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Demand Response as a Service: Clearing
Multiple Distribution-Level Markets

Georgios Tsaousoglou, Polyzois Soumplis, Nikolaos Efthymiopoulos, Konstantinos Steriotis,
Aristotelis Kretsis, Prodromos Makris, Panagiotis Kokkinos, and Emmanouel Varvarigos

Abstract—The uncertain and non-dispatchable nature of renewable energy sources renders Demand Response (DR) a critical
component of modern electricity distribution systems. Demand Response (DR) service provision takes place via aggregators and
special distribution-level markets (e.g., flexibility markets), where small, distributed DR resources, such as building energy management
systems, electric vehicle charging stations, micro-generation and storage, connected to the low-voltage distribution grid, offer DR
services. In such systems, energy balancing (and thus, also DR decisions) have to be made close to real-time. Thus, market clearing
algorithms for DR service provision must fulfill several requirements related to the efficiency of their operation. More specifically, a
DR market clearing algorithm needs to be optimal in terms of cost-efficiency, scalable in terms of number of assets and locations,
and able to satisfy real-time constraints. In order to cope with these challenges, this paper presents a distributed DR market clearing
algorithm based on Lagrangian decomposition, combined with an optimal cloud resource allocation algorithm for assigning the required
computation power. A heuristic algorithm is also presented, able to achieve a near-optimal solution, within negligible computational
time. Simulations, performed on a testbed, demonstrate the computational burden introduced by various DR models, as well as the
heuristic algorithm’s near-optimal performance. The resource allocation algorithm is able to service multiple DR requests (e.g. in
multiple distribution networks), and minimize the cost of computational resources while respecting the execution time constraints of
each request. This enables third parties to offer cost-efficient and competitive DR operation as a service.

Index Terms—Smart Grid, Flexibility Markets, Demand Response, Cloud.
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NOMENCLATURE

Sets and Indices
N Set of DR facilities, indexed by n.
T Set of timeslots in the scheduling horizon, indexed

by t.
Γn Set of flexibility assets of facility n, indexed by γ.
Yn Set of local control variables of facility n, indexed

by y.
Cn Set of local constraints of facility n.
A Set of electricity grid nodes, indexed by a and i.
B Set of electricity grid branches, indexed by ia.
Ωp(a) Set of parent nodes of node a.
Ωd(a) Set of children nodes of node a.
Na Set of facilities located at node a.
k Index of algorithm iterations.
R Set of DR requests, indexed by r.
Fr Set of computational tasks (one task per facility

f ) of DR request r, indexed by f .
V Set of nodes of the communication network, in-

dexed by v or i, j.
Vc Set of communication network nodes, with com-

putational resources.
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Vf Set of communication network nodes, with DR
facilities.

E Set of virtual links, indexed by ij.
M Set of types of computational resources, indexed

by m.
Kij Set of shortest paths for ij, indexed by κ.

Variables
xn,t Aggregated energy consumption of facility n at

timeslot t.
pγ,t Energy consumption of asset γ at timeslot t.
θa,t RES curtailment factor for node a.
Pia,t Active power flow between nodes i, a at t.
Qia,t Reactive power flow between nodes i, a at t.
Va,t Voltage at node a, timeslot t.
ζv,m,f Binary variable, for the assignment of the com-

putational task f to a resource of type m at node
v.

βvf ,v,κ Binary variable, for a connection of nodes v and
vf (of task/facility f ), through path κ.

ψv,m,f Starting timeslot of processing for task f , by a
machine of type m, located at node v.

ξv,m,f,f̂ Binary variable, of whether task f is executed
before f̂ by m at v.

Parameters
Pd
a,t Power consumption at node a, timeslot t.

PRES
a,t RES output at node a, timeslot t.

fn,t Parameter relating active and reactive power of
facility n at t, through the power factor.



2

Ria Resistance of line ia of the electricity grid.
Xia Reactance of line ia of the electricity grid.
ccurt
a Per-unit cost of curtailing RES generation at

node a.
πt Wholesale electricity price at timeslot t.
αr Arrival time of DR request r.
latr Maximum acceptable latency for the service of

DR request r.
δ

in/out
f Size of input/output data of computational task

f .
cproc
v,m Processing cost for machine type m, at node v.

cnet
ij Network cost for virtual link ij.

trij Transmission rate of link ij.
prv,m,f Processing time of task f by machine type m at

v.
lij,κ Length of shortest path κ for link ij.

1 INTRODUCTION

TOWARDS facilitating the transition to a carbon-free
electricity system, government policies introduce in-

centives for bottom-up investments in Renewable En-
ergy Sources (RES). As a result, RES facilities are being
installed in various locations of the medium or low-
voltage distribution network. While these developments
accelerate the penetration of RES, they do, however,
create new challenges for power system operators. In
particular, voltage and congestion issues become signif-
icant, as they can occur dynamically and close to real-
time operation due to the volatile nature of RES output.

In order to avoid resorting to undesirable RES/load
curtailments and costly grid reinforcement, Distribution
System Operators (DSOs) can manage their networks
and resolve voltage stability and congestion issues by
drawing on the flexibility of small distributed resources
located in the network [1], such as energy storage
systems, micro-generation facilities and flexible loads,
e.g., Heating Ventilation and Air Conditioning (HVAC),
Electric Vehicles (EV), etc. We refer to these resources as
flexibility assets, while the facility where they are located
(building, charging station, etc.) is referred to as a flexible
facility or simply facility.

Novel smart grid architectures (e.g. [2], [3]) have
been proposed towards providing market frameworks
for flexibility activation in such contexts. The relevant
marketplaces are commonly referred to as “flexibility
markets” [4], [5]. A flexibility market is the marketplace
where a DSO dynamically procures Demand Response
(DR) services [6] from assets located in different nodes
of its network. In such markets, DR services are offered
by flexible facility manager entities, who are responsible
for aggregating, offering, and activating the facility’s
flexibility via DR actions. These DR actions are imple-
mented by Energy Management Systems (EMS) that
use Information-and-Communication Technology (ICT)
to monitor and control the energy consumption of the
flexible facility. Examples include Building EMS, EMS

that monitor and control the charging power of electric
vehicles in an EV charging station, and more.

The scalability properties of flexibility market-clearing
algorithms constitute a critical issue towards bringing
such solutions to real-life implementations. Moreover,
each facility bears certain costs for performing DR ac-
tions, relating to the compensation (or energy bill dis-
counts) that it should offer to its end users in order
to modify the assets’ energy consumption profile. The
objective of the DSO is to satisfy the system’s constraints
in the most cost-efficient way, i.e., by drawing on the
least expensive facility DR services. In addition, one
needs to consider the minimization of the total system
cost, including the DR procurement cost and the opera-
tional cost of the cloud services necessary to perform the
various calculations required for the overall operation of
the DR flexibility market.

Cloud computing applications for the smart grid ar-
chitecture, e.g, [7] , [8] , [9], have mainly focused on
three areas, namely, energy management, information
management, and security. However, the need to sup-
port flexibility markets that consider physical network
constraints of the distribution network through Alternate
Current Optimal Power Flow (AC-OPF) formulations,
has recently emerged [10]. The computational complex-
ity, the robustness [11] and the scalability [12] of these
solutions pose critical demands, requiring the efficient
allocation of DR flexibility markets’ computational tasks
to computational resources so that the delay and pro-
cessing requirements that these architectures need are
guaranteed in an economically efficient manner. More-
over, as stated in many recent survey works, such as
[13] and [14], traditional cloud computing architectures
can hardly meet the requirements of large-scale real-
time data processing in DR applications. Therefore, novel
cloud-fog-edge computing architectures have been re-
cently proposed, in which computation tasks can be
decomposed and be allocated to edge/fog nodes and
clouds through more effective task allocation strategies
to strike an optimal trade-off between various require-
ments, such as computational complexity, scalability,
time-related constraints and total operating costs.

Motivated by these developments, we propose, for
the first time, an innovative business-to-business cloud
service, noted as DR Operation as a Service (DROaaS),
which facilitates DSOs, through the use of a DR-oriented
dynamic cloud resource allocation framework. By ex-
ploiting intrinsic attributes of DR models to optimize
cloud-based execution, the proposed framework pro-
vides the DSOs with a flexibility allocation algorithm
that is: i) scalable in terms of number of assets and
distribution network locations, ii) dynamic and able to
make fast, real-time decisions, and iii) optimal (cost-
efficient) in terms of minimizing the total system’s cost
(i.e., both DR procurement cost and cloud-related op-
erational expenditures). The major contributions of this
paper are summarized as follows:
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• A decomposition algorithm is presented, through
which the flexibility market clearing problem is par-
allelized so that it becomes amenable to distributed
(cloud) computation.

• An integrated framework is developed that facili-
tates the realization of the DR operation as a service
(DROaaS). This service calculates the optimal DR ac-
tions, while optimizing the cost of computational re-
sources towards the proliferation of cost-competitive
DR services.

• The use of computational resources in the pro-
posed multi-technology DR architecture is opti-
mized through an integer linear programming algo-
rithm. A heuristic algorithm is also presented, that
achieves near-optimal performance with negligible
computational time.

• An extensive evaluation is performed, under a di-
verse set of end user devices and models. The
evaluation results demonstrate the scalability, low
delay and cost-competitiveness of the proposed ar-
chitecture.

The remainder of the paper is structured as follows.
The next subsection briefly surveys the most relevant
works from the literature, emphasizing the differences
with our proposed solution. Section 2 presents the archi-
tecture of the proposed DR system. Section 3 presents
the modeling of a flexibility market, including an ab-
stract model of DR resources and the DSO distribu-
tion network constraints, as well as a decomposition
algorithm for tackling the optimal dispatch problem in
a distributed fashion. Section 4 presents the optimal
computational resource allocation algorithm, as well as
a heuristic algorithm for making faster, near-optimal
decisions. Section 5 presents the evaluation setup of
the proposed DR architecture, including detailed models
of DR resources and networks. Section 6 presents the
simulation results, while Section 7 concludes this work.

Related Work

There are several works in the recent literature that
propose a cloud-fog-edge architecture for dealing with
DR operation. [15] presents a pioneering work in the
exploitation of an Edge-Cloud architecture towards ef-
ficient DR in buildings. Additionally, in [16], the au-
thors analyzed communication performance as a major
requirement in cloud-based DR. More specifically, a cost-
effectiveness analysis confirms that achieving higher per-
formance incurs a higher communication cost. However,
neither of the aforementioned works have dealt with
the issue of adapting the allocation of DR computation
tasks to computing resources. Consequently, there are
no overall DR performance (delay and scalability) guar-
antees, while the satisfaction of the physical constraints
of the power distribution network, and the consequent
computational load it entails, are not considered.

The work in [17] presents an important effort on the
use of clouds towards real time DR services, which is

often referred to as Emergency Demand Response. The
efficiency of the proposed solution is testified through
performance evaluation results. In the same direction,
[18] exploits clouds towards the real time management
of smart grids. However, the former study does not
consider the underlying distribution network, while the
latter does not consider DR services.

Furthermore, [19] proposes an integration between
smart grid and cloud (noted as Internet of Energy)
by proposing a smart gateway that bridges the fog
domain and the cloud. It is introduced for scheduling
devices/appliances by creating a priority queue that can
perform demand side management dynamically. How-
ever, [19] only presents a communication architecture
and does not model the algorithmic problems of resource
allocation and flexibility market-clearing.

The work in [20] proposes a cloud-edge cooperative
control model and strategy for the price-based DR of
large-scale Air Conditioners, while it is compared with a
classic single cloud architecture model. The results show
reduction of the grid’s critical peak and elimination of
the peak rebound. However, the computation tasks are
statically allocated to the cloud or the edge, while our
work uses a diverse set of DR assets, which incurs the
need for dynamic allocation of computing resources.

The authors in [21] propose a 3-tier edge-cloud col-
laborative residential energy management architecture
in order to alleviate fluctuations in demand, while re-
ducing latency and improving processing performance.
To this end, a two-level energy management mechanism
was determined. The first stage models the interaction
between real-time pricing and energy demand, while
the second implements energy scheduling between the
cloud tier, access tier, and infrastructure tier. [22] also
proposes a similar 3-tier cloud-fog architecture that im-
proves the response delay and uses a linearized AC-OPF
model that finds the optimal solution. Edge computing
resources are designed to generate Bender’s cuts, and
the cloud is designated as the coordinator of the whole
process. Moreover, a few recent works, such as [23]
and [24], deal with a distribution-level energy trading
problem. [23] presents an energy trading management
system, where the edge node acts as a retail energy
market server providing energy services to the end-
users. The architecture includes home gateways, local
fog nodes and cloud server. The proposed edge/cloud
model is compared to a classical single cloud-based
one, showcasing its superiority with respect to network
load and delay reduction. However, these works do not
deal with optimal and dynamic allocation of computing
resources and thus do not guarantee scalability and strin-
gent delay constraints of the market clearing process.

A few more works, namely [25] and [26], consider
cloud-edge architecture to deal with electric vehicle (EV)
fleet management problem. In [25], cooperation among
cloud and edge devices is realized to make intelligent
decisions related to EVs’ charging and discharging in ad-
dition to achieving the expected demand-supply balance,
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without accounting for distribution network constraints.
[26] transforms a traditional large-scale V2G problem
into several sub-problems, which are small enough to
optimize. Network constraints are also taken into ac-
count. In our work, we model diverse DR assets and not
only EVs. We also propose an optimal solution for the
orchestration of the heterogeneous cloud, fog and edge
computing resources.

Finally, authors in [27] proposed the energy man-
agement as a service concept, which is implemented
over a fog infrastructure. Scalability, adaptability, delay
constraints and cloud cost minimization are some of the
requirements that are extensively discussed. However,
this is rather a high level analysis, which means that
there is neither a mathematical problem formulation nor
a proposed algorithm included. In contrast, our work
co-optimizes the cost of DR procurement and cloud
resources by developing a solid mathematical model
and algorithmic solution to realize the novel DROaaS
business model.

2 SYSTEM ARCHITECTURE

The proposed DR architecture assumes a computing
and networking (COMNET) infrastructure that interacts
with the EMS and supports the operation of the DR
mechanisms. The COMNET infrastructure combines het-
erogeneous resources from the edge/fog layers to bring
adequate resources close to flexibility assets, and from
multiple clouds (federated operation).

Computing resources can range from generic ones, to
specialized computing devices (FPGA, GPU), to micro-
DCs and larger DCs, deployed in urban (office and
residential buildings) and rural areas (e.g., alongside
farms of wind turbines and solar panels), some closer
to the edge and some deeper in the cloud forming the
edge-fog-cloud hierarchy. Moreover, these resources may
belong to different administrative authorities (providers)
thus forming a hierarchy of privately owned and public
computational resources. Moving from the lower layers
of the hierarchy to the higher ones, the provided capac-
ity, scalability and resiliency increase, but so does the de-
lay. Edge resources can perform light computations and
filtering functions, while complex computations have to
be offloaded to the higher layers, i.e., deeper in the cloud.
Such approaches are currently being adopted in other
time-critical applications, e.g. closed-circuit television
cameras fitted with artificial intelligence capabilities for
facial recognition technology. We regard that the same
approach is relevant for the smart energy field. More
specifically, we consider as edge resources the resources
that operate within and/or close to each facility featur-
ing low network delay but low computational capacity.
We also note as fog resources the resources located on
the local DSO data center (i.e. dedicated servers, which
are available to compute purpose-specific applications).
Finally, we note as cloud resources the ones located at
large data centers and are typically owned by large cloud

service providers (e.g., Amazon, Google, etc). These
usually have larger network delay but higher capacity.

The networking infrastructure includes various net-
working mechanisms using different wired (optical) and
wireless (e.g. 5G) technologies to provide the required
interconnection of the computing resources over private
and public network infrastructures. These multi-domain
and multi-technology network paths are controlled and
managed by the telco operators based on Software De-
fined Networking (SDN) principles. Hence, we abstract
the communication paths between the resources in the
same or different layers as virtual links with specific
latency and capacity. These values depend on the net-
working locality of the resources, with those in proximity
resulting in lower latency than those that are far apart.

Each facility’s EMS infrastructure contains sensors,
actuators and/or smart plugs, together with appropriate
interfaces through which end users are able to set their
preferences regarding the use of their flexibility assets
for providing DR. By drawing on the EMS monitoring
and control capabilities, the flexible facility can offer
DR services to the DSO. In turn, the DSO needs to
decide the optimal configuration of DR-services (e.g.,
which facilities should activate their flexibility and by
how much). This optimization can be mathematically
decomposed into smaller subproblems (computational
tasks), which can be performed in a cost-effective and
time-critical manner by drawing on the COMNET in-
frastructure. Thus, a business model is enabled, where
a third party can offer a DR operation as a service
(DROaaS) to multiple systems of DSOs and flexibility
asset owners/users.

Fig. 1 depicts the proposed DR Operation as a Service
that can orchestrate the decomposed instances of the
market clearing algorithm over the available COMNET
infrastructure. The main components that form the pro-
posed DROaaS architecture are:

• An EMS per facility that exploits ICT technology to:
– monitor and control the flexibility assets of that

facility,
– allow end-users to declare their electricity con-

sumption preferences through a user interface,
and

– communicate the facility’s DR capabilities and
receive dispatch orders.

• The Service Orchestrator provides the necessary in-
terface between the DROaaS platform and the facil-
ities and DSOs. It receives, through its interface, the
requirements and specifications of the DR market
clearing problem (Sections 3.1-3.2).

• The Resource Orchestrator decomposes the DR mar-
ket clearing problem into smaller subproblems (Sec-
tion 3.3), and assigns the subtasks to the most appro-
priate edge, fog, or cloud computational resources
(Section 4).

• The Infrastructure Manager handles the interaction
with the local orchestrators at the various com-
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Fig. 1. DR Operation as a service

putational resources, models their capabilities and
enables their monitoring.

In the following Section, we elaborate on the problem
definition and decomposition, while in Section 4 we
present the algorithms for the allocation of the decom-
posed subproblems to computational resources.

3 DR PROBLEM FORMULATION AND DECOM-
POSITION

3.1 System Model

A flexibility market consists of a set N = {0, 1, 2, ..., |N |}
of flexible facilities (e.g., buildings, EV charging stations,
storage facilities, etc) and a DSO, noted as participant 0
of set N . Each facility n ∈ N/{0} is located at a particular
node of the DSO’s distribution network and can perform
DR actions. Continuous time is divided into a set T of
timeslots for an horizon ahead.

Each facility is able to control the power consumption
of its flexibility assets through the facility’s EMS. The
set of flexibility assets of facility n is denoted by Γn. The
aggregated energy consumption of a facility at timeslot
t is denoted by xn,t, while the energy consumption of a
particular asset γ ∈ Γn of facility n, is denoted by pγ,t.
Therefore, we have∑

γ∈Γn

pγ,t = xn,t, ∀n ∈ N/{0}, t ∈ T. (1)

Each facility features a set Yn of local variables, which
includes xn,t, pγ,t (for every t and γ) and also other local
variables, depending on the particular models of the
facility’s flexibility assets. A facility also bears a set Cn
of feasible operational points, defined by a number of
operational constraints on the combinations {y}y∈Yn of
all local variables y ∈ Yn. Therefore, we have

{y}y∈Yn ∈ Cn, ∀n ∈ N/{0}. (2)

Detailed asset models are presented in Section 5. While
those models facilitate the adequate evaluation of the
proposed architecture, the architecture is open and trans-
parent to the facility DR models used, in the sense that it
is not bounded to those, or any other, particular models.
For this reason, the operational constraints (2) are kept
in an abstract and general form for now.

The DSO is responsible for maintaining the distribu-
tion network within safe operational limits. Assuming a
radial network, let A denote the set of network nodes
and B the set of branches. For a node a ∈ A, let Ωp(a)
(or Ωd(a)) denote the set of predecessor (or descendant,
respectively) nodes connected to node a. In node a, there
is a certain amount of power consumption Pd

a,t, as well
as a RES power generation PRES

a,t , which the DSO can
choose to curtail by a factor of 1 − θa,t ∈ [0, 1], where
θa,t = 1 means that there is no RES curtailment and
θa,t = 0 means that the whole RES output of node a
is curtailed. Finally, let Na denote the set of facilities
located at node a ∈ A. Towards modeling the flows
and constraints of the physical electricity grid, we use
the linearized DistFlow equations [28], defined by the
following set of constraints:∑

i∈Ωp(a)

Pia,t −
∑
n∈Na

xn,t − Pd
a,t + θa,tP

RES
a,t =

∑
j∈Ωd(a)

Paj,t, ∀a ∈ A, t ∈ T (3)∑
i∈Ωp(a)

Qia,t −
∑
n∈Na

fn,txn,t −Qd
a,t + θa,tf

RES
a,t PRES

a,t =

∑
j∈Ωd(a)

Qaj,t, ∀a ∈ A, t ∈ T (4)

Va,t = Vi,t − 2(RiaPia,t + XiaQia,t),

∀a ∈ A, i ∈ Ωp(a), t ∈ T (5)

Va ≤ Va,t ≤ Va, ∀a ∈ A, t ∈ T (6)
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Paj,t ≤ Paj,t ≤ Paj,t, ∀aj ∈ B, t ∈ T (7)

Q
aj,t
≤ Qaj,t ≤ Qaj,t, ∀aj ∈ B, t ∈ T , (8)

where fn,t are the parameters relating active and reactive
power (through the power factor), and Pia,t and Qia,t are
the active and reactive power flowing on the branch ia
connecting nodes i ∈ A and a ∈ A of the distribution
network.

Eq. (3) and Eq. (4) represent the active and reactive
power balances at each distribution node. Namely, the
total outgoing power

∑
j∈Ωd(a) Paj,t from node a, equals

the incoming power
∑
i∈Ωp(a) Pia,t minus the net power

consumption
∑
n∈Na xn,t + Pd

a,t − θa,tP
RES
a,t of node a.

Eq. (5) describes the voltage drop between each pair of
neighboring nodes a, i where i ∈ Ωp(a). Variable Va,t
denotes the squared voltage of node a at t, while Ria

and Xia are the resistance and reactance, respectively, of
branch ia. The grid’s voltages and active/reactive power
flows must satisfy certain limits to ensure the physical
grid’s operational safety. Constraints (6) make sure that
voltages in all nodes stay within safe margins, while (7)
and (8) limit the active and reactive power flows for all
branches.

3.2 DR Problem Formulation
The DSO decides the amount of RES curtailments θa,t,
that come at a cost of ccurt

a per 1 MW of RES generation
curtailment, as well as variables x0,t that express the
power exchange with the main grid. A cost function
d0(Y0) is defined for the DSO, to capture the cost of
exchanging energy with the main grid and the cost of
RES curtailments, namely,

d0(Y0) =
∑
t∈T

(
πtx0,t +

∑
a∈A

(1− θa,t)PRES
a,t ccurt

a

)
, (9)

where πt is the price for importing/exporting energy and
Y0 = {Pia, Paj , Qia, Qaj , Va,t, x0,t, θa,t}.

On the other hand, each facility bears a DR-cost func-
tion dn(Yn), where Yn denotes the set of local variables
of the facility. The function dn(·) is used by the facility
to model the DR costs of its assets. For example, an
EV charging station would need to compensate its EV
users (or offer price discounts) to counteract their dis-
satisfaction for suffering delays in their battery charging
due to congestion in the electricity network. Similarly
to constraints (2), facility DR-cost functions are kept in
a general form in this Section, but they are modeled
explicitly in Section 5 for the evaluation tests.

The objective of the market clearing algorithm is to
make sure that the network operates within the feasible
operational area, while minimizing the aggregate system
cost (i.e., the cost of DR actions and the cost of exchang-
ing power with the main grid), as in

min

{∑
n∈N

dn(Yn)

}
s.t.(1)− (9).

(10)

The intuition behind problem (10) is that, in case
the satisfaction of the physical grid’s safety constraints
necessitates DR actions, RES curtailments and/or power
imports, the DSO will decide the least expensive combi-
nation of actions. For example, facilities that have a very
small DR cost (e.g., a battery or a very flexible load) will
be prioritized for dispatch actions before modifying the
consumption profile of critical loads or resorting to RES
curtailments and/or power imports at times where the
electricity prices are high.

3.3 DR Problem Decomposition

Solving problem (10) directly, in a centralized fashion,
poses a number of challenges. The first challenge is
that all models (DR cost functions and operational con-
straints) of the facilities would need to be communicated
to a central entity, which raises security and privacy
concerns. A second issue is that the large number of
variables makes the problem computationally intensive.

In order to overcome these issues, problem (10) can
be solved in a distributed fashion using a Lagrangian
decomposition. Each facility solves a local optimization
problem to decide the value of its local variables Yn,
while the DSO solves an optimal power flow problem.
The procedure iterates, while coordination is achieved
by updating a set of Lagrange multipliers λa,t and µa,t
that are related to the dual variables of the active and
reactive power balance constraints, respectively. More
specifically, we consider the alternating direction method
of multipliers (ADMM). By taking the augmented La-
grangian of problem (10), we have

L =
∑
n∈N

dn(Yn) +
∑
a∈A

∑
t∈T

(
λa,tga,t +

ρ1

2
‖ga,t‖2

)
+
∑
a∈A

∑
t∈T

(
µa,tha,t +

ρ2

2
‖ha,t‖2

)
(11)

where

ga,t =
∑

i∈Ωp(a)

Pia,t +
∑
n∈Na

xn,t + Pd
a,t − θa,tPRES

a,t

−
∑

j∈Ωd(a)

Paj,t (12)

ha,t =
∑

i∈Ωp(a)

Qia,t +
∑
n∈Na

fn,txn,t + Qd
a,t

− θa,tfa,tPRES
a,t −

∑
j∈Ωd(a)

Qaj,t. (13)

An iterative method for solving problem (10) is defined
based on the following variable update rules
Facility

{y}(k+1)
y∈Yn = argmin

Yn

{
L(k)

}
s.t.(1), (2)

(14)
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Algorithm 1: Iterative distributed algorithm for
solving problem (10)

1 Initialize k = 0, λ
(0)
a,t = 0, µ

(0)
a,t = 0;

2 while ga,t, ha,t ≥ ε do
3 Multipliers λ(k)

a,t , µ
(k)
a,t are communicated to all

computational resources;
4 The resource responsible for facility n solves

problem (14);
5 The solutions are communicated to the

computational resource responsible for the
resource responsible for the DSO, which
solves (15);

6 The solutions are communicated to the
computational resource responsible for the
multiplier and iteration updates;

7 Multipliers are updated based on (16), (17)
and k = k + 1.

DSO

P
(k+1)
ia , P

(k+1)
aj , Q

(k+1)
ia , Q

(k+1)
aj , V

(k+1)
a,t , θ

(k+1)
a,t =

argminPia,Paj ,Qia,Qaj ,Va,t,θa,t

{
L(k+1)

}
s.t. (5)− (9)

(15)

Coordinating Entity

λ
(k+1)
a,t = λ

(k)
a,t + ρ1g

(k+1)
a,t (16)

µ
(k+1)
a,t = µ

(k)
a,t + ρ2h

(k+1)
a,t (17)

where ρ1 and ρ2 are step update coefficients.
This formulation allows problem (10) to be paral-

lelized in order to be solved by appropriate computa-
tional resources in a coordinated distributed fashion. In
particular, the computing task of each facility, i.e. solving
problem (14), can be viewed as a self-dispatch problem
where the facility decides the power consumption of
each asset under the current active and reactive electric-
ity prices λ(k)

a,t , µ
(k)
a,t of the facility’s node. On the other

hand, the DSO solves an optimal power flow problem,
i.e. (15), to decide whether any RES generation needs to
be curtailed as well as the amount of power exchange
with the main grid. The sequence and variable exchange
among the execution nodes that execute each function is
described in Algorithm 1.

4 CLOUD RESOURCE ALLOCATION

We consider the functionality of DROaaS, as a means
to efficiently coordinate the calculations of a set R
of DR requests (corresponding to different distribution
networks), where a DR request r ∈ R is an instance
of problem (10) that is solved through Algorithm 1.
Each particular DR request is decomposed into N + 1
subproblems, as presented in the previous section. Each

subproblem corresponds to the local optimization prob-
lem of a facility (or the DSO) and can be viewed as a
different computation task. Therefore, each DR request
r ∈ R is characterized by its arrival time αr, its set of
tasks Fr (facilities and DSO) and an upper bound latr
on the allowable latency per iteration.

Each task requires the transmission of input data δin
f

and output data δout
f . These tasks can be executed in the

facilities (edge resources) that they originate from, or be
forwarded to aggregation points (fog resources) or to the
cloud, and they introduce a latency latf . The incentive
for moving tasks from the edge (on site) to the fog
(other sites) and to the cloud (central sites) is the lower
capacity of lower-level resources that may prolong the
execution time of the bag of tasks beyond the allowable
delay. Aggregating multiple tasks in fog resources can
reduce the overall cost of the operation, assuming that
resources’ marginal cost reduces as a function of the
submitted workload. On the other hand, moving tasks to
higher layers of the COMNET infrastructure introduces
networking latency that may increase the tasks’ overall
execution time, the so-called makespan.

Let graph G = (V,E) jointly represent the flexibility
markets and the computing and networking (COMNET)
infrastructure. The set V = Vc ∪ Vf consists of the nodes
Vc that possess computational resources, and the nodes
Vf : f ∈ Fr, r ∈ R where the facilities are connected.
Facility nodes can be also equipped with processing
units, thus Vc∩Vf 6= ∅ in general. The set E corresponds
to virtual links that interconnect the nodes over wired
and wireless communication paths. Let M denote the
set of types of computational resources available in the
system. A resource of type m ∈ M , located at node
v ∈ V , is characterized by a processing cost cproc

v,m . Each
virtual link i, j ∈ E is characterized by a network cost
cnet
i,j , depending on its available networking capacity.

The overall transmission rate of the virtual link i, j is
denoted as tri,j , resulting in a transmission latency for
the data that needs to be transferred between nodes i
and j and a propagation latency that depends on the
physical distance of the virtual link.

The goal of the resource optimization procedure is
to minimize the weighted sum of the processing per
iteration cost and the latency for serving all the DR
requests in R, while respecting the time constraints of
each request. In the next subsections we formulate the
problem as an ILP, and also provide a heuristic algorithm
for keeping the computational time low.

4.1 Optimal ILP for the Allocation of Computational
Resources

In what follows, we present the ILP formulation of the
dynamic resource allocation problem. We use the index
f to refer to a facility (and respective computation task)
of any DR request, i.e. f ∈ F , where F =

⋃
r∈R {Fr}. Let

binary variable ζv,m,f denote whether a virtual machine
of type m located at node v, is assigned to perform the



8

calculation task f . A resource m at node v needs prv,m,f
time to perform the computations of task f .

To speed-up the calculations we make use of a pre-
processing phase in which we pre-calculate κ shortest
paths with length li,j,κ between each pair of nodes
i, j ∈ E, which include the paths from the location
vf of each facility f , to the different processing nodes
v ∈ V and between the processing nodes. Given the
communication network topology G, let Ki,j denote the
set of κ shortest paths between nodes i, j, and set Λi,j
contain their respective lengths li,j,κ. Then, binary vari-
able βvf ,v,κ denotes whether the corresponding facility
of task f (located at node vf ) is connected to a node v
over virtual link κ ∈ Kvf ,v or not.

An integer variable, denoted as ψv,m,f , indicates the
timeslot1 in which a resource of type m, located at node
v, starts the processing of task f . Finally, binary variable
ξv,m,f,f̂ denotes whether the calculation of task f at
m, v is performed before that of task f̂ . The objective
of optimal resource allocation is to minimize the overall
processing and network costs, i.e.

min
W

w ·
∑
v∈V

∑
m∈M

∑
f∈F

ζv,m,f · cproc
v,m

+ (1− w) ·
∑
v∈V

∑
m∈M

∑
f∈F

(ψv,m,f + ζv,m,f · prv,m,f )

 ,

(18)

where W = {ζv,m,f , βvf ,v,κ, ψv,m,f , ξv,m,f,f̂} and w is an
objective weighting coefficient taking values between 0
and 1. When w = 0 the latency for serving the DR
requests is minimized, while when w = 1, the processing
per iteration cost is minimized. In intermediary cases
where cost and latency are traded off, the value of w
needs to be appropriately tuned so that the processing
cost (measured in monetary units) is balanced with the
latency value (measured in units of time). The optimiza-
tion is subject to the following constraints. Each task has
to be assigned to exactly one virtual machine:∑

v∈V

∑
m∈M

ζv,m,f = 1, ∀f ∈ F. (19)

In order to assign task f to resource v,m, a connection
path must be selected:∑

κ∈Kvf ,v

βvf ,v,κ ≥
∑
m∈M

ζv,m,f , ∀f ∈ F, v ∈ V. (20)

We assume that the multiplier updates are made by the

1. The set T of timeslots defined in Section 3 refers to operational
timeslots e.g. of 15-minute duration. On the contrary, here we refer to
timeslots that relate to the execution times of the calculations. Those
are of much smaller durations. In fact, these timeslots belong to a set
T , where the total duration of all timeslots in T , is smaller than the
duration of one timeslot t ∈ T , in order to satisfy the requirement that
the calculations’ execution should finish before the operational timeslot
changes.

DSO itself2. Let ṽr denote the node where the DSO of
DR request r is located and f̃r denote the special task
of multiplier update. Each facility allocates a virtual link
for forwarding the data to the DSO∑

κ∈Kvf ,ṽr

βvf ,ṽr,κ = 1, ∀f ∈ Fr, r ∈ R. (21)

Node v cannot begin the execution of task f before
receiving the input data δin

f of f . This is subject to
transmission and propagation delays, and the starting
time of task f ’s at m, v can be calculated to be

ψv,m,f ≥
βvf ,v,κlvf ,v,κ

Φ
+

δin
f

trvf ,v
− (1−

∑
m∈M

ζv,m,f ) ·Q,

∀m ∈M, v ∈ V, f ∈ F, (22)

where Φ is the speed of light and Q is a sufficiently big
number. The DSO cannot update the multipliers before
receiving the response of each calculation task, implying
that

ψṽr,m,f̃r ≥ ψv,m,f + prv,m,f +
βṽr,vf ,κlṽr,vf ,κ

Φ
+

δout
f

trṽr,vf

− (1−
∑
m∈M

ζṽr,m,f̃r ) ·Q,

∀m ∈M, v ∈ V, f ∈ Fr, r ∈ R. (23)

When the multipliers are updated, an iteration of the
distributed algorithm is completed and the respective
latency per iteration constraint must be satisfied:

ψṽr,m,f̃r + prṽr,m,f̃r ≤ latr,

∀m ∈M, v ∈ V, f ∈ Fr, r ∈ R. (24)

Finally, the following three constraints ensure that the
execution time ordering is preserved and there are no
overlaps (i.e., simultaneous task executions at the same
machine):

ξv,m,f,f̂ + ξv,m,f̂,f = 1, ∀m ∈M,v ∈ V, f, f̂ ∈ F, f 6= f̂
(25)

ψm,v,f + prv,m,f − ψm,v,f̂ ≤(
1− ξv,m,f,f̂ + 2− ζv,m,f − ζv,m,f̂

)
·Q

∀m ∈M,v ∈ V, f, f̂ ∈ F, f 6= f̂ (26)

ψm,v,f̂ + prm,v,f̂ − ψm,v,f ≤(
1− ξv,m,f̂,f + 2− ζv,m,f̂ − ζv,m,f

)
·Q

∀m ∈M, v ∈ V, f, f̂ ∈ F, f 6= f̂ . (27)

For large instances, the optimal ILP solution can take a
long time to calculate. Thus, in the next subsection, we
present a heuristic algorithm that can achieve a near-
optimal solution with minimal computational time.

2. This is a plausible assumption since the DSO is responsible for
coordinating the dispatch actions of its distribution network. However,
the assumption is without loss of generality, since a third party could
also be responsible for the simple operation of multipliers’ update.
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Algorithm 2: DROaaS heuristic algorithm
Input: G=(V,E), M, R, w, {cproc

v,m }∀v∈V,m∈M ,
{cnet
i,j }∀(i,j)∈E

Output: Allocation of facility tasks to
computational resources: {ζv,m,f , ψv,m,f}∀v,m,f

Initialize: {ζv,m,f , ψv,m,f}∀v,m,f = 0
1 Sort the DR requests in descending order of their

latency bound latr;
2 for each DR request r ∈ R do
3 for each facility task f ∈ Fr do
4 Update ζv,m,f , ψv,m,f , by solving problem

(18)-(27) with {ζv,m,f̂ , ψv,m,f̂}∀v,m,f̂ :f̂ 6=f
fixed, and with constraint (23) relaxed

end
5 Update ζv,m,f̃ , ψv,m,f̃ , by solving problem

(18)-(27) to allocate the DSO tasks, with the
allocation {ζv,m,f , ψv,m,f}∀v,m,f :f 6=f̃ of the
facilities’ tasks fixed

end

4.2 Heuristic Algorithm for Fast Resource Allocation

The heuristic algorithm decomposes the selection of
processing nodes and transmission links in a separable
form, assuming there is no coupling between the nodes
where the processing is performed and the node which
is responsible for communicating the multipliers and the
iteration update. Thus, the problem can be efficiently
solved by solving the two decoupled problems, where
the first finds the pairing of facility tasks to processing
nodes, and the second finds the pairings of facility nodes
to the node responsible for the iterations. Since the num-
ber of variables and constraints in this case is not large,
many algorithms can be applied. The heuristic, pre-
sented in Algorithm 2, is based on relaxing the grouping
constraints by first assigning facility tasks to processing
nodes and then DR requests to the communicating node.

More specifically, the heuristic algorithm serves the
DR requests sequentially, one by one. To do so, the DR
requests are sorted in descending order based on their
service latency requirements (line 1). Hence, decisions
for the DR requests with strict latency requirements
are prioritized. Then, the facility tasks of the request
are examined sequentially, and resources are allocated
based on a best fit approach and the selected objective
function (lines 3-4). The allocation of each facility task
is determined (and updated) by solving problem (18) -
(27), but keeping all the variables of other tasks fixed.
Since the DSO’s task has not been allocated at this point
(i.e., the DSO variables are initialized to zero), constraint
(23) is relaxed to prevent infeasibility. After all facility
tasks are allocated, the algorithm allocates resources to
the DSO task (line 5), by solving (18) - (27), while keeping
the variables of facility tasks fixed.

5 EVALUATION SETUP

In this section we present the evaluation setup, which
includes a set of detailed heterogeneous facility DR
models, a benchmark DSO network, and COMNET in-
frastructure.

5.1 Facility DR models
We consider several heterogeneous facility DR models,
where the differences lie in the modeling choices of the
facility manager entity or in the nature of the facility’s
flexible loads. All flexible loads are characterized by
minimum and maximum operational points between
which the load’s electricity consumption must lie, i.e.,

xγ ≤ xγ,t ≤ xγ , ∀γ ∈ Γn, n ∈ N (28)

The DR cost dn of facility n is defined as the sum of the
DR costs dγ,n of all the assets that it operates, i.e.

dn(Yn) =
∑
γ∈Γn

dγ,n(Yn), ∀n ∈ N. (29)

In the following subsections, we present the facility
DR models used in the simulations. A facility DR model
refers to the specific formulation of the facility’s con-
straints (2) and its DR cost function dn(Yn). Based on
its DR model, each facility type bears different com-
putational requirements for solving its local problem
(14), which greatly interferes with the resource allocation
problem. The particular values for all parameters used
in the following subsections are presented in Table 1.

5.1.1 Facility with curtailable loads
The set of facilities belonging to this type is denoted by
Ncurt. A curtailable load γ ∈ Γn:n∈Ncurt

has a desired con-
sumption x̃γ,t at timeslot t and is characterized by a set
of DR cost parameters cγ,t that relate to the level of the
load’s inelasticity. For these loads the set of controllable
variables consists only of the electricity consumption
variables xγ,t, i.e. Yn:n∈Ncurt

= {xγ,t}γ∈Γn,t∈T . The DR
cost function of a load, as adapted by [29] and [30], is
defined by

dγ,n(Yn) =
∑
t∈T

dγ,n,t, ∀γ ∈ Γn, n ∈ Ncurt, (30)

where

dγ,n,t = cγ,t(x̃γ,t − xγ,t)2, ∀γ ∈ Γn, n ∈ Ncurt. (31)

5.1.2 Facility with curtailable loads and ramp constraints
For some assets it might be relevant to constraint the
ramp up/down rates rup/rdown of energy consumption,
in order to avoid abrupt changes in their consumption
from one timeslot to the next. For this type of loads γ ∈
Γn, n ∈ Nramp, the control variables, constraints and cost
function are the same as those of curtailable loads, but
with an additional time-coupling constraint:

rdown
γ ≤ xγ,t − xγ,t−1 ≤ rup

γ , ∀γ ∈ Γn, n ∈ Nramp. (32)



10

5.1.3 Facility with time-shiftable loads

This set of facilities is denoted by Nshift. A load γ ∈
Γn:n∈Nshift

has a desired energy consumption Eγ that
must be fulfilled within the time interval [tarr

γ , tdep
γ ]:∑

t∈[tarrγ ,tdep
γ ]

xγ,t = Eγ , ∀γ ∈ Γn, n ∈ Nshift (33)

The only decision variables are again xγ,t. The load also
has a desired completion time t̃γ ≤ tdep

γ . If part of the
load’s required energy consumption is consumed after
t̃γ , then the load bears a cost, defined as

dγ,n(Yn) =
∑
t∈T

dγ,n,t, ∀γ ∈ Γn, n ∈ Nshift, (34)

where

dγ,n,t =

tdep
γ∑

t=t̃γ+1

s
(t−t̃γ)
γ

Eγ
xγ,t, γ ∈ Γn,∀n ∈ Nshift (35)

Intuitively, the term s
(t−t̃γ)
γ imposes a higher DR cost for

later timeslots through the exponent, while parameter
sγ ≥ 1 relates to the load’s inelasticity. This model is
adapted from [31].

5.1.4 Facility with fully flexible loads

This set of facilities is denoted by Nflex. A load γ ∈
Γn:n∈Nflex

is characterized by a feasible time interval
[tarr
γ , tdep

γ ], as well as a desired energy consumption Ẽγ
and a minimum acceptable energy consumption Eγ for
that time interval, i.e.

Eγ ≤
∑

t∈[tarrγ ,tdep
γ ]

xγ,t ≤ Ẽγ , ∀γ ∈ Γn, n ∈ Nflex. (36)

The set of controllable variables is again Yn:n∈Nflex
=

{xγ,t}γ∈Γn,t∈T . The DR cost of a flexible load of this type,
adapted from [32], is defined as

dγ,n(Yn) = l1γ
∑

t∈[tarrγ ,tdep
γ ]

xγ,t + l2γ , ,∀γ ∈ Γn, n ∈ Nflex.

(37)

5.1.5 Storage Facility

Set Nbat contains storage facilities. A battery is character-
ized by the charging and discharging efficiency parame-
ters ecγ and edγ , respectively, a maximum battery capacity
SOCγ , a maximum power rate xγ and a maximum
number bγ of full discharge cycles allowed. The set of
control variables is Yn:n∈Nbat

= {xchγ,t, xdisγ,t , uγ,t, SOCγ,t},
where for timeslot t, variable xchγ,t is the charge power,
xdisγ,t is the discharge power, uγ,t is a binary variable
denoting whether γ charges or discharges, and SOCγ,t
is the battery’s state of charge. A storage facility does
not have an operational cost for DR, i.e.,

dγ,n(Yn) = 0, ∀γ ∈ Γn, n ∈ Nbat (38)

but the operation of a battery is subject to the following
set of constraints [33]:

0 ≤ xchγ,t ≤ uγ,txγ (39)

0 ≤ xdisγ,t ≤ (1− uγ,t)xγ (40)

SOCγ,t = SOCγ,t−1 + ecγx
ch
γ,t − xdisγ,t/edγ (41)

0 ≤ SOCγ,t ≤ SOCγ (42)
SOCγ,|T | ≥ SOCγ,0 (43)∑
t∈T

xdisγ,t ≤ bγ · SOCγ . (44)

5.1.6 Facility with Thermostatically Controlled Loads
Let Ntcl denote the set of facilities that feature ther-
mostatically controlled loads (TCLs). Such facilities con-
trol the power consumption xγ,t of a TCL as well as
indirectly controlling the room temperature Hγ,t, i.e.
Yn:n∈Ntcl

= {xγ,t, Hγ,t}. A TCL is characterized by
minimum and a maximum acceptable temperature lev-
els, denoted as Hγ,t and Hγ,t respectively. The TCL’s
temperature must be within [Hγ,t,Hγ,t] at all times:

Hγ,t ≤ Hγ,t ≤ Hγ,t, ∀t ∈ T, γ ∈ Γn, n ∈ Ntcl. (45)

The temperature transition depends on technical param-
eters hins

γ ,heff
γ of the TCL that relate to the room’s insu-

lation and the TCL’s efficiency, as well as on the TCL’s
initial temperature Hγ,0 and the outdoors temperature
Hout
t , as in

Hγ,t = (1− h1
γ)tHγ,0 −

t∑
τ=1

(1− hins
γ )(t−τ)Hout

t +

t∑
τ=1

(1− hins
γ )(t−τ)heff

γ xγ,t (46)

The DR cost function of a TCL is defined as the distance
from its desired setpoint temperature H̃γ,t [34], i.e.,

dγ,n(Yn) = hcost
γ (H̃γ,t −Hγ,t)

2, ∀n ∈ Ntcl. (47)

5.1.7 Electric Vehicles Charging Station
An EV charging station n ∈ Ncs can form a flexible facil-
ity by scheduling the power consumption of its charging
tasks. An EV γ ∈ Γn:n∈Ncs is characterized by an arrival
time earr

γ , an energy requirement Eγ , a charging efficiency
parameter eeff

γ and a maximum charging rate xγ . The
set of variables is Yn:n∈Ncs

= {xγ,t, SOEγ,t, uγ,t} where
SOEγ,t is the state of energy in the EV’s battery and
uγ,t is a binary variable denoting whether the EV’s
charging demand has been satisfied in timeslot t. The
set of constraints describing the EV model is:

xγ,t = 0, t < earr
γ (48)

eeff
γ

∑
t∈T

xγ,t = Eγ (49)

SOEγ,t = SOEγ,t−1eeff
γ xγ,t (50)

uγ,t =

{
1, SOEγ,t − Eγ < 0

0, SOEγ,t − Eγ ≥ 0
(51)
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TABLE 1
Technical characteristics of facilities

Parameters Values
Curtailable loads

xγ (kW) 0
xγ (kW) [1, 5]
x̃γ (%xγ ) [70, 100]

cγ (e/kW2) [0.25, 0.50]
Curtailable loads With Ramp Constraints

xγ (kW) 0
xγ (kW) [10, 15]

cγ (e/kW2) [0.03, 0.05]
rdown
γ (kW) [4, 6]
rup
γ (kW) [4, 6]

Time-shiftable Loads
xγ (kW) 0
xγ (kW) [2, 12]
Eγ (kWh) [6, 36]
tarr
γ (h) [3, 9]∪[14, 20]

tdep
γ (h) [5, 11]∪[16, 22]
t̃γ (h) tarr

γ + Eγ/xγ
sγ (e· h) [1.0, 1.1]

Fully Flexible Loads
xγ (kW) 0
xγ (kW) 2
tarr
γ (h) [1, 21]

tdep
γ (h) [1, 21] + [2, 5]

Eγ (kWh) [4.8, 5.1]
Eγ (kWh) [5.5, 6.0]
l1γ (e/kW) [0.25, 0.75]

l2γ (e) [2, 3]
Storage Facilities

xγ (kW) 0
xγ (kW) 2.5
ecγ (%) 95
edγ (%) 95

SOCγ (kWh) 5
SOCγ,0 (kWh) 2.5

bγ (#) 2
Thermostatically Controlled Loads
xγ (kW) 0
xγ (kW) 5
Hγ (◦ F) 74
Hγ (◦ F) 83
H̃γ (◦ F) 79
hins
γ (%) 90

heff
γ (◦ F/kW) -3

hcost
γ (e/ ◦ F2) [0.15, 0.20]

Then, the DR cost is defined based on the extra waiting
time that an EV suffers due to delayed charging (beyond
its earliest possible task completion time dEγ/eeff

γ xγe):

dγ,n(Yn) =
∑
t∈T

uγ,t · t− dEγ/eeff
γ xγe − earr

γ ,

∀γ ∈ Γn, n ∈ Ncs. (52)

This formulation was first proposed in [35].

5.2 DSO network
We consider a 15 node radial distribution network (Fig.
2). The data for branches and loads are presented in
Table 2, adopted by [33]. The upper and lower bounds
of the nodal voltage amplitude are set to 1.05 pu and

10 2 3 4 5

6 7 8 9 1013 12 1114

Fig. 2. A 15-node radial distribution network

0.95 pu, respectively. We assume that 2 PV generators
are installed at nodes 2 and 13 of the network, while
4 wind turbines are located at nodes 5, 8, 10 and 11.
Their production curves are derived from [36]. The base
power and voltage are 1 MVA and 11kV. The cost ccurt

a

of shedding 1 MW of RES generation was set to 50. For
the evaluation we considered a number of 100 assets for
each facility.

5.3 Cloud computing infrastructure

In our simulation experiments, we considered two
topologies for the COMNET infrastructure with differ-
ent characteristics in terms of the number of available
resources and link lengths: a basic (Fig. 3) and an ex-
tended (Fig. 4) topology. For both network topologies,
we assumed that the network is split into three layers,
with Layer 1 representing edge, Layer 2 fog, and Layer 3
cloud infrastructure. The link lengths of the basic topol-
ogy vary from 100 km to 500 km, whereas the extended
topology features average link lengths of 150 km that
vary on the interval [30-500] km. The number, processing
capacity and availability of the resources increase as we
move to higher layers of the infrastructure (deeper in
the cloud). We assume uniform processing capabilities
at each node of a given layer. For the bottom layer, the
processing capacity of a node was set to 9 GIPS. On
the other hand, the utilization cost of the processing re-
sources decreases from the edge to the cloud. The nodes
of the different layers are interconnected through links
of varying rates. Edge nodes are connected via lower
rate links, while cloud nodes via higher speed links.
However, in our performed simulation experiments the
transmission latency was assumed to be negligible, given
the small size of data that need to be transferred, and
only the propagation latency was taken into considera-
tion.

We examined the performance of the proposed ILP
and heuristic assuming an instance of the DROaaS
problem, in which a varying number of DR requests
[10-60] need to be served. Each DR request refers to
a certain set of facilities, the number of which was
selected randomly from [2, 8]. We assumed that higher
layer resources decrease the execution time of a task
by 20% and the cost of utilizing processing power by
40% (1 c.u. for using layer 1 for 10 sec), in relation
to lower layer resources (cloud-fog and fog-edge). The
processing capacity of each node of the edge/fog/cloud
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TABLE 2
Technical characteristics of the 15-node radial distribution network

Branch (#) From Node (i) To Node (a) Ria (pu) Xia (pu) Pia,Qia (pu) Pia,Qia (pu) Via (pu) Via (pu)
1 0 1 0.0031 0.0752 0.233 -0.233 0.95 1.05
2 1 2 0.0033 0.0018 0.233 -0.233 0.95 1.05
3 2 3 0.0067 0.0308 0.233 -0.233 0.95 1.05
4 3 4 0.0058 0.0149 0.233 -0.233 0.95 1.05
5 4 5 0.0141 0.0365 0.233 -0.233 0.95 1.05
6 6 6 0.0080 0.0369 0.233 -0.233 0.95 1.05
7 6 7 0.0090 0.0415 0.233 -0.233 0.95 1.05
8 7 8 0.0070 0.0323 0.233 -0.233 0.95 1.05
9 8 9 0.0037 0.0169 0.233 -0.233 0.95 1.05

10 9 10 0.0090 0.0415 0.233 -0.233 0.95 1.05
11 2 11 0.0275 0.1270 0.233 -0.233 0.95 1.05
12 11 12 0.0315 0.0814 0.233 -0.233 0.95 1.05
13 12 13 0.0396 0.1029 0.233 -0.233 0.95 1.05
14 13 14 0.0106 0.0041 0.233 -0.233 0.95 1.05

Fig. 3. Basic network topology, split into 3 Layers to
represent an edge-fog-cloud infrastructure

Fig. 4. Extended network topology, split into 3 Layers to
represent an edge-fog-cloud infrastructure

layer was set to 9/10.8/12.96 GIPS respectively, while
the respective cost of using resources for 10 sec was set
to 1/1.4/1.96.

6 RESULTS

Simulation experiments were performed, evaluating dif-
ferent scenarios in relation to the number of tasks, their
processing and data requirements, the capacities of the
computing and networking resources and their related
costs. The computational load of line 4 of Algorithm
1, i.e. for solving the optimization problems (15) and

TABLE 3
Number of instructions of line 4 of Algorithm 1, for the

DSO and each facility type

Facility type Instructions count (Millions)
DSO 16703

Curtailable loads 19369
Curtailable loads with ramps 874284

Time-shiftable loads 9028
Flexible loads 9026

Storage 15895
Thermostatically Controlled Loads 196891

EV charging station 120714

(14) for each different facility type, were tested via
simulations. The results are presented in Table 3. An
interesting observation is that the computational cost for
curtailable loads is massively increased by the sole in-
troduction of ramp constraints. Also, the network loads,
which relate to the volume of data necessary (number of
parameters) to perform the calculations, are presented in
Table 4 for each facility type. Finally, we should note that
obtaining the optimal solution to problem (18)-(27) takes
a prohibitive amount of time (in the order of hours).
In contrast, the computational time of the Heuristic
algorithm is only in the order of seconds. This makes
the Heuristic algorithm applicable for the purposes of
real-time electricity markets, which are typically cleared
every 5 to 15 minutes. In what follows, we present
simulation experiments that record the optimality loss
of the fast Heuristic algorithm, compared to the optimal,
but impractical, ILP.

6.1 Results for the basic network topology
Initially, we evaluated the performance of the proposed
ILP and heuristic mechanisms in relation to the total
cost required to complete the execution of an iteration
of the DR requests (Fig. 5). As expected, lower cost
is achieved when the objective is set to minimize the
processing per iteration cost (w = 1). In that case, the
cloud resource nodes are preferred compared to the
edge and fog nodes due to their lower cost and higher



13

TABLE 4
Network load (in number of parameters needed to be

communicated) for the DSO and each facility type

Facility type Input (·4bytes) Output (·4bytes)
Curtailable loads 5000 2400

Curtailable loads with ramps 5400 2400
Time-shiftable loads 700 2400

Flexible loads 800 2400
Storage 600 4800

Thermostatically Controlled Loads 7924 2400
EV charging station 600 2400

processing capabilities. The performance of the proposed
ILP and heuristic is similar for a small number of DR
requests, while for a higher number of DR requests the
ILP outperforms the heuristic. When the objective is
the minimization of the latency for serving DR requests
(w = 0), then more edge resources are utilized, resulting
in increased cost when the heuristic mechanism is used.
For these experiments, the latency bound for each DR
request was set to 1.3 times the processing time of the
largest task on the slowest resource.

Next, we compared the total time required to complete
an iteration (makespan) (Fig. 6) for the two developed
mechanisms. In this case, the latency bound is relaxed.
The best performance is achieved by the ILP with the
objective of minimizing the latency for serving the DR
requests, followed by the respective heuristic. The dif-
ference between the heuristic and the ILP is due to the
fact that the ILP achieves the optimal allocation of the
processing resources, while the heuristic with a worse
performance in resource utilization, selects processing
instances with slower computational capabilities to meet
the objective criteria. All simulation experiments were
performed using Matlab and the CPLEX LP/MIP solver.

6.2 Results for the extended network topology
We performed a number of experiments for the extended
topology of Fig. 4, using the heuristic algorithm for two
different cases. In the first case, we assumed a higher
number of DR requests that vary from 200 to 1200, while
the rest of our assumptions remained the same as in the
basic network topology. In this case, we examined the
allocation of resources at the different layers under the
two objectives.

As shown in Fig. 7, when the objective is the min-
imization of the processing cost (left bar), more tasks
are executed in Layer 3. Also, the number of tasks
executed in Layer 3 increases as the total number of DR
request increase, taking advantage of the higher number
and more powerful computational resources that are
available in the cloud. In this case, the utilization of the
Layer 2 resources is low. On the other hand, when the
objective is the minimization of the service completion
time (right bar), Layer 1 and Layer 2 resources are
preferred. Especially the latter ones are highly utilized
because of their advantage in accommodating the tasks
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Fig. 5. Total cost required to complete the execution of an
iteration of the DR requests for the basic network topology

that cannot be served by the Layer 1 resources due to
the high waiting time that would violate the latency
constraint. Hence, when the main optimization criterion
is the cost, the cloud resources are the most appropriate
ones, but when the objective is the minimization of the
service time, edge and fog resources are preferred as they
offer shorter delays at the expense of a higher cost.

In the second case examined, we assumed the use of
special purpose hardware accelerators, such as GPUs,
in the edge layer that provide a performance boost of
30% for the execution of DR facility tasks, compared
to the general-purpose resources present in the fog and
cloud layers. When the more powerful equipment is
present at the edge, the edge resources are preferred
under both objectives and tend to achieve significantly
better performance compared to the case with our initial
assumptions (Fig. 8). This is because the enhanced edge
devices complete the tasks faster, as is depicted in both
the processing cost and the total time required to com-
plete an iteration. On the other hand, when no enhanced
equipment is used at the edge, the completion time lags
behind by 23% and 27% for the completion time and
processing cost objectives, respectively.

7 CONCLUSION

In this paper, we considered the problem of clearing a
DR flexibility market of a power distribution network
using a diverse set of computational resources (edge, fog,
cloud) over the cloud continuum. We presented a flex-
ibility market clearing algorithm based on Lagrangian
relaxation, and we configured the algorithm’s execution
with an optimal computational resource allocation algo-
rithm. The resource allocation algorithm is able to ser-
vice multiple demand response flexibility markets, and
leverage an economy-of-scale effect towards minimizing
the cost of computational resources while respecting the
execution time constraints of each request. Our exper-
imental results demonstrate the effect of different DR
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Fig. 7. Resource allocation at the different network layers
for the two objectives (w = 1 for the left bar, and w = 0 for
the right bar) and the heuristic algorithm

models in the resulting computational burden (e.g, the
sole introduction of ramp constraints had a dramatic
effect), the trade-off between optimality and scalability
(as approached by the optimal solution and a faster but
sub-optimal heuristic), as well as the resulting allocation
of computational tasks through the different layers (edge
/ fog / cloud) of the envisaged architecture.

Our work enables a new business model, where a
service provider can offer the functionality of DR op-
eration as a service. An important direction for future
work, would be to compare different decomposition
methods with respect to their performance/interaction
with various types of computational and networking
infrastructure. A more general milestone refers to the
development of an integrated and holistic DR system
able to combine orthogonal technologies in order to offer
an attractive trade-off between cost-efficiency and scala-
bility, while also preserving the participants’ privacy.
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Fig. 8. Total time required to complete an iteration for
the ILP and the heuristic for the extended network with
enhanced edge resources
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