
-eps-converted-to.pdf
1

Flexibility Aggregation of Temporally Coupled
Resources in Real Time Balancing Markets

Using Machine Learning
Georgios Tsaousoglou, Ippokratis Sartzetakis, Prodromos Makris, Nikolaos Efthymiopoulos,

Emmanouel Varvarigos, Nikolaos G. Paterakis

Abstract— In modern power systems with high penetra-
tion of renewable energy sources, the flexibility provided
by distributed energy resources is becoming invaluable.
Demand aggregators offer balancing energy in the real-
time balancing market on behalf of flexible resources. A
challenging task is the design of the offering strategy of
an aggregator. In particular, it is difficult to capture the
flexibility cost of a portfolio of flexibility assets within a
price-quantity offer, since the costs and constraints of
flexibility resources exhibit inter-temporal dependencies. In
this paper, we propose a generic method for constructing
aggregated balancing energy offers that best represent the
portfolio’s actual flexibility costs, while accounting for un-
certainty in future timeslots. For the case study presented,
we use offline simulations to train and compare different
machine learning algorithms that receive the information
about the state of the flexible resources and calculate
the aggregator’s offer. Once trained, the machine learning
algorithms can make fast decisions about the portfolio’s
balancing energy offer in the real-time balancing market.
Our simulations show that the proposed method performs
reliably towards capturing the flexibility of the Aggregator’s
portfolio and minimizing the aggregator’s imbalances.

Index Terms— flexibility, distributed energy resources,
aggregator, balancing market, machine learning

NOMENCLATURE

Sets
T Set of timeslots.
N Set of DER agents.
NEV Set of Electric Vehicles.
NTCL Set of Thermostatically Controlled Loads.
Fn Set of local constraints of DER n.
Hn Set of timeslots for which DER n is operating.
S Set of possible scenarios for dispatch orders.

Indices
t A timeslot.

Georgios Tsaousoglou received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No.754462. N. Efthymiopoulos, P.
Makris, and E. Varvarigos received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No. 863876 in the context of the FLEXGRID project.

G. Tsaousoglou, and N.G. Paterakis are with the Eindhoven University
of Technology. I. Sartzetakis, N. Efthymiopoulos, P. Makris, and E.
Varvarigos are with the National Technical University of Athens.

τ The current operating timeslot.
n A DER.
i An Electric Vehicle.
j A Thermostatically Controlled Load.

Parameters
PtN Aggregated energy demand in period t [kWh].
Rt RES generation in period t [kWh].

Btup Quantity for balancing energy up, in t
[

$
kWh

]
.

Btdown Quantity for balancing energy down, in t
[

$
kWh

]
.

arrn Arrival time of DER n.
depn Departure time of DER n.
xmin
n Minimum operating energy of DER n [kWh].

xmax
n Maximum operating energy of DER n [kWh].

wi Elasticity parameter of EV i
[

$
(kWh)2

]
.

wj Elasticity parameter of TCL j
[

$
(kWh)2

]
.

toln Tolerance parameter of DER n.
θtenv Environment temperature at period t [F].
θtsp,j Temperature setpoint of TCL j at period t [F].
conj Energy conversion factor of TCL j.
insj Temperature increase factor of TCL j.
hi Charging efficiency of EV i.
Ei Required charging energy of EV i [kWh].

λt(·) Price for balancing energy at period t
[

$
kWh

]
.

λImb Imbalance price.
λmax Upper bound on the balancing energy price.
λmin Lower bound on the balancing energy price.

Variables
xtn Energy consumption decision of DER n in t [kWh].
Xt
N Aggregated energy consumption in period t [kWh].

btup Price offer for balancing energy up in period t
[

$
kWh

]
.

btdown Price offer for balancing energy down in t
[

$
kWh

]
.

θtj Temperature of TCL j at period t [F].

2

I. INTRODUCTION

THE increasing penetration of Renewable Energy Sources
(RES) in modern power systems necessitates the exploita-

tion of flexible energy resources that can provide services
towards continuously balancing supply and demand. To this
end, the flexibility capability of small, distributed energy
resources (DERs) is considered an important asset that needs
to be utilized effectively.

Integrating DERs into the wholesale electricity markets
has been a much-discussed topic in the power systems
community [1]. There is a general consensus that partici-
pation of DERs should be realized via Aggregators, i.e.,
entities that participate in electricity markets and undertake
balance responsibility on behalf of a portfolio of multiple
DERs [2], [3]. The portfolio of an Aggregator may consist
of small generation facilities (predominantly RES), distributed
storage, and controllable electricity consuming assets such as
Electric Vehicles (EVs) and Heating, Ventilation, and Air-
Conditioning (HVAC) units [4].

A DER is assumed to be registered with an Aggregator,
where the latter installs the necessary communication infras-
tructure that allows it to monitor, forecast and control the
electricity profile of the DER. Each DER has a certain set
of preferences towards its electricity profile, as well as a
cost function that maps its electricity profile to a monetary
cost. For example, an EV has an arrival time and a certain
amount of energy that it needs to receive (charge) before its
departure. If the Aggregator requests the EV to receive less
energy than required, then the EV requests a compensation for
this flexibility service.

Market participants (buyers and sellers) can trade energy in
the day-ahead and/or intra-day markets. This free trade stops
at a certain time before delivery time in order for the system
operator to ensure that the system will be balanced in real
time operation [5]. The time at which trading stops is called
gate closure time. After the gate closure, each participant
reports a certain energy profile (energy bought/sold) to the
system operator. This profile is referred to as the participant’s
market program.

In real-time operation, the transmission system operator
(TSO) is responsible for maintaining the balance between
supply and demand. Given a market program for each market
participant, the TSO receives the players’ offers for providing
or requesting balancing energy. A cost optimization problem
is run at the TSO side, through which the balancing energy
dispatch of each player is determined.

In order for the TSO to be able to solve this optimization
problem in a fast and scalable way, the balancing energy
offers made by the participants need to be provided in a
certain bidding format, which guarantees that the optimization
problem is tractable. For example, a participant is typically
required to make an offer for upward balancing energy and
downward balancing energy for the timeslot ahead. An offer
is a mapping that relates a level of balancing energy provision
to a certain monetary cost. These offers are typically required
to be in a step-wise form, i.e., pairs of price-quantity (e.g. [6]).

While many studies have proposed methods for further
allocating the aggregator’s cleared quantities to its DERs

downstream (e.g. [7]–[9]), fewer studies have coped with the
issue of how to aggregate and communicate the DERs’ pref-
erences upstream by capturing the aggregated flexibility costs.
The difficulty mainly lies in expressing the flexibility costs
and local constraints of multiple DERs into an informative but
concise offer/bid that the TSO will be able to incorporate in its
dispatch optimization problem. Moreover, the dynamic nature
of DERs requires that all the necessary computations must run
in real-time in order for the Aggregator to dynamically adjust
its bids in the balancing market. Finally, it is desirable that
the aggregation method is general enough (i.e., not tailored
to a specific DER model), so that different types of DERs
can register and participate. These four requirements for the
aggregator’s bid (concise, informative, real-time, general) and
their importance were described in detail in [10].

Different aggregation methods have been proposed in vari-
ous studies. In [11], the energy requirements of a set of EVs
are communicated to the electricity market by constructing a
set of upper and lower bounds for the aggregated demand
across time. Once the Aggregator receives a (aggregated)
power dispatch, the power is allocated to the EVs via an
auction procedure. In [12], an Aggregator is providing re-
serves on behalf of a DER portfolio. An inner-box method
is used to aggregate DER constraints. The method takes the
DER constraints as input and outputs the upper and lower
bounds on aggregated net load (considering also time-coupling
constraints).

Another family of studies considers the case where an
Aggregator acts as a Virtual Power Plant by representing a set
of DERs in the market. In electricity markets where a certain
participant holds considerable market power, bi-level optimiza-
tion approaches have shown that the participant’s profit can
be optimized. In [13], bi-level programming is used to derive
the optimal offering strategy of a DER Aggregator in a day-
ahead electricity market. However, the cost of flexibility for the
demand-response assets is neglected in the model. In [14], a
bi-level program is again used to maximize the Aggregator’s
profits in the day-ahead market, while also considering the
cost of demand response. However, in sufficiently competitive
electricity markets, it is to the best interest of each participant
to bid according to its true cost for energy provision [5].
Many studies consider the Aggregator as a price-taker, that
has a certain forecast of the electricity price and only bids
an energy quantity. In [15], a stochastic mixed-integer linear
program is solved in order to calculate the optimal bid of
a DER portfolio in the day-ahead market, assuming a price
forecast. In [16], an EV-Aggregator defines its optimal bidding
curve, again assuming certain knowledge about electricity
market prices. A similar approach is taken in [17], where the
Aggregator stochastically optimizes its quantity-only bids in
the DA market and real-time market. Nevertheless, it should be
noted that a quantity-only bid communicates that the market
participant is willing to buy/sell this quantity at any price,
which is a case that is more relevant to suppliers/load serving
entities/retailers. In contrast, since the real-time balancing
market prices can be volatile, flexibility Aggregators could
benefit from bidding price-quantity pairs.

Fewer studies have considered an Aggregator that bids in

3

the real-time balancing market. In [18], an EV-Aggregator
is in charge of participating in the day-ahead and real-time
(balancing) market on behalf of an EV fleet. However, the
Aggregator only bids the desired energy quantity and not a
price-quantity function. In [19], a stochastic bi-level mathe-
matical program is used for optimizing the strategy of a price-
taking DR-Aggregator in a real-time market. In [20], an EV-
fleet Aggregator bids in the day-ahead and real-time market on
behalf of the EVs. An optimization problem is solved based
on the probability distribution of real-time electricity prices,
which is assumed known. In [21], an Aggregator bids an
energy quantity in the balancing market, and an event-driven
mechanism is applied to the DERs in order to incentivize them
to comply with the cleared aggregated quantity.

Summarizing the literature review, existing studies typically
assume some type of electricity price forecast, and a price-
taking Aggregator that only bids an energy quantity (much
like a supplier) instead of price-quantity pairs. Creating price-
quantity pairs, is a challenging task for the Aggregator, since
the costs and constraints of its DERs have inter-temporal
couplings, i.e., the flexibility cost of a DER in the current
timeslot is dependent on how the DER flexibility will be
controlled in future timeslots. Moreover, the Aggregator’s bid
must be decided in an online fashion, which means that the
available time for computations is very limited.

To this end, learning methods have been studied as a way to
facilitate fast decision making in online operation, after having
been trained offline. In [22], a deep reinforcement learning
method is proposed, through which a price-making Aggregator
decides for its energy bids in a day-ahead electricity market. In
[23], a neural network is trained to learn how the aggregated
consumption of DERs changes with a set of retail prices
imposed by the Aggregator to the DERs. A similar model
is used in [24], where the authors also used particle swarm
optimization to determine the Aggregator’s optimal retail price
vector that maximizes its profit. However, these studies, again,
have not provided a method for the Aggregator to capture its
flexibility costs in price-quantity pairs.

In this paper, we propose a generic method for capturing
the Aggregator’s upward and downward balancing energy cost
for a set of DERs that have inter-temporal couplings in their
cost functions and/or constraints. The method is not tailored
to any specific DER model. Rather, it can be applied to any
use case of DERs, regardless of the DER models. We use
a fitting function for this purpose. In order to address the
uncertainties of the DERs’ parameters, we perform offline
scenario-based simulations, and use these simulations to train
a machine learning (ML) algorithm. Different ML methods are
tested and compared. In online operation, the trained ML can
be provided with the current state of the DERs, and predict the
optimal Aggregator balancing energy offer (prices for given
levels of balancing energy) for the next timeslot ahead very
quickly and, as our simulation results indicate, with very good
accuracy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DER Aggregator who is responsible for
submitting offers for balancing energy on behalf of its port-

Fig. 1. High-level architecture of the system

folio. The high-level procedure is visualized in Fig. 1. In
this Section we elaborate on each step of this procedure,
and define it mathematically. Our final goal is to provide a
method for calculating a proper set of bids for step (3) of
Fig. 1, by taking into account the given data of steps (1) and
(2), while also formulating an expectation on the outcome of
steps (4) and (5).

Let N denote the set of DERs registered with the Aggre-
gator and T denote a set of timeslots within a particular time
horizon. Some DERs can offer certain flexibility with respect
to their electricity demand. In particular, the electricity con-
sumption of a flexible DER n in timeslot t can be controlled.
We denote this control variable as xtn and the respective vector
xn = {x1n, x2n, ..., x

|T |
n } denotes the controllable consumption

profile of a flexible DER across the time horizon. A certain
consumption profile xn, generally comes with a cost for DER
n. More specifically, a DER’s cost is defined as a function
cn(xn), representing the compensation that the Aggregator
needs to pay to the DER for shaping the latter’s consumption
profile. Moreover, DER n bears a set of constraints regarding
its profile, which for the moment are abstractly denoted as

xn ∈ Fn. (1)

Note that constraints (1) may couple a variable xt1n with a
variable xt2n , i.e., a DER’s model may exhibit intertemporal
couplings. Referring to Fig. 1, step (1) is realized by commu-
nicating the cn(xn) and Fn of each DER to the Aggregator.

The Aggregator’s market program (i.e., the energy bought
in the day-ahead market) is denoted by a vector PN =

{P1
N ,P

2
N , ...P

|T |
N }, where an element PtN represents the port-

folio’s market program for timeslot t. Step (2) of Fig. 1 is
realized when the Aggregator receives its market program PN
upon the gate closure of the day-ahead market.

The aggregated consumption of the Aggregator in timeslot
t, in real-time operation, is denoted as Xt

N , where

Xt
N =

∑
n∈N

xtn, (2)

4

Fig. 2. A typical form of an offer for balancing energy [6].

and the respective vector XN denotes the Aggregator’s
consumption profile across the horizon. The difference
PtN − Xt

N is the Aggregator’s provided balancing energy in
timeslot t. Note that it can also take on negative values when
the Aggregator absorbs more energy than PtN . The Aggregator
has to provide a bid/offer in the timeslot τ ahead (i.e. a cost
for energy injection and an offer for energy absorption). The
bidding format is subject to the rules of the TSO. Typically,
it has to be in a form of a step-wise function that defines
pairs of balancing energy and price (as in Fig.2), in order to
make the economic dispatch problem solvable by standard
mixed-integer programming techniques. The above bidding
format, although conducive for the TSO, is quite restrictive for
the Aggregator, since it cannot fully capture the Aggregator’s
actual model which is comprised by the cost functions cn(xn)
and constraints xn ∈ Fn of all DERs n in the Aggregator’s
portfolio. Note also, that the DERs’ cost functions and
constraints may exhibit inter-temporal dependencies.

In order to facilitate the methodology’s presentation, and
without loss of generality with respect to its applicability, we
assume that the Aggregator offers one price-quantity pair, i.e.,
a per-unit price bτup paired with a maximum quantity Bτup for
upward balancing energy (i.e. injecting power by curtailing
electricity consumption) and bids a per-unit price bτdown and
a maximum quantity Bτdown for downward balancing energy
in the next timeslot τ (i.e. buying more energy than PτN).
The method is generic and can be directly extended to as
many pairs as desirable, as it will become clear shortly. The
mathematical form of the Aggregator’s bid reads as

qτ (Xτ
N) =

{
bτup (P

τ
N −Xτ

N) , PτN −Xτ
N ≥ 0

bτdown (X
τ
N − PτN) , PτN −Xτ

N < 0
(3a)

PτN −Xτ
N ≤ Bτup, PτN −Xτ

N ≥ 0 (3b)

Xτ
N − PτN ≤ Bτdown, PτN −Xτ

N < 0, (3c)

where qτ (Xτ
N) is the Aggregator’s cost function (for upwards

and downwards balancing energy) and (3b), (3c) communicate
to the TSO that the Aggregator can receive a dispatch up to
Bτup (Bτdown) for balancing energy up (down). The proposed
method (to be presented later), relates to the calculation of bτup
and bτdown for step (3) of Fig. 1.

Next, we describe the balancing market process that leads
to step (4) of Fig. 1. The TSO gathers the bids for balancing
energy from all the balancing market participants, including
the bid (3a)-(3c) of the Aggregator and the set of bids Bτ
of other market participants, and clears the balancing market
close to real-time by solving an economic dispatch problem.
The objective of the TSO’s economic dispatch problem is to
minimize the system’s balancing energy cost SC, defined as
the sum of the participants’ cost functions, while satisfying
the system’s power balance constraint and respecting the
constraints set by the participants’ bids. The output of the
economic dispatch problem is the balancing energy dispatch
decisions for each market participant and the balancing energy
prices λτup, λτdown for upwards and downwards balancing
energy respectively. Note that the system dispatches balancing
energy either upwards or downwards, so that only one of the
two prices is non-zero. These prices are typically defined based
on the dual variables of the power balance constraints. We
denote the balancing energy dispatch of the Aggregator as
Dτ , and the tuple of the dispatch instructions for all balancing
market participants as Dτ , where Dτ ∈ Dτ . The economic
dispatch problem of the TSO reads as

min
Dτ
{SC}

s.t. (3a)− (3c)
Bids Bτof other participants
Power Balance Constraints : (λτup, λ

τ
down).

(4)

Thus, the Aggregator’s dispatch order Dτ depends on its bid
prices (bτup, b

τ
down) through problem (4).

Upon receiving the dispatch order and the price, the Aggre-
gator calculates the power of each DER (in step (5) of Fig.
1) so as to maximize its profit π. The Aggregator receives a
revenue λτup ·max{0, (PτN −Xτ

N)} from providing balancing
energy up (or a cost λτdown ·max{0, (Xτ

N − PτN)} for down),
while in case the Aggregator deviates from the TSO’s dispatch
order, it receives a penalty λImb · |Xτ

N − Dτ |. Finally, the
Aggregator pays a cost

∑
n∈N c

τ
n(x

τ
n) to its DERs in order

to shape their profile to {xn}n∈N such that (2) holds. Based
on the above, the Aggregator’s profit in current timeslot τ ,
reads as

πτ = λτup·max{0, (PτN−Xτ
N)}−λτdown·max{0, (Xτ

N−PτN)}

− λImb · |Xτ
N −Dτ | −

∑
n∈N

cτn(x
τ
n). (5)

In view of the descriptions of this Section, and towards
calculating the bid prices bτup and bτdown for step (3) of Fig.
1, the Aggregator deals with a sequential decision making
problem where, in the first stage of current timeslot τ , it
decides upon its bid (bτup, b

τ
down), and in the second stage (after

receiving its dispatch order) it decides upon the electricity
consumption of its DERs {xτn}n∈N and consequently Xτ

N .
The decisions are realized and the procedure repeats in the next
timeslot. In the first stage decision, the Aggregator’s objective
is to find the optimal bid (bτup, b

τ
down) that maximizes its

expected profit over the second stage decision {xτn}n∈N , Xτ
N

and also over the expected profits of future timeslots. This

5

is formalized through a multistage stochastic optimization
problem that takes a nested form:

max
bτup,b

τ
down

{
E
[

max
{xτn}n∈N ,XτN

πτ
]
+

E

[
max

bτ+1
up ,bτ+1

down

{
E

[
max

{xτ+1
n }n∈N ,X

τ+1
N

πτ+1

]
+ ...

}]}
s.t. (1)− (5),

(6)
where the expectations are over dispatch orders Dt and prices
λtup, λtdown, that depend on decisions bτup, b

τ
down through

problem (4).
Since the Aggregator has no information on the bids Bt of

other players for the current or future timeslots, it cannot tackle
problem (6) optimally, since it cannot have an expression for
the dispatch orders or prices. In what follows, we propose
a method through which the Aggregator can handle this
uncertainty upon deciding its bids in the first stage.

Let us consider a set S of arbitrary scenarios s ∈ S for the
Aggregator’s dispatch orders, constrained by (3b), (3c), over
the entire horizon T . Let the sequence of dispatch orders for
a certain scenario s be denoted as Ds = {D1

s , D
2
s , ..., D

|T |
s }.

We consider a conservative strategy, where, given the dispatch
information, the Aggregator opts for minimizing its total
balancing energy and imbalance costs, as in

C∗s = min
xn,s,XN,s

{∑
n∈N

cn(xn,s) +
∑
t∈T

λImb · |Xt
N,s −Dt

s|

}
s.t. (1), (2).

(7)
Using problem (7), we can obtain the optimal variables

Xt,∗
N,s ∈ X∗N,s and respective optimal costs C∗s for each

scenario s. Then, for each scenario, we fix the values of
Xt,∗
N,s, ∀t ∈ T and C∗s for each scenario, and solve a

fitting problem to decide the variables btup, b
t
down for the

entire horizon, such that the distance between the average
Aggregator’s cost given by problems (7) and the cost given
by the Aggregator’s bid function (3a), is minimized:

minbtup,btdown

∑
s∈S

(∑
t∈T

qt(Xt,∗
N,s)− C

∗
s

)2


s.t. (3a).

(8)

Using the above method, the Aggregator can retrieve a map-
ping from input data PN , cn(xn), Fn to the decision for its
bids (bτup, b

τ
down). The bid estimation method is summarized

in Algorithm 1. However, a large number of scenarios may be
required before a good approximation is achieved, which can
be impractical for real-time operation. A ML solution to this
problem is described in the next section.

After receiving the actual dispatch Dτ and the balanc-
ing market prices λτup, λ

τ
down for the current timeslot from

the TSO, the Aggregator decides upon Xτ
N and {xτn}n∈N

by greedily maximizing the profit in the current times-
lot, assuming that its dispatch for future timeslots t > τ

Algorithm 1 Bid estimation method
1: Read input PN , cn(xn), Fn
2: Create a set S of scenarios for dispatch sequences Ds

3: for s ∈ S
4: solve problem (7)
5: store values X∗N,s, C

∗
s

6: Solve problem (8) using X∗N,s, C
∗
s to estimate bids

(bτup, b
τ
down)

will be Dt = PtN :

max
xn,XN

{∑
t∈T

πt

}
s.t. Dt = PtN , ∀t ∈ T : t > τ

λtup = λtdown = 0, ∀t ∈ T : t > τ

xtn = x̃tn, ∀t < τ, n ∈ N
(1), (2),

(9)

where x̃tn denotes the decisions made in the previous timeslots
(which have to be fixed as decisions about the past cannot be
altered).

III. USING MACHINE LEARNING FOR MAKING FAST
ONLINE DECISIONS

The bid estimation part of the method described in the
previous section is computationally expensive. This is because
set S has size that is exponentially large in the number of
timeslots of the horizon T . This implies that many scenarios
are needed, where for each scenario the Aggregator has to
solve an optimization problem (namely (7)). Thus, in real-
time operation, there is no sufficient time to apply the method
of the previous section.

In this section, we propose the use of ML techniques to
train a decision making system for the Aggregator’s bids.
We assume that the Aggregator knows the form of functions
cn(·) and constraints Fn and has statistical knowledge over
their parameters in the form of probability distributions to
which these parameters abide. The input data of the ML
algorithm, denoted as U , contains all the parameters necessary
for defining PN , cn(xn), Fn. We run Monte Carlo simulations
to obtain a number of instances Uk of the input data, where
each k ∈ K is a certain sample and K is the set of samples.
For each instance Uk, we apply the method described in the
previous section to obtain the estimated bids (bτk,up, b

τ
k,down).

Thus, using Uk and (bτk,up, b
τ
k,down) as input and output

respectively, we can train a ML algorithm. The training
procedure is summarized in Algorithm 2. Once trained, the ML
algorithm will be able to provide a fast decision on coefficients
(bτup, b

τ
down) for the next timeslot ahead, upon receiving the

information on PN , cn(xn), Fn in online operation.
The task at hand is a regression problem. That is, given a

specific input, a set of numerical values are predicted. Various
ML algorithms were tested for this problem. In this paper,
we present the two methods that achieved the most promising
results, namely, Deep Neural Networks (DNNs) and Random
Forests (RFs), among others that we also tried.

6

Algorithm 2 ML training using Monte Carlo simulations
1: Generate input data {Uk}k∈K
2: for k ∈ K
3: execute Algorithm 1
4: store (bτk,up, b

τ
k,down)

5: Train the ML algorithm using Uk and (bτk,up, b
τ
k,down)

A. Deep Neural Networks

Deep Neural Networks consist of one input layer through
which the features are fed into the network. A number of
hidden layers follows, each one comprised of several neurons.
The large number of layers in DNNs allows the network to
learn complex representations. The challenge is to define the
number of hidden layers and neurons in order to balance
the accuracy and the computational complexity of the model.
There is no standard formula to do this, and a trial and error
approach is usually required.

B. Random Forests

Random Forests is an ensemble learning method. Ensemble
methods use many learning algorithms combined and can
obtain better predictive performance when compared to any
of the learning algorithms alone. One ensemble method is
bagging of classification or regression trees, where successive
trees are independently constructed using a bootstrap sample
of the data set. A majority vote is taken for the final prediction.
Bagging improves the accuracy and also reduces variance and
over-fitting. In random forests, the best split of a given node
is decided using a predictor chosen randomly from the set of
predictors of that node. Depending on the specific scenario,
they can outperform other regression or classification tech-
niques based on support vector machines or neural networks.
More information about random forests can be found in [25].

IV. CASE STUDY

For the purpose of evaluating the proposed method, we
consider a setting where the Aggregator represents a portfolio
of 100 flexible loads and a RES generation facility. The
method is evaluated for an operational horizon of 24 timeslots,
A load n ∈ N features an arrival time arrn and a departure
time depn. Its feasible interval for energy allocation is denoted
as Hn = [arrn,depn] ⊂ T .

The portfolio consists of two classes of loads, namely Ther-
mostatically Controlled Loads (TCLs) j ∈ NTCL, including
Air-Conditioners, Water Heaters etc., and EVs i ∈ NEV ,
where |NTCL| = |NEV | = 50 and N = NTCL ∪ NEV . For
each family of loads, we present the models below.

An EV i ∈ NEV is constrained by an upper and lower
power consumption level

xmin
i ≤ xti ≤ xmax

i (10)

and it cannot be charged before arrival or after departure

xti = 0, t /∈ Hi. (11)

Moreover, the EV has a certain energy requirement Ei to be
fulfilled. When the total charged energy upon departure is
different than Ei, the user suffers a dissatisfaction and needs
to be compensated by the Aggregator. This translates to the
EV’s flexibility cost function, defined as:

cEV (xi) ={
0,

∣∣∑
t∈T hi · xti − Ei

∣∣ ≤ toli

wi ·
(∑

t∈Hi hi · x
t
i − Ei

)2
,
∣∣∑

t∈T hi · xti − Ei
∣∣ > toli

(12)

where toli is a tolerance level, hi is the EV’s charging
efficiency, and wi is the load’s elasticity parameter. Observe
that the EV’s cost function exhibits intertemporal couplings
since the cost of the EV is only realized at its departure
timeslot depi, but is, however, dependent on the charging
decisions of all previous timeslots.

For TCL j ∈ NTCL let θtj denote the temperature measured
by the TCL’s sensor. The transition function of the temperature
is defined as:

θtj = θt−1j + insj(θ
t
env − θt−1j)− conjx

t−1
j (13)

where θtenv is the environment’s temperature, insj is a param-
eter related to temperature decay (e.g. insulation) and conj is
a conversion factor (from electrical power to thermal energy).
Similarly to constraints (10) and (11), for TCLs we have:

xmin
j ≤ xtj ≤ xmin

j (14)

xtj = 0, t /∈ Hj (15)

where Hj is the TCL’s operation interval. The TCL has a
setpoint θtsp,j , which represents the user’s target temperature.
Similarly to EVs, the TCL’s cost function is defined as

cTCL(xj) ={
0,

∣∣θtj − θtsp,j∣∣ ≤ tolj∑
t∈[arrj ,depj]

wj ·
(
θtj − θtsp,j

)2
,
∣∣θtj − θtsp,j∣∣ > tolj .

(16)

The Aggregator also features local RES generation facilities,
with a generation profile R = {R1,R2, ...R|T |}. In order to
obtain realistic values for PN , each DER’s intended demand
ptn for each timeslot, is set to the value that incurs minimum
cost to the DER (assuming no balancing actions by the
Aggregator), i.e.

ptn = argminxtn{cn(xn)}
s.t. (10)− (16).

(17)

Thus, the Aggregator’s net demand profile PN under no
flexibility actions is defined by

PtN =
∑
n∈N

ptn − Rt, ∀t ∈ T. (18)

Having defined parameters PN , cost functions cn(xn)
and the feasible sets for xn, we can apply the method

7

TABLE I
VALUES/DISTRIBUTIONS OF SETTING’S PARAMETERS

Parameter Comments Value Average Value Standard deviation

xmin
n ∀n 0 - -

xmax
i for EVs - 3 0.1

xmax
j for TCLs - 5 0.5
arri for EVs - 4 2.5
arrj for TCLs - 3 1
depi for EVs - arrn + 4 1
depj for TCLs |T | - -
Ei - - xmax

i (depi − arri)− 2 0.5
insj - - 0.05 0.01
θtsp,j - - 77 1
wn ∀n - 0.5 0.1

proposed in the previous section. Specifically, parameters
θtenv,R

t, arrtn,dep
t
n,Ei, θ

t
sp,j ,wn are the features together

with PN .

V. EVALUATION FRAMEWORK

In this section, we evaluate the proposed method for the
case study presented. The EVs’ charging efficiency, hi, follows
a uniform distribution between 94% and 100%, while the
parameter conj is uniformly sampled from the interval [3, 4].
The average outdoors temperature θenv(average) is assumed
to follow the temperature of a typical summer day in south-
ern Europe: θ0env(average) = 83 F and θtenv(average) =
θt−1env (average) + 3 F, assuming a simulation horizon of 24
timeslots, that represents quarterly intervals from morning to
noon. The actual value for θtenv follows a normal distribution
around the respective value of θtenv(average), with a standard
deviation of 3 F. The local RES production for each timeslot is
sampled from a normal distribution with mean values starting
from 2 kWh and increasing by 2 kWh in every next timeslot.
The standard deviation for each timeslot is set equal to 0.25
kWh of the respective mean value. The quantities Btup,B

t
down

were set equal to 0.1PtN . The rest of the setting’s parameters
are sampled from normal distributions, as those are defined
in Table I. Finally, upon solving the optimization problem of
the method, the absolute values were linearized by using an
auxiliary variable.

A. Wholesale Market Model
In order to evaluate the proposed method, we use a model

through which the wholesale electricity market receives the
offer of the Aggregator and decides whether it is going to
request balancing energy (up or down) from the Aggregator. In
reality, this decision is made by problem (4), where the offers
from all market participants are taken into account. However,
since we are only interested in the Aggregator’s dispatch, for
the scope of this paper we abstract away the complete market
model and construct a Wholesale Electricity Market Module
(WEMM) that provides decisions only on the Aggregator’s
dispatch and the balancing energy price λτ for the current
timeslot τ .

In case the Aggregator is called to offer balancing energy
up (reduce load), it follows that price λτ is higher than its
offer bτup. In this case the WEMM randomly generates a price

Algorithm 3 Evaluation Procedure
1: set τ = 1
2: while τ ∈ [1, 24]
3: feed input features the ML and get ML estimation for

bτup, b
τ
down

4: feed bτup, b
τ
down to the WEMM and get the dispatch Dτ

and price λτ

5: solve problem (9) to decide {xτn}n∈N , Xτ
N

6: set x̃τn equal to the solution of (9)
7: τ = τ + 1

that is within the interval [bτup, λmax], where λmax is the
administrative upper bound for the balancing energy price. In
case the Aggregator is called to buy balancing energy down
(increase load), it follows that price λτ is lower than its offer
bτdown. In this case, the WEMM randomly generates a price
that is within the interval [λmin, b

τ
down], where λmin is the

administrative lower bound. Parameters λmin, λmax are set to
zero and 20 cents respectively. The model for the WEMM is
described in the following procedure:

1) First, the WEMM receives the Aggregator’s offers bτup
and bτdown for the timeslot ahead.

2) The module randomly decides if it is going to need
upward or downward balancing energy, with equal prob-
ability unless stated otherwise.

3) a) for upward balancing energy (the Aggregator reduces
its load): The Aggregator is not called, (i.e., requested
to follow its market schedule, Dτ = PτN) with
probability %up,out = max{1, bτup/λmax}. On the
other hand, the Aggregator is called to offer balancing
energy Bτup, i.e. Dτ = PτN − Bτup, with probability
%up,in = 1 − %up,out, at a price λτup, which is picked
randomly from the interval [bτup, λmax].

b) for downward balancing energy (the Aggregator
increases its load): The Aggregator is called to offer
balancing energy down Bτdown (i.e., Dτ = PτN+Bτdown)
with probability %down,in = max{1, λmin/bτdown},
at a price λτdown, which is picked randomly from the
interval [λmin, b

τ
down]. Finally, the Aggregator is not

called, (i.e., requested to follow its market schedule
Dτ = PτN) with probability %down,out = 1− %down,in.

The procedure through which the setup is simulated is
described in Algorithm 3.

B. Machine Learning Methods
We assumed 1000 samples to generate a single case of

mapping from the defined set of features to the optimal bids
bτup, b

τ
down. We evaluated the ML algorithms for a total of

1000 cases. We considered 2-fold cross validation with 3
repeats. The accuracy metric is the mean absolute error and
the standard deviation of the errors.

1) Deep Neural Networks: We used the Keras deep learning
library along with tensorflow [26]. The architecture that we
considered is the following: an input layer, seven hidden layers
and one output layer. The number of neurons of the input layer
and of the hidden layers is equal to the number of features. In

8

TABLE II
ACCURACY OF ML ALGORITHMS

Algorithm Mean Standard Deviation
DNN 0.27 0.005
RF 0.29 0.004

the hidden layers we assumed a dropout rate equal to 0.2. The
number of neurons of the output layer is equal to the number
of coefficients bτup, b

τ
down. We chose the rectifier activation

function for the hidden layers and the Adam optimization
algorithm [27]. Finally we considered 1000 epochs.

2) Random Forests: We used the Random Forests regressor
from the Scikit-Learn library. The number of trees in the forest
is 100. The nodes are expanded until all leaves are pure or until
all leaves contain less than 2 samples. The minimum number
of samples required to be at a leaf node is 1.

VI. RESULTS

A. Comparison of Machine Learning Methods
In Table II, we present the mean and the standard deviation

of the score (defined as the Mean Absolute Error) of the
ML algorithms for the aforementioned scenarios. We notice
that both algorithms are sufficiently accurate even with a
relatively low amount of training cases. RFs perform a bit
better than DNNs, but the difference is not very large to be
deemed significant. Once the data is generated, DNNs require
a training time of 60 seconds on a Quad Core CPU at 4
GHz, while RFs require 10 seconds. Note that these running
times refer to the training phase. The resulting estimations
require much less time (around 0.11 seconds) to provide a bid
estimate. Thus, both models are suitable for dynamic scenarios
to promptly acquire a bidding decision.

B. Aggregator Profits
Algorithm 3 was run for a number of different cases for

the imbalance price λImb. More specifically, the setting was
simulated for λImb = {0, 5, 10, ..., 40}. For each value of
λImb, a number of setting instances were simulated and the
results on the Aggregator’s profits were averaged out over all
instances. Figure 3 shows the resulting average Aggregator’s
profits as a function of λImb. The Aggregator’s profits are
always positive. This is not trivial, since if the Aggregator does
not submit bids and follows its market schedule it obviously
makes zero profit, and if the bidding method performed
poorly (e.g. resulted in major imbalances or DER costs), the
Aggregator’s profit could well be negative.

As it can be observed, the Aggregator’s profits decline for
higher values of λImb. However, the curve gradually stabilizes,
especially after λImb surpasses λmax, which means that as
λImb increases, the profits are no longer affected significantly
by λImb. The reason for this, is that for λImb > λmax, the
Aggregator opts for minimizing its imbalances. Thus, the fact
that the profits are not affected by λImb after a certain point,
means that the Aggregator succeeds in minimizing imbalances,
which in turn indicates that the proposed ML method achieves
a very good capturing of the Aggregator’s flexibility cost, i.e.,

0 5 10 15 20 25 30 35 40
Imbalance price (cents)

14

15

16

17

18

19

20

Ag
gr

eg
at

or
 p

ro
fit

 ($
)

Balancing energy price upper bound
Average Aggregator revenue

Fig. 3. Aggregator’s profit as a function of the imbalance price

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tolerance

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y
of

 Im
ba

la
nc

e

Fig. 4. Estimated probability of imbalance for different values of the
tolerance level toln

the offers made by the ML method do not result in dispatch
decisions that the Aggregator cannot follow.

C. Imbalances

In order to verify the indication of the previous subsection,
we estimated the probability that the Aggregator’s offer results
in a dispatch order which the Aggregator prefers to not follow.
This can happen when the flexibility costs of the DERs for
following the dispatch, are higher than the imbalance price
(which, in turn, means that the estimate of flexibility costs by
the ML algorithm was not good). The setting was simulated
for different values of parameter toln (the same for all DERs).
For each value of toln, we conducted a number of 1000
simulations and counted the number of experiments in which
an imbalance occurred (no matter how small). The probability
of imbalance was estimated as the number of experiments with
imbalances, divided by 1000, and is depicted in Fig. 4 for
different values of toln.

D. Flexibility aggregation

In this subsection we examine how well the proposed
flexibility aggregation algorithm captures the DERs’ flexibility
level. In order to control the overall flexibility of the DERs via
a single parameter, we use the tolerance toln. A lower value
of toln means lower flexibility for the set of DERs, since their
cost functions (12), (16) are activated more easily. In contrast,
a high toln, gives the Aggregator more flexibility to shape

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tolerance

0

2

4

6

8

10

Av
er
ag
e
of
fe
r/b

id
 p
ric
e
($
/k
W
h)

Offer for balancing energy up
Bid for balancing energy down

Fig. 5. Average Aggregator’s offers/bids for different levels of DER
flexibility

the DERs’ profiles without suffering flexibility costs. Figure
5 presents the resulted Aggregator’s bids (averaged over all
timeslots) for different values of toln.

The figure verifies that for higher values of toln, the method
is able to capture the increased flexibility of the DERs, since
it results in lower bids. Note that a lower bid means that
the Aggregator is more likely to be dispatched (even for a
lower price), therefore it communicates to the TSO that the
Aggregator is more flexible towards offering balancing energy.

E. Bidding Behavior

For the purposes of this experiment, we modified the
WEMM to always ask from the Aggregator to offer balancing
energy up (curtail load). Thus, the Aggregator curtails energy
consumption and in every next timeslot it is asked to curtail
again. Figure 6 shows how the Aggregator’s offers btup, b

t
down

are affected in this case along the horizon. The results indicate
that when the Aggregator is asked to curtail energy in a given
timeslot, the proposed method increases the requested price
for further curtailment in the next timeslot and, after a certain
point, increases also the Aggregator’s offer to buy balancing
energy. After a certain point in time, this phenomenon is
counter-balanced by the departure of many EVs (and the
arrival of new ones), which is why the offer/bid prices do
not further increase after that point.

VII. CONCLUSIONS

In this paper we presented a generic method for aggregating
the flexibility costs of distributed energy resources and con-
structing a per-timeslot price-quantity offer of an Aggregator
that represents a portfolio of flexible assets. Machine Learning
methods were used in order to enable the Aggregator to
calculate its offer in an online fashion, for the real-time
balancing market. Different machine learning techniques were
tested and compared in a case study. Finally, the Aggregator’s

0 5 10 15 20 25
Simulation timeslot

0

2

4

6

8

10

Of
fe
r/b

id
 p
ric

e
($
/k
W
h)

Offer for balancing energy up
Bid for balancing energy down

Fig. 6. Aggregator’s offers/bids for each timeslot

market participation was simulated, and the results showed that
the method performs well towards capturing the portfolio’s
flexibility costs. In particular, the method’s application does
not result in dispatch decisions that are not profitable for the
Aggregator to follow.

REFERENCES

[1] Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard,
“Review of real-time electricity markets for integrating distributed
energy resources and demand response,” Applied Energy, vol. 138, pp.
695 – 706, 2015.

[2] L. Gkatzikis, I. Koutsopoulos, and T. Salonidis, “The Role of Aggre-
gators in Smart Grid Demand Response Markets,” IEEE Journal on
Selected Areas in Communications, vol. 31, no. 7, pp. 1247–1257, 2013.

[3] G. Tsaousoglou, P. Makris, and E. Varvarigos, “Electricity market
policies for penalizing volatility and scheduling strategies: The value
of aggregation, flexibility, and correlation,” Sust. Energy, Grids and
Networks (SEGAN), vol. 12, pp. 57–68, December 2017.

[4] G. Tsaousoglou, P. Pinson, and N. G. Paterakis, “Max-min fairness
for demand side management under high res penetration: Dealing
with undefined consumer valuation functions,” in 2020 International
Conference on Smart Energy Systems and Technologies (SEST), 2020,
pp. 1–6.

[5] D. Kirschen and G. Strbac, Participating in Markets for Electrical
Energy. John Wiley Sons, Ltd, 2005, ch. 4, pp. 73–104.

[6] “Balancing market detailed design,” https://www.admie.gr/uploads/
media/Balancing Detailed Design - Public Consultation 201712.pdf.

[7] G. Tsaousoglou, K. Steriotis, N. Efthymiopoulos, K. Smpoukis, and
E. Varvarigos, “Near-optimal demand side management for retail elec-
tricity markets with strategic users and coupling constraints,” Sustainable
Energy, Grids and Networks, vol. 19, 2019.

[8] G. Tsaousoglou, K. Steriotis, N. Efthymiopoulos, P. Makris, and E. Var-
varigos, “Truthful, practical and privacy-aware demand response in the
smart grid via a distributed and optimal mechanism,” IEEE Transactions
on Smart Grid, pp. 1–1, 2020.

[9] G. Tsaousoglou, P. Pinson, and N. G. Paterakis, “Transactive energy for
flexible prosumers using algorithmic game theory,” IEEE Transactions
on Sustainable Energy, 2021.

[10] T. Li, S. H. Low, and A. Wierman, “Real-time flexibility feedback
for closed-loop aggregator and system operator coordination,” arXiv
2006.13814, 2020.

[11] S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, and G. Decon-
inck, “A scalable three-step approach for demand side management of
plug-in hybrid vehicles,” IEEE Transactions on Smart Grid, vol. 4, no. 2,
pp. 720–728, 2013.

[12] X. Chen, E. Dall’Anese, C. Zhao, and N. Li, “Aggregate power flexibility
in unbalanced distribution systems,” IEEE Transactions on Smart Grid,
vol. 11, no. 1, pp. 258–269, 2020.

10

[13] E. G. Kardakos, C. K. Simoglou, and A. G. Bakirtzis, “Optimal offering
strategy of a virtual power plant: A stochastic bi-level approach,” IEEE
Transactions on Smart Grid, vol. 7, no. 2, pp. 794–806, 2016.

[14] K. Steriotis, K. Smpoukis, N. Efthymiopoulos, G. Tsaousoglou,
P. Makris, and E. Varvarigos, “Strategic and network-aware bidding
policy for electric utilities through the optimal orchestration of a virtual
and heterogeneous flexibility assets’ portfolio,” Electric Power Systems
Research, vol. 184, 2020.

[15] M. Di Somma, G. Graditi, and P. Siano, “Optimal bidding strategy for
a der aggregator in the day-ahead market in the presence of demand
flexibility,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2,
pp. 1509–1519, 2019.

[16] Y. Vardanyan, F. Banis, S. A. Pourmousavi, and H. Madsen, “Optimal
coordinated bidding of a profit-maximizing ev aggregator under uncer-
tainty,” in 2018 IEEE International Energy Conference (ENERGYCON),
2018, pp. 1–6.

[17] J. Iria, F. Soares, and M. Matos, “Optimal supply and demand bidding
strategy for an aggregator of small prosumers,” Applied Energy, vol.
213, pp. 658 – 669, 2018.

[18] S. I. Vagropoulos and A. G. Bakirtzis, “Optimal bidding strategy for
electric vehicle aggregators in electricity markets,” IEEE Transactions
on Power Systems, vol. 28, no. 4, pp. 4031–4041, 2013.

[19] R. Henrı́quez, G. Wenzel, D. E. Olivares, and M. Negrete-Pincetic,
“Participation of demand response aggregators in electricity markets:
Optimal portfolio management,” IEEE Transactions on Smart Grid,
vol. 9, no. 5, pp. 4861–4871, 2018.

[20] H. Yang, S. Zhang, J. Qiu, D. Qiu, M. Lai, and Z. Dong, “Cvar-
constrained optimal bidding of electric vehicle aggregators in day-ahead

and real-time markets,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 5, pp. 2555–2565, 2017.

[21] W. Pei, Y. Du, W. Deng, K. Sheng, H. Xiao, and H. Qu, “Optimal
bidding strategy and intramarket mechanism of microgrid aggregator in
real-time balancing market,” IEEE Transactions on Industrial Informat-
ics, vol. 12, no. 2, pp. 587–596, 2016.

[22] Y. Ye, D. Qiu, J. Li, and G. Strbac, “Multi-period and multi-spatial
equilibrium analysis in imperfect electricity markets: A novel multi-
agent deep reinforcement learning approach,” IEEE Access, vol. 7, pp.
130 515–130 529, 2019.

[23] N. G. Paterakis, A. Taşcıkaraoğlu, O. Erdinç, A. G. Bakirtzis, and J. P. S.
Catalão, “Assessment of demand-response-driven load pattern elasticity
using a combined approach for smart households,” IEEE Transactions
on Industrial Informatics, vol. 12, no. 4, pp. 1529–1539, 2016.

[24] K. Dehghanpour, M. H. Nehrir, J. W. Sheppard, and N. C. Kelly,
“Agent-based modeling of retail electrical energy markets with demand
response,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3465–
3475, 2018.

[25] Tin Kam Ho, “Random decision forests,” in Proceedings of 3rd Interna-
tional Conference on Document Analysis and Recognition, vol. 1, 1995,
pp. 278–282 vol.1.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv 1412.6980, 2014.

