e.g, RAN parameters are not considered) is undertaken
through custom Python scripts. Finally, ref. [13] introduces the
5GROWTH service platform with an Al-driven automated 5G
end-to-end slicing. However, no 5G core is deployed.

Finally, regarding intelligent algorithms for optimal appli-
cation and function placement, these are often posed as
resoutce allocation problems. The resource allocation problem
in virtualized environments is a multi-dimensional research
area that has attracted the interest of the research community.
The modelling of the problem among the different works
varies according to the considered topology and the adopted
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FIGURE 1 5G System Architecture in

reference point representation (based on [19]).
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technologies while the proposed solutions employ techniques
from the wider realm of mathematics and computer science.
For example, ref. [14] examines the placement of virtual ma-
chines (VMs) on top of physical systems in a cloud data centre
to per [15] focus on the optimal placement of VNFs (Vir-
tualized Network Functions) in SDN-NFV enabled Multi-
Access Edge Computing (MEC) nodes with the aim of mini-
mising the deployment and resoutce usage cost. In ref. [16] the
microservices' placement in a mult-layered fog/edge envi-
ronment is considered, targeting to place them as close as
possible to the data sources.

Unlike the previous works, the framework proposed in this
paper jointly provides full cloud-native deployment of both 5G
core and end-to-end monitoring (including RAN) through
CNFs orchestrated via Kubernetes. Besides, the framework is
visually demonstrated through three scenatios reflecting a se-
ries of events in the context of (i) UPF re-selection, (if) user
mobility, and (iii) application placement (which capitalises the
intelligence of the decision engine).

3 | CLOUD-NATIVE 5G
EXPERIMENTAL PLATFORM

The 5G architecture consists of two parts that have remarkably
changed from previous generations: the new radio access
network (NG-RAN) supporting the new radio (NR) and the
5G Core Network (5GC). In this section, we describe the main
components of our experimental platform [17] and propose an
edge-enabled testbed to demonstrate the end-to-end moni-
toring system.

3.1 | Open-source 5G core

The movement towards softwarisation of telecommunication
networks has deeply influenced the creation of 5GC [18].
Rather than relying on monolithic elements, 5G adopts a
service-based architecture (SBA) composed of NFs that
modularise the tasks of the core. As shown in Figure 1, these
NFs interact through Service-Based Interfaces (SBIs), which
employ Representational State Transfer (REST) interfaces. A
key feature of such SBA modularisation is network slicing,

which benefits from softwarisation and cloudification. In
essence, slices represent logical instances of the network that
can be tailored to optimise services and thus cope with
different service level agreements (SLAs) according to the use
case. Further, within the SBA, we may find the NWDAF
(Network Data Analytics Function) and the MDAF (Manage-
ment Data Analytics Function) for generating insights from
NFs data and taking actions to enhance performance,
including slice selection and control [20].

This new architecture allows 5G stakeholders much more
flexibility and openness, paving the way for an environment
where open-source perfectly suits. In this regard, some alter-
natives of open-source 5GC are available, such as Open-
Airlnterface [21] CN, Free5GC [22], and Open5GS [23]. In
our experimental framework, we use Open5GS v2.4.0, since it
includes most of the 5GC NFs defined in 3GPP and also al-
lows deploying more than one UPF instance, thus supporting
edge-enabled networks. Nevertheless, our experimental
framework is designed to also work with other open-source 5G
cores under acceptable adjustments.'

32 |
core

Cloud-native deployment of the 5G

5G is expected to support use cases that go beyond raw
throughput performance, where the focus is to be put on service
flexibility and agility. In this regard, the procedure to deploy 5G
NFs has a critical impact. In essence, these functions can be
instantiated as physical NFs (PNFs), virtual NFs (VNFs), or
containerised NFs (CNFs). Naturally, VNFs gained momentum
against siloed PNFs since the conceptualisation of the modu-
larised 5G SBA because of the virtualisation benefits in terms of
efficiency, scalability, or cost. Recently, it is the turn of Con-
tainerised Network Function (CNFs) to gain momentum among
operators [24] against conventional Virtualized Network
Function (VNFs) due to their higher degree of scalability, effi-
ciency for operation and management, energy-saving, and
suitability for resource-constrained edge applications.

‘Prcliminary deployments of our containerized framework with OpenAirInterface CN
and Free5GC have been also already successfully validated.
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FIGURE 2 Helm and Kubernetes flowchart.
The Open5GS chart is composed of the NF

templates in blue (e.g, AMF), whereas the

monitoring chart includes templates for kube-

prometheus in red and the Amarisoft sampling
function in yellow.
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According to Docker [25], a container is a standard unit
of software that packages up code and all its dependencies,
so the application runs quickly and reliably from one
computing environment to another. This makes a container
image a lightweight, standalone, executable package of soft-
wate that includes everything needed to run an application.
Container deployments, which may span multiple hosts, are
managed with an orchestrator responsible for automating
container creation, deletion, and modification without service
disruption. Notice that such tasks on containers match the
NFV lifecycle management. In this work, we adopt Kuber-
netes as a container orchestrator, since it is the de facto
solution in multiple industries for high-demand services with
complex configurations.

As explained in the following subsections, we deploy both
the 5GC NFs and monitoring system within the same
Kubernetes cluster using Helm chzu:ts,2 a collection of files that
describe a related set of Kubernetes resources (see Figure 2).?
This way, the whole framework is deployed in just two com-
mands, one for installing the monitoring system and the other
for installing Open5GS. Once the deployments are instanti-
ated, connectivity among containers and towards external
services must be provided. In particular, our Kubernetes
cluster relies on Calico [27], a well-known container network
interfaces (CNIs) plugin to implement such networking
capabilities.

3.3 | Experimental RAN integration

The radio access network (RAN) is another critical component
of 5G networks, since it provides individual users with wireless
connectivity to the core and external data networks. There are
different alternatives when it comes to experimenting with 5G
RAN, which can be classified in simulated/emulated (e.g,

°All the source code of our experimental platform [17, 26] is open.

"Notice that all the NFs in Open5GS (AMF, AUSF, BSF, NRF, NSSF, PCF, SMF, UDM,
UDR, and UPF) can be compiled and deployed separately, making it a suitable candidate
for evaluating the performance of distributed and cloud-native deployments of the 5GC.

D

api

Kubernetes API

UERANSIM [28]) and physical/real (e.g,, Amatisoft). In this
work, in order to provide actual over-the-air-transmissions, we
rely on Amarisoft's AMARI Callbox Ultimate [29] acting as a
gNB with high-performing NR capabilities. Nevertheless,
other RAN alternatives like UERANSIM have been also suc-
cessfully integrated within the testbed without requiring any
configuration changes in the Open5GS Helm chart.

Notice that the RAN in our framework is essentially a
physical NF (PNF), whereas the 5GC and monitoring system
are built on CNFs. As for how to integrate the AMARI gNB
with the Open5GS core, we shall indicate the AMF's IP
address in the gNB configuration file to establish the NG
Application Protocol (NGAP) connection. In our case, since
the AMF runs as a CNF, a custom Kubernetes service exposes
the AMF functionality to let the gNB point to the master node
IP rather than to the AMF's pod IP. This is a common practice,
since pod IPs may change after deletion, while services remain
fixed.

3.4 | An edge-enabled 5G testbed

Testbeds are essential in telco research, as new architectures,
techniques, and features can be conveniently assessed and
validated in the lab before going into field trial campaigns. In
this work, we implement and integrate the testbed shown in
Figure 3 to showcase our cloud-native end-to-end 5G experi-
mental platform. In particular, the 5G network is composed
(from left to right) of the following elements: two UEs
emulated with Amarisoft AMARI UE Simbox Series [30], with
UE1 always targeting best-effort services while UE2 may target
both best-effort and time-critical MEC applications (e.g,, AR/
VR); an Amarisoft Callbox acting as a stand-alone 5G gNB; an
edge node running the MEC UPE an iperf server, and an ETSI
MEC API [31]; a core node running the Open5GS CNFs and
another iperf server; a monitoring node hosting the monitoring
containers; and a master node managing the Kubernetes
cluster. Since the focus of our current testbed implementation
is on the monitoring of the RAN and core domain compo-
nents, the access and transport networks have been simplified
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to Ethernet links in a local area network. As shown in the
Kubernetes representation in Figure 4, the cluster is composed
of the aforementioned nodes (master, core, edge, and moni-
toring). Therefore, the master is responsible for deploying,
controlling, deleting, and updating the containers of each of
the nodes.

Remarkably, all the 5GC NFs are deployed in one click
(through Helm) in the core and edge host. In particular, the
core runs all the Open5GS NFs available in v2.4.0, including
both critical (e.g,, AMF or SMF) and secondary NFs (BSF).
Besides, for the sake of enabling MEC platforms, the pre-
sented cloud-native deployment provides two UPFs: one
located at the core and the other, at the edge node. This way,
each UPF serves as a PDU session anchor and provides a
connection point to different access networks, one being the
conventional Internet, and the other any data network that can
benefit from MEC processing capabilities, like AR/VR appli-

cation components.

FIGURE 3 Edge-enabled 5G testbed. Data
planes are shown in green (dashed arrow for the
edge data plane). Monitoring connections are
represented with red dashed arrows.

kubernetes cluster

admin DNN
internet
10.45.0.0/16 10.46.0.0/16

Finally, the monitoring node is in charge of running all the
containers related to the end-to-end monitoring of the
explained in §IV,
kube-prometheus [32] is deployed for monitoring Kubernetes

components. To that aim, and as
elements, while a custom sampling function is developed to
pull metrics from the Amarisoft Callbox API So, these
monitoring CNFs can be viewed as 5G's application functions
(AFs) within 5G's SBA.

4 | END-TO-END MONITORING:
FROM CORE TO RAN

We depict below the monitoring system designed for our 5G
experimental framework. We shall emphasise two main char-

acteristics that make it a valuable asset: it is cloud-native,
meaning that specific CNFs are deployed for monitoring
purposes, and it is end-to-end, meaning that deployed CNFs

master
10.20.20.57
monitoring core OOpenSGS edge OOpenses
10.20.20.53 10.20.20.119  reeeerenmnannafunnans - (10.20.20.105
¢ & TAVE J--[ S ] UPF P UPF?
Prometheus Grafana Amarisoft — |. core MEC
£33 kubernetes o 10.46.0.1
8 e i GTP tunnel
10.45.0.2
UE1 @
10.45.03 | _.
10.46.0.2 | Simbox Callbox

i{omorisoﬁ

FIGURE 4 Kubernetes deployment. Notice that UE2 gets an IP address depending on its assigned UPE, that is, 10.45.0.3 and 10.46.0.2 for the core UPF

and MEC UPFE, respectively.
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pull metrics both from the core and the RAN domains. The
data is gathered into a centralised database where metrics are
then plotted in dashboards.

41 | Monitoring with prometheus

Monitoring is the practice of examining behavioural data from
infrastructure, network events, and user interactions. Thus, in
order to let network administrators gather metrics of interest
and manage unexpected events, a proper monitoring system
must be able to collect data from multiple sources.

In this work, we primarily rely on Prometheus [33], since it
is an open-source monitoring and alerting toolkit that can be
easily integrated with Kubernetes to support automatic
deployment, letting agents be automatically discovered via
service discovery. The Prometheus server also opens interfaces
to third-party applications, like web UI or Grafana. We refer
the reader to ref. [34] for a comparison on monitoring tools
focused on 5G networks. In particular, we use Prometheus in
two different approaches to tackle infrastructure and RAN
monitoring. For the former, we use kube-prometheus [32] and
rely on a custom sampling function for the latter.

41.1 | Kube-prometheus for infrastructure

To monitor the usage of infrastructure resources, such as
compute, storage, and network, we rely on kube-prometeus
stack, an easy to operate end-to-end Kubernetes cluster
monitoring stack that uses Prometheus Operator. The stack is
pre-configured to collect metrics from all Kubernetes com-
ponents — meaning resources are measured at different levels,
such as pod, workspace, Kubernetes node, or host — and it also
delivers a default set of dashboards and alerting rules. There-
fore, we can deploy a full off-the-shelf cluster monitoring tool
with a single Helm command. Among the metrics gathered
with kube-prometheus, we find CPU, memory, transmit/
receive networking, etc. Some of them are presented at node
level in 6.1.

41.2 | Custom sampling function for RAN

For our monitoring purposes, the Amarisoft Callbox can be
accessed through a remote API using the WebSocket protocol,
which establishes a persistent connection between the client
(Amarisoft sampling CNF in monitoring node) and the server
(Amarisoft Callbox itself). This API exposes different metrics
at gNB/radio level, including (pet user and cell id) uplink and
downlink bitrate, modulation coding scheme (MCS), channel
quality indicator (CQI), or signal-to-noise-ratio (SNR). The
custom sampling function we developed is a containerised
Python script that opens a WebSocket against the Callbox API
and exposes some metrics of interest to the Prometheus
scraper. We showcase some of these RAN metrics in 6.2.

4.2 | Visualising metrics with grafana

Once the data is being gathered, it is usually convenient to
visualise it to quickly grasp the behaviour of the network at
different domains. For such a task, we use Grafana, a multi-
platform open-source analytics and interactive visualisation
web application that is also included in the kube-prometheus
stack. We modified the corresponding chart with the inclu-
sion of two Grafana dashboard descriptors in JSON format
for the experiments in 6.1 and 6.2, respectively.

5 | DECISION ENGINE FOR ZERO-
TOUCH MANAGEMENT

The concept of zero-touch networks is centred on the idea of
fully automated and self-managing networks that require min-
imal or no manual intervention from network administrators or
other IT personnel. In the context of 5G networks and beyond,
zero-touch networks are designed to be self-configuring, self-
optimising, and self-healing, with the goal of reducing the
need for manual intervention in network operations. To achieve
a zero-touch network, 5G networks utilise advanced technol-
ogies such as machine learning, automation, and artificial in-
telligence. One important component of such technologies is
the DE, which is a software system that uses these technologies
to analyse network performance in real-time and make de-
cisions about how to optimise the network. Together with the
orchestrator, a DE can continuously monitor the network,
identify and diagnose problems, and trigger corrective actions
to maintain the desired level of network performance.

For the intelligent deployment and placement of con-
tainerised applications, including NFs, we rely in this work on
a DE that incorporates multi-objective optimization algo-
rithms (e.g, [35, 30]). Triggered by an orchestrator, the DE can
run proactively or reactively based on the received monitoring
input or orchestration requests, in order to allocate applica-
tions or NFs in the edge or cloud nodes. The DE has been
designed to provide fast execution and efficient resource usage
while scaling with the requests. Furthermore, a primary
concern during its design was to build a system that could be
easily extendable with new resource allocation algorithms.

The design of the DE (see Figure 5) is based on a
controller instance and multiple workers. Each worker is
composed of the Execution Engine and the library of the
decision algorithms. This approach ensures that the DE will be
able to quickly handle multiple execution requests, even in very
complex infrastructures. The DE interoperates with the
infrastructure telemetry services described in the previous
sections in order to receive monitoring information about, for
example, the available computing (CPU) and networking re-
sources, but also additional information that may be deemed
interesting by the network operator (e.g, aspects related to
cost). With this information, the DE implements the decide
part of the envisioned closed-loop control based on the
principles of observe, decide, and act. The DE operates in a
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FIGURE 5 Decision Engine design and main

components. Execution
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Decision
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technology-agnostic manner (e.g., in terms of virtual machines,
containers, network functions, etc.), formulating the respective
optimization problem in a generic way that involves workloads
that need to be allocated in a converged computing,
networking infrastructure.

The DE controller consists of the Access Interface and
the Dispatcher. The former provides loose coupling between
the DE and other systems like Prometheus and Kubernetes,
exposing the necessary REST-based interfaces that allow
bidirectional communication for exchanging commands, in-
formation, and notifications. In this regard, any orchestrator
(e.g,, [26]) can easily interact with the DE through the Access
Interface. On the other hand, the Dispatcher is invoked by the
Access Interface and manages the execution of the requests
for executing resource allocation computations and handles
the interaction with the multiple instances of the Execution
Engine. The Execution Engine receives instructions from the
Dispatcher for starting or terminating algorithm executions,
and performs all the required actions, including the prepara-
tion of the execution environment, the monitoring of the
execution progress and the handling of the final results or
possible failures. The resource allocation algorithms can be
implemented as plug-ins to the DE, exposing a common
interface, independent of the implementation technology and
the algorithms' internal logic, which among others determine
the explicit syntax of the input parameters and the results for
all algorithms. JSON is being used as the data-interchange
format. Moreover, the controller service is able to automati-
cally scale up or down the number of the available execution
engines with respect to the number and complexity of the
submitted execution requests.

The DE is implemented in Python as two different ser-
vices (i.e., controller and execution engine) following the
cloud native approach. To this end, there are available
the appropriate container images for each service along with
the required configuration (e, ConfigMap object) and
deployment (Deployment and Service Objects) descriptions
that enable their transparent deployment into any Kubernetes
clusters. The configuration includes, among others, the min-
imum number of execution engines that should be always
available.

Execution Engine

6 | USE CASES EVALUATION

This section showcases and validates the presented end-to-end
monitoring framework featuring a DE instance by displaying
different metrics, including both infrastructure and RAN pa-
rameters. It does so through three use case experiments.
The first experiment deals with UPF re-selection in edge-
enabled 5G networks, the second focuses on RAN (gNB)
measurements under UE mobility, and the third demon-
strates containerised application placement and relocation via
the DE.

6.1 | UPF re-selection towatrds the edge

As for Experiment #1, we trigger the following series of
events: first (1), the 5GC CNFs are deployed through the
installation of Helm charts, and the session management
function (SMF) assigns both UEs to the core UPE. Second (2),
UET1 starts a 100 Mbps UDP downlink iperf connection from
an iperf server located in the core node. Then (3), UE2 initiates
an iperf of the same characteristics until (4), where the iperf
stops and the SMF re-assigns UE2 to the MEC UPE* A new
iperf connection is then started by UE2 pointing to the edge
node iperf server in (5) until (6), the moment at which both
UEs stop their corresponding iperf connections. Finally, the
whole deployment (5GC CNFs) is terminated, and the
Open5GS containers are deleted in the core and edge nodes.
The considered events are listed in Table 1.

Figure 6 shows the Grafana dashboard used for Experi-
ment #1 consisting of three panels: two for infrastructure
metrics (node CPU and networking transmit) measured at the
core and edge nodes, and one for a RAN metric (downlink
bitrate) measured at the Amarisoft Callbox acting as gNB. The
temporal events are highlighted with red circles. In (1), we

'When 2 UE initially attaches to the network, the SMF assigns a default PDU Session
targeting the core UPF to ensure basic connectivity for the UE. Then, to utilize a second
UPF located at the network edge, a dedicated PDN connection from the UE to this
specific UPF must be established. To accomplish this, we employ the pdn_connect
command provided by Amarisoft.
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observe a peak of CPU caused by the deployment of the 5GC
CNFs in the nodes. In (2), CPU and network transmit increase
due to the iperf traffic triggered by UEL. Then, in (3), UE2's
traffic raises the CPU and transmit networking of the core
node, since UE2 is also assigned to the core UPE Instead,

TABLE 1 List of events in experiments #1 (UPF re-selection) and #2
(UE mobility).

Event Description

#1.1 5GC CNFs deployed and UEs assigned to core UPF
#1.2 UET1 starts a 100 Mbps UDP downlink iperf connection
#1.3 UE2 starts a 100 Mbps UDP downlink iperf connection
#1.4 UE2 iperf stopped and assigned to MEC UPF

#1.5 UE2 restarts a 100 Mbps UDP downlink iperf connection
#1.6 Both UEs stop their corresponding iperf connections
#1.7 Whole deployment (5GC CNFs) is terminated

#2.1 UE1 starts a 120 Mbps uplink iperf to the core node
#2.2 oNB reduces the receiver gain 4 dB (—4 dB aggregated)
#2.3 oNB reduces the receiver gain 4 dB (—8 dB aggregated)
#2.4 oNB reduces the receiver gain 4 dB (=12 dB aggregated)

88 General / MARSAL-VO.1-Exp1 & <

when UE2 is assigned to the MEC UPF (5), CPU and
networking resources are shared between the core and edge
node. Finally, we observe a peak on CPU in (7) corresponding
to the CNFs termination.

This use case shows the potential value of the presented
monitoring framework in 5G deployments, where important
metrics from different domains (e.g;, infrastructure and RAN)
can be assessed in an integrated and automated end-to-end
mannet.

6.2 | UE mobility

Finally, to test the containerised Amarisoft sampling function,
in Experiment #2 we focus solely on RAN metrics. To do so,
we show in Figure 7 a Grafana dashboard corresponding to a
scenario where UE1 moves away from the gNB, resulting in
higher path loss (lower SNR) and lower MCS and, conse-
quently, lower bit rates. In particular, the series of events (see
Table 1) is as follows: (1) UE1 starts a 120 Mbps uplink iperf
connection to the core node, and from (2) to (4) we sequen-
tially reduce by 4 dB the receiver gain at the gNB through the
Amarisoft API to emulate UE1 moving away. As expected, this
results in higher path loss and lower SNR at the gNB, achieving
lower MCS and lower bit rate.

105 Mb/s

08:40

= mcs uel

== bruel

FIGURE 7 Grafana dashboard for Experiment #2 (UE mobility). Events are numerated within red circles.
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Experiment #2 has therefore demonstrated the suitability
of the developed Amarisoft sampling function in terms of
integrating pure RAN metrics into the whole monitoring
framework. Providing such end-to-end monitoring is of critical
importance to let 5G network administrators control and
manage their services, especially when it comes to end-to-end
network slicing.

6.3 | Containerised application relocation

As for the last use case, or Experiment #3, we next cover the
scenario in Figure 8 to showcase the DE. Similatly to the
previous scenarios, we deploy the 5G NFs in two nodes
spanning the edge and cloud domains. However, we now
provide more Kubernetes workers, so to habilitate a larger
number of candidate nodes to run the application of interest,
which can be regarded as a containetised VR/AR application.
Consequently, we can focus on the decision-making pipeline,
which will determine the optimal node where the application
of interest should run.

As in ref. [26], the orchestrator, which is implemented as
a Python script, uses the Kubernetes scheduler to execute its
actions. In this work, however, the orchestrator relies on the
DE to identify the optimal node where to deploy the con-
tainerised application of interest. Upon request reception, the
orchestrator proceeds to the deployment and the continuous
life-cycle management of the application. Then, the DE
periodically identifies the most convenient node by estimating
the value of each node according to the node CPU, the end-
to-end latency between the application of interest and the
node, and the cost of hosting the application of interest at
each node. If the DE informs the orchestrator that the
application needs to be moved from one node to another, it
initiates the relocation process using the Kubernetes Python
client.

The DE makes use of a multi-objective optimization
mechanism based on refs. [35, 36] that consists of two phases:
7) it first computes a set of candidate Pareto optimal resoutces
that also have a sufficient computing capacity to serve the
application, and then 2z) it selects the resource that minimises a

i

desired optimization function.

<

Y -

In particular, the mechanism included in the DE receives as
input a set S of the available resoutces, including theit chat-
acteristics in terms of available computing capacity p, access
latency between the end-user and the resource /, and the cost
of using the respective resource ¢. This way, each resource R is
characterised by the tuple R = {p, [, c}. In the first phase, the
DE removes from set S resoutrces whose available computing
capacity p is smaller than the application's computing re-
quirements p, (i.e., p, > p). If resources with sufficient capacity
are not available, the demand is blocked. Otherwise, the DE
serves the demand by initially finding the Pareto optimal set,
discarding further resources dominated by others. According
to the multi-objective optimization theory, we say that a
resource Rp, in our DE setting, is dominated by another
resource Rp, if the following holds: pa < pg, [y > g, and
ca = ¢g. In other words, resource R dominates resource R
if Rp has larger available computing capacity, lower latency,
and also results in a lower cost than R 4.

In the second phase, among the candidate non-dominated
resources that have been discovered, the DE selects the one
that optimises a cost function. We use for this example a
simple formulation that minimises f = (wp~" + w,l + ws0),
where w; are weights depending upon the prioritisation
configuration. Of course, more fine-grained optimization
functions can be tailored according to the scenario.

The service request from the orchestrator to the DE
comes through a REST API POST HTTP command, incor-
porating in the body of the HTTP message a JSON file (see
Listing 1) including the monitored patameters in R. In such an
example, we observe that the latency at the cloud node
currently hosting the application of interest (i.e., worker-4) is
much higher than in the edge nodes (e.g., worker-2 and worker-
3). Besides, we notice that worker-2 is heavily loaded in terms
of CPU (i, p~") compared to worker-3. So, when the DE
runs one of the available resource allocation algorithms (e.g;,
the ComputeNode as in the example), it identifies worker-3 as
the optimal node according to its estimated value f. Then, it
asynchronously responds to the orchestrator with a specific
GET HTTP-based REST command, as shown in Listing 2,
which upon receiving the response triggers a container relo-
cation from worker-4 to worker-3 through the Kubernetes
client.

% UPF
worker-1

3
|

gNB
(Simbox) | (Callbox) @
5) - Q
FIGURE 8 Scenario for the containerised = M/ worker-
application relocation. RAN Radio/Regional edge Cloud
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{ "execution plugin":
"parameters":
{"telemetry":

"ComputeNode",

[{"name": "worker-2"
"Cpu": 1148.54",
"latency": "1.11",
"COSt": "4"},
{"name": "worker-3"
"Cpu": "8.29",

"latency": "1.08",
"cost": "4"},
"name": "worker-4"
"cpu": "6.85",
"latency": "20.07",
"cost": "1"},

]

}

}

Listing 1: Monitoring data input sent by the orchestrator to
the DE.

{

"created at": 1669713816,

"engine id": "268be485-2a00-418b-952b",
"execution id": "8c6bb879-4425-4b10-8c3b,
"result": "{’compute node3’: 'worker-
37,
"status": 2,
"updated at":
}

1669713816

Listing 2: Output of the DE decision. In this case, node
worker-3 is selected for running the containerised application
of interest.

With theuse of this case, we demonstrate the effectiveness
of using the Kubernetes scheduler altogether with a DE for
achieving zero-touch orchestration, enabling automated up-
dates and maintenance without any manual intervention. In
this regard, notice that the containerised application of interest
runs transparently to the user, without any interruptions or
downtime, even when updates or changes are made to the
underlying infrastructure since the Kubernetes scheduler en-
sures that a new pod (with the containerised application of
interest inside) is created before the previous one is deleted,
resulting in a seamless transition for the application.

7 | CONCLUSIONS

In this work, we developed and evaluated a cloud-native 5G
framework with containerised end-to-end monitoring. Using a
5G testbed with over-the-air transmissions, we demonstrated
how to integrate a fully functional 5G framework using con-
tainerised network functions in a multi-node Kubernetes
cluster, including an open-source 5G core, a commercial radio
access network, and an end-to-end monitoring system. We
illustrated the capabilities of the framework through Grafana
dashboards that show various metrics from both the

infrastructure and radio/RAN domains. Additionally, we added
intelligence to the experimental platform through a decision
engine that interacts with the Kubernetes scheduler through a
zero-touch orchestrator. Furthermore, as part of our ongoing
research, we plan to extend our experimentation by incorpo-
rating real UEs to validate the performance and functionality
of our proposed system in real-world scenarios.
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