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Abstract—Networks are always progressing to support the 
evolving and diverse applications and the needs for improved 
capacity, latency and security. To this end, monitoring is key to 
ensuring the uninterrupted network operation and the QoS of 
the applications. Network Tomography uses a subset of 
monitoring information (corresponding to partial view of the 
network state) to estimate wide-sense network performance, 
including unmonitored parameters. In this paper, we present a 
novel Machine Learning (ML) formulation for Network 
Tomography. The proposed formulation accounts for realistic 
scenarios where: i) the existence of certain links of the network 
is not known (e.g., due to security reasons), ii) the routing is 
dynamic (non-deterministic), i.e., for the same origin-
destination node pair, a different route may be selected 
depending on the state of certain links. Our simulations indicate 
that our proposal has better estimation accuracy compared to 
traditional algebraic or other ML approaches that cannot or do 
not take into account these two assumptions.  

Keywords—dynamic routing, machine learning, network 
tomography, partial topology knowledge 

I. INTRODUCTION 

Cloud and edge computing infrastructures play an 
essential part in today’s economies. They offer a whole range 
of processing services, for example, online commerce, 
smartphone applications, video streaming, gaming, etc. At the 
same time their heavy use and rapid deployment makes them 
increasingly complex, heterogeneous and difficult to manage. 
The level of performance of the edge-cloud continuum 
determines the efficiency of the whole Information and 
Communication Technology (ICT) infrastructure, and the 
Quality of Service (QoS) perceived by the deployed 
applications. The heterogeneity of the networks coupled with 
the increased traffic volumes and rates, make their real time 
(dynamic) management both challenging and necessary. 
Multiple factors can affect network performance, such as: 
packet loss, abnormal delay, delay variance, bad load 
distribution and poor behavior of network operating systems 
or user applications. These factors can result in network soft 
(network performance degradation) or hard (network 
downtime) failures, causing significant costs. Therefore, it is 
critical to provide advanced network monitoring tools able to 
reflect changes in the network state and analyze them.  

As is the case with any system, a network has to be 
observable in order to be manageable and stable. Network 
tomography (NT) [1] is an indispensable tool for this purpose. 
NT refers to large-scale network inference. It involves 
estimating network (path) performance parameters based on 
traffic measurements of a limited subset of network nodes and 

links. Indicative monitoring data set includes (but is not 
limited to): throughput, delay, jitter, packet delivery ratio, 
congestion, bandwidth for specific paths. Some of these 
metrics are additive per link (e.g., delay, jitter), or can be 
transformed to an additive form (e.g., use the log function in 
the case of the packet delivery ratio or reliability), or they are 
non-additive (e.g., the congestion level or the bandwidth, 
depends on the worst link of a path, involving a min operator).  

NT reduces the monitoring needs for the whole network. 
Thus, it increases efficiency, reduces equipment and operating 
costs and can help verify service level agreements. The more 
accurate is the knowledge of the network state obtained 
through NT, the better positioned is the Orchestration layer in 
maximizing the resource utilization (including network, 
processing resources) in mixed cloud/edge environments. For 
example, in real time communication it is important to 
estimate in advance the quality of a connection before actually 
establishing it over a specific path [2]. NT can provide the 
means for this purpose, as an unestablished connection cannot 
really be monitored. Moreover, certain security events and 
anomalies can be promptly detected and dealt with, before 
they significantly affect the operation of the network. 

Monitoring can be passive or active. In active monitoring, 
certain probes (that create extra traffic) are purposefully 
deployed to measure the required network segments. In 
passive monitoring, (part of) the existing traffic is monitored. 
In all cases, the need to keep the monitoring cost low implies 
that the number of deployed probes or of existing measured 
connections, is kept as small as possible. A major point of 
concern is the complexity of the monitoring solution. In large 
scale networks, vast amounts of monitoring data are 
generated. This makes the correlation of the data a very 
difficult task. Therefore, efficient algorithms need to be 
developed to infer the appropriate metrics. Another point of 
concern is that in complex networks a path may cross different 
and heterogeneous subnetworks. Under these circumstances, 
the complete network topology is usually not completely 
known by a single actor as it is not fully advertised. So, a 
(monitored) path may cross different networks and contain an 
unknown number of links. This makes difficult or even 
impossible the use of traditional NT algebraic methods. These 
methods assume complete knowledge of the network topology 
where the links are typically represented in a matrix. 
Moreover, in modern networks, the routing between an origin 
and a destination node may be dynamic (non-deterministic). It 
may change based on the network congestion. This should 
also be taken into account when designing a NT algorithm, to 
provide accurate estimations. 

In this paper we develop a novel ML formulation for NT. 
The features of the ML algorithm are designed to take into 
account the peculiarities of modern networks where the 
topology may or may not be completely known and the 
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routing may be static or dynamic. Moreover, the features of 
the ML formulation can provide the required information to 
estimate both additive metrics, and non-linear metrics. We 
demonstrate through simulation experiments that the accuracy 
of our proposal is excellent in a variety of scenarios. In many 
cases it is far better than that of other ML or pure algebraic 
approaches. The improved accuracy can give the network 
operator a better view of the network conditions and enable 
better optimization decisions. Thus, the overall network 
efficiency and the application QoS can be improved.  

The rest of the paper is organized as follows. Section II 
presents the related previous NT work. Section III describes 
the network scenario assumed. Then the proposed ML 
formulation is introduced. Section IV presents the simulation 
experiments the evaluation. Section V concludes the paper.   

II. RELATED WORK 

The term Network Tomography was first mentioned in [1]. 
The initial problem statement was to estimate node-to-node 
network traffic intensity from link measurements. As the 
subsequent research is vast and ongoing, we will provide a 
short summary. More information can be found in the 
references of the mentioned work. Note that when we refer to 
delay in this paper, we assume that it comprises of propagation 
delay and queueing delay. The path delay is the sum of the 
delays of the contained links. In [3], the authors used unicast 
end-to-end traffic measurements and developed techniques to 
estimate link delay distribution. Passive network tomography 
was first introduced in [4]. The authors assumed the 
measurement of end-to-end performance metrics of existing 
traffic, and researched the problem of identifying lossy links. 
Reference [5] focused on characterizing end-to-end additive 
metrics. The authors find a minimal set of k linearly 
independent paths that can describe the metrics of all the other 
paths. The authors in [6] used multiple and simple one-way 
measurements among pairs of nodes. Then they estimated the 
one-way delay between network nodes. In doing so they used 
a global objective function that is affected by the network 
topology and not just by individual measurements. Reference 
[7] focused on the problem of identifying link level metrics 
from end-to-end metrics of selected paths. The authors 
developed a low-complexity algorithm to construct linearly 
independent, cycle-free paths between monitors without 
examining all candidate paths. The authors of [8] assumed a 
similar problem statement. They investigated the conditions 
under which the link level metrics could be acquired, 
depending on the network topology and the number and 
location of the monitors. In [9] various variations are 
surveyed, such as link delay inference through multicast end-
to-end measurements, origin-destination matrix inference and 
topology identification. Survey [10] describes subsequent 
developments in NT. It also presents network coding and 
compressed sensing to improve estimation accuracy, 
computational complexity and probing and operational cost.  

Another topic is that of failure detection using network 
tomography. In this scenario, network tomography pertains to 
identifying whether a network node has failed given binary 
end-to-end path metrics. In [11] the authors researched the 
conditions that need to be satisfied in order to identify a 
bounded number of node failures. They also quantified the 
maximum number of identifiable node failures and the largest 
node set within which failures can be localized for a given 
number of failures. In [12] the authors provided upper bounds 
on the maximum number of identifiable failed nodes, 

considering a certain number of monitored paths, constraints 
on the network topology, the routing scheme, and the 
maximum path length. 

Recently, ML has been applied to the field of NT. The 
authors of [13] proposed a NT approach for non-deterministic 
routing where the measured flows for a given origin-
destination node pair may cross different paths. In [14] a 
Neural Network is trained to infer additive metrics in an 
SDN/NFV environment. The authors in [15] also propose the 
use of neural network to infer metrics based only on the origin 
and destination node pair, and also to reconstruct the network 
topology. In [16], assuming in-vehicle network monitoring, 
neural networks are again applied to estimate the performance 
of an unmonitored part of a network. Finally, in [17] the same 
principles are applied to the domain of network slicing. 

In this paper we consider that the network topology 
information may be incomplete as in [15], and at the same 
time, the routing may be dynamic (non-deterministic) as in 
[13]. We also assume that the specific paths that are monitored 
are a given, and that we want to make the most of the available 
information.  We select a set of ML features that can be used 
to improve the accuracy of the performance metrics 
estimations under these assumptions. Our contributions are: 1) 
We present a network tomography approach based on ML, 
which accounts for incomplete knowledge of the underlying 
network topology and for dynamic routing, 2) Using end-to-
end measurements we infer link-level (both additive and 
certain non-additive) metrics for known links. If a path crosses 
unknown segments of the topology, we infer metrics for the 
subset containing the unknown links 3) Using the above 
knowledge, we estimate performance metrics for 
unestablished or unmonitored paths, even with both 
incomplete topology knowledge (i.e., the exact routing is not 
known) and dynamic routing. 

Our proposal is different to [15] in that we employ 
additional ML features to account for unknown parts of the 
network. The features are particularly useful in cases as in 
[13], where the routing is dynamic. This provides better 
accuracy for certain scenarios as we demonstrate in the 
simulations. To the best of our knowledge, there is no previous 
NT formulation that considers both dynamic (non-
deterministic) routing and partial topology knowledge. 

III. NETWORK TOMOGRAPHY 

In this section we will first describe the network scenario 
and the notation. Next, we will provide details on the algebraic 
methods that can be used to solve a basic NT problem. 
Afterwards, we will describe our proposed ML formulation. 

A. Network Notation 

We consider a network 𝑁 = (𝑉, 𝐿) where 𝑉 denotes the 
set of nodes and 𝐿  the set of known directed links (thus, both 
(𝑖, 𝑗) and (𝑗, 𝑖) are present in 𝐿 if nodes 𝑖  and 𝑗 are connected 
through a unidirectional link). We assume a set 𝑃  of paths 
already established in the network. The routing matrix of the 
established paths is defined as the binary matrix 𝐺௉∈ 
{0,1}|P|×|L|, where 𝐺௉[𝑝, 𝑙]=1 when path 𝑝 contains link 𝑙, and 
is 0, otherwise. Consider the end-to-end vector of parameters 
y௉  ∈ ℝ|P| . Vector y௉  can represent different performance 
parameters (e.g., delay, jitter, etc.). If the link-level vector 
parameters  x ∈ ℝ|L|  are additive per link, vector y௉ can be 
written as a linear combination of link-level vector 
parameters x, so that y௉ = 𝐺௉x. We assume that we want to 



estimate the end-to-end parameters of a set 𝑀 of paths (either 
new or unmonitored ones), denoted by vector yெ∈ ℝM, given 
that we know their routing 𝐺ெ∈ {0,1}|M|×|L|.  Then: 

𝑦 = ቂ
𝑦௉

𝑦ெ
ቃ = ൤

𝐺௉

𝐺ெ
൨ 𝑥                               (1) 

Consider, for example, the network of Fig. 1, where a set 
of 𝑃 = {𝑝ଵ, 𝑝ଶ} paths are already established and correspond 
to submatrix 𝐺௉ and the known end-to-end QoS values y௉ =
{𝑦ଵ, 𝑦ଶ}. The values in vector y௉  can be different for different 
applications and use cases. The path to be established is 
denoted by 𝑀 = {𝑚ଷ} whose end-to-end value 𝑦ଷ we want to 
estimate. We assume that all the (three) links the paths use are 
known. The routing can be described as: 

൥

𝑦ଵ

𝑦ଶ

𝑦ଷ

൩ = ൥
1 1 0
0 1 1
1 0 1

൩ ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩                        (2) 

Since the new path 𝑚ଷ contains links that are already in 
use by other paths, it is possible to estimate its end-to-end 
value. This can be achieved using the Moore-Penrose inverse 
( . )+ of GP (complexity 𝑂(|𝑃|ଷ)), that is:  

𝑦ොெ=GM𝐺௉
ା𝑦௉                                (3) 

B. ML network tomography 

The above algebraic formulation is normally used when 
the network topology is completely known. It is not expected 
to work well when certain links are not known. As we have 
already mentioned, this is the case in many of the modern 
networks. In this section we present a ML formulation that 
takes this into account. The features are chosen to summarize 
in a heuristic way the important characteristics of the paths 
with respect to the estimation problem. We organize the 
feature matrix 𝑄 so that each row corresponds to a path 𝑝 ∈
𝑃, while the columns represent (link or node, feature) pairs, 
for the links or nodes of the path and the values of the chosen 
features. In particular, we choose two kinds of features. The 
first set of features consists of all the known links of the 
topology (we define it as a set |𝐿|). The second set of features 
consists of all the path nodes that can be origin or destination. 
More specifically, we define  𝑆  as a |𝑃| × |𝐿|  link-level 
feature matrix designed to take into account the known links 
that a path contains. Element 𝑆௣௟, corresponds to path 𝑝 and a 
known link 𝑙, and is set equal to 1 if path 𝑝 contains link 𝑙, and 
equal to zero, otherwise. This feature is the equivalent of the 
routing matrix 𝐺௉ . We also define the node-level feature 
matrix 𝐴  to represent information regarding the origin and 
destination node of a path. In particular, 𝐴 is a |𝑃| × |𝑉| node-
level feature matrix. Element 𝐴௣௩ is equal to 1 if path 𝑝 starts 
or ends at node 𝑣, and is set to zero, otherwise. Note that this 

formulation does not specifically take into account which 
node is origin and which one is destination. However, the 
information is indirectly captured by the ML algorithm as the 
set 𝐿 contains both directions of a link (directed links). We 
also consider an additional feature to represent the ML bias 
term (denoted by 𝐵𝑇 ). The bias term can account for 
monitoring errors or noise that cannot be reduced by any other 
means. We concatenate all the link-level feature matrices into 
one feature matrix defined as: 

𝑄 = [𝐵𝑇 𝑆 𝐴]|௉|௫(ଵା|௅|ା|௏|)                 (4) 
Similar to Eq. (1), 𝑄௉ corresponds to the set of features related 
to the end-to-end observed QoS values y௉ . The features are 
designed to capture as much information as possible to 
evaluate the metric at hand. The absence of knowledge of 
certain links through which the path passes (unknown links) is 
counterbalanced by the knowledge of the origin and 
destination node of a path. Moreover, this formulation is better 
than assuming only the origin and destination node of a path 
as features. The knowledge of even a small subset of the links 
that a path contains can greatly increase the accuracy of the 
estimation. After the features have been defined, an 
appropriate ML algorithm can be used to solve the problem at 
hand. In this paper we evaluated various architectures of 
neural networks towards this end. Neural networks have the 
potential to represent complex functions and thus estimate 
both additive and certain non-additive metrics. The 
assessment of other algorithms was left a topic of future work. 

C. Neural Network Architectures 

A neural network (NN) is a set of connected functions that 
interpret a set of inputs into a desired kind of output. A NN 
can be trained to learn a function 𝑓 through which a set of 
features explain a respective set of observations. In our case:  

𝑦௉ = 𝑓(𝑄௉)                                   (5) 

 A fully connected NN consists of an input layer, one (or 
more) hidden layer(s), and an output layer. Each node of one 
layer is fully connected to all the nodes of the next layer. This 
enables data propagation from one layer to another. Each layer 
multiplies the input by a weight matrix and adds a bias term. 
The hidden layers can be wider (have more nodes) than the 
input and output. In these cases, the neural network may be 
able to learn more complex relationships between the features 
and thus have better accuracy. A trial-and-error approach is 
usually required to find the most suitable architecture. In any 
case the specific problem at hand is not very complicated. 
Therefore, a relatively shallow NN architecture is expected to 
have good estimation accuracy. Note that the training of a 
neural network can be time consuming. The model is expected 
to perform well without the need for retraining, unless the 
network state changes significantly. The inference is much 
faster as we will show in the simulation section. In the next 
section we present the evaluation of different architectures and 
compare our proposed tomography framework to alternatives.  

IV. RESULTS 

To evaluate our proposed formulation, we performed a 
number of simulation experiments. We assumed the Deutsche 
Telecom (DT) topology of Fig. 2 with 12 nodes and 20 
unidirectional links. In the figure, the length of each link in km 
is also depicted. We considered that the required estimations 
metrics are: i) the delay, which is additive per link, and ii) the 
bandwidth, which is non-additive and depends on the worst 
link of the path (min operation over the links of the path). We 

 
Fig. 1.  A network with 2 monitored paths and one candidate (or 
unmonitored), sharing one known link and one origin node. Parts of the 
topology (crossed) may be unknown. 



set the delay of each link to be numerically equal to its length. 
So, the delay of a path is equal to the sum of the delays of its 
links. Without loss of generality, we set the bandwidth of each 
link to be numerically equal to its length. The bandwidth of a 
path equals to the minimum bandwidth of the links that it 
contains. We assumed various different loads of 100, 200, 
300, 400, 500 connections with uniformly chosen source-
destination nodes. For each source-destination pair we used a 
𝑘 -shortest path algorithm with 𝑘 = 1,2,3   to decide the 
routing. When 𝑘 > 1  the specific route for each source-
destination pair was chosen uniformly over these 𝑘 paths. We 
also assumed an increasing number of unknown links, where, 
for a given link that is considered unknown, we removed its 
related value from the routing matrix 𝐺, and from the feature 
matrix 𝑆. Simulations were performed in MATLAB with a 
quad core GPU@3GHZ. The training of the NN was used 
2000 epochs, chosen by testing the performance of other 
options. The ReLu activation function and the Mean Square 
Error (MSE) loss function were employed. We used 90% of 
the established paths for training, and 10% for testing. We 
exclude from the testing set paths containing a link that is not 
used in the training set. We run 200 independent iterations and 
averaged the results.  

A. Additive metrics evaluation 

First, we evaluated several different NN architectures that 
employed the features described in section III.B. In Fig. 3 we 
present the estimation accuracy of three architectures that 
achieved the best results for the estimation of the delay. We 
plot the accuracy in terms of Mean Absolute Error (MAE) as 
a function of the number of established paths in the network. 
We employed a trial-and-error approach to find the most 
suitable architectures that exhibit good accuracy. We omit the 
depiction of detailed training performance indicators due to 
space limitations. The proposed NN had three fully connected 

layers. The number of outputs of the first, second and third 
layer was four, two and one time(s) the number of features 
(32), respectively. The alternative NN1 also had three fully 
connected layers. The number of outputs of the first and 
second layer was equal to the number of features. The outputs 
of the third layer were equal to half the number of features. 
The alternative NN2 had two fully connected layers. The 
number of outputs of both layers was equal to the number of 
features. In Fig. 3a, 𝑘 = 1, so that each source-destination pair 
can only be served by one path (static routing). The accuracy 
of the three architectures is very similar and increases as the 
number of paths increases, since the NNs are better trained, 
with more data. As 𝑘 increases (Figs. 3b and 3c), a source-
destination pair may be routed over different paths (non-
deterministic/dynamic routing). This means that the neural 
network should correlate a larger amount of information to 
provide an accurate output (i.e., the origin and destination pair 
do not contain the required information for accurate 
estimation). The proposed NN has marginally better accuracy. 
It seems that the additional outputs of the layers allow the 
neural network to learn better the relationships between the 
features, at least for smaller number of established paths. We 
also compared the three architectures for the case of the 
bandwidth estimation and the results were similar.  

We then compared the accuracy of four algorithms: i) our 
proposed NN formulation, ii) a NN formulation where the 
features are only the links of the paths, iii) a NN formulation 
where the features are only the origin and destination nodes of 
the paths, and iv) a traditional algebraic matrix inversion 
solution. Fig. 4 presents the MAE of the four examined 
algorithms for different number of measured paths. In Fig. 4a, 
where 𝑘 = 1, we notice that a simple matrix inversion can 
achieve good accuracy even with a relatively small number of 
measured paths. The algorithms that are based on NN require 
a larger number of established paths to be trained so as to have 
good accuracy. The NN that uses only the links as features, 
achieves slightly better accuracy earlier than the proposed NN 
(in this scenario). The reason is that the proposed NN has more 
features thus requiring a larger training set. The NN that only 
uses the origin and destination node requires the largest 
training set. The reason is that the NN needs to be trained with 
all possible combinations of origin and destination nodes in 
order to be able to provide an accurate estimate. For 500 
established paths, all algorithms have MAE less than 10-4, the 
maximum error is less than 10-3 and the 95% confidence 
interval is approximately ±10-5. In Figs. 4b and 4c, where we 
have 𝑘 > 1, the simple matrix inversion method still achieves 
the best accuracy in all cases (the MAE and the maximum 
error are similar to the case where 𝑘 = 1). The NN that relies 
only on the origin and destination node does not have enough 
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Fig. 3.  Accuracy (delay metric) of three NN architectures for different number of paths and a) 𝑘 = 1, b) 𝑘 = 2, c) 𝑘 = 3 

0

1

2

3

4

5

6

7

8

100 200 300 400 500

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Number of paths

Estimation accuracy

Proposed NN

Altern. NN2

Altern. NN1

0

1

2

3

4

5

6

7

8

100 200 300 400 500

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Number of paths

Estimation accuracy

Proposed NN

Altern. NN2

Altern. NN1

0

1

2

3

4

5

6

7

8

100 200 300 400 500

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Number of paths

Estimation accuracy

Proposed NN

Altern. NN2

Altern. NN1

 
 

Fig. 2.  The DT topology with the link lengths in Km 



information to provide an accurate estimate. Its accuracy is not 
depicted in these figures, but is examined in Fig. 5. The other 
NNs require larger number of established paths to achieve 
comparable accuracy, since the non-deterministic routing 
requires more training data in order for the NN to understand 
it. In the case of 500 paths, the MAE of both algorithms are 
approximately the same, and it is in the order of 5*10-2 for k=2 
and 3*10-1 for 𝑘 = 3. The maximum error is approximately 
150 and 220 delay units and the 95% confidence interval is 
approximately ±0.5 and ±0.8 for 𝑘 = 2  and 𝑘 = 3 
respectively. For 500 paths the NN required approximately 0.3 
seconds for training. The matrix inversion required 4*10-4 
seconds, and the NN inference was slightly faster but in the 
same order of magnitude. 

In Fig. 5 we assumed 400 established paths and we 
examine the MAE of the algorithms for an increasing number 
of unknown links. In Fig. 5a, 𝑘 is equal to 1. Note that the blue 
line of the proposed NN is under the yellow one of the NN that 
employs as features only nodes. The matrix inversion and the 
neural network that relies only on the links contained on a 
path, exhibit the worst accuracy as the number of unknown 
links increases. The reason is that these algorithms do not have 
the appropriate information to compensate for the missing 
topology knowledge. The proposed NN has a bit better MAE 
than the NN that uses only the origin and destination node as 
features. The MAE of our proposal is approximately 10-2 for 
most cases (until the number of unknown links is 16), and is 
approximately 0.2 for the other cases. The maximum error 
ranges from 10-3 for small number of unknown links, to 
approximately 100 and 700 when the unknown links are more. 
The 95% confidence interval ranges respectively from ±0.2 to 
±2.5.  As we can see these algorithms are able to compensate 
for the unknown network links by using the origin and 
destination node to estimate the delay of each path. In Figs. 5b 
and 5c we have 𝑘 > 1. We notice that the proposed NN still 
achieves good accuracy even with 12 unknown links. After 

that, its accuracy deteriorates rapidly, and with 20 unknown 
links (all the links of the network), its accuracy is (as expected) 
equal to the NN whose features are only the origin and 
destination node. For 𝑘 = 2  and 𝑘 = 3 , the MAE is 
approximately 0.2 and 2 respectively until the unknown links 
are 12. The maximum error is above 200 in almost all cases 
and the confidence interval is ±1 and ±2. As we can see, the 
combination of the features of the proposed NN perform well 
in this scenario. The two kind of features can work together 
and provide estimates even for a large number of unknown 
links, and for dynamic routing (𝑘 > 1). This is particularly 
useful in modern network scenarios where the topology of the 
network may not be completely known due to security reasons 
and also connections with the same origin and destination 
nodes may be routed differently over the physical topology. 

B. Non-additive metrics evaluation 

In this subsection we compare the accuracy of the three 
different ML algorithms for the case of the bandwidth 
estimation, which is a non-additive metric. The matrix 
inversion obviously cannot be evaluated in this case. In Fig. 6, 
we compare the accuracy of the algorithms again in terms of 
MAE and for different number of measured paths. In Fig. 6a, 
where 𝑘 = 1, we can see that all algorithms achieve excellent 
accuracy with a relatively low number of measured paths. The 
MAE for 500 paths is in the order of 10-5 for all the algorithms, 
the maximum error is approximately 10-3 and the 95% 
confidence interval is approximately ±10-5. In Figs. 6b, 6c 
where 𝑘 > 1, the accuracy of the NN that uses only the origin 
and destination nodes is again not good, since it still lacks the 
necessary information to provide an accurate estimate. The 
other two algorithms have similar performance. Their MAE is 
in the order of 10-2 and 10-1, the maximum error is 40 and 100 
and the 95% confidence interval ±0.16 and ±0.33 for 𝑘 = 2 
and 𝑘 = 3  respectively. These numbers are slightly worse 
than the case of the delay estimation. This indicates that the 
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Fig. 4.  Accuracy (delay metric) of the algorithms for different number of paths and a) 𝑘 = 1, b) 𝑘 = 2, c) 𝑘 = 3 
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Fig. 5.  Accuracy (delay metric) of the algorithms for different number of unknown links and a) 𝑘 = 1, b) 𝑘 = 2, c) 𝑘 = 3  

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14 16 18 20

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Number of unknown links

Estimation accuracy

Proposed
NN
NN only
links
NN only
nodes
Matrix
Inv.

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14 16 18 20

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Number of unknown links

Estimation accuracy
Proposed
NN
NN only
links
NN only
nodes
Matrix
Inv.

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18 20

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Number of unknown links

Estimation accuracy

Proposed NN

NN only links

NN only nodes

Matrix Inv.



examined NNs may not be the best fit for this kind of non-
linear estimation. Finally, in Fig. 7 we considered 400 
established paths and we again examined the MAE of the three 
algorithms for an increasing number of unknown links. For all 
the algorithms we notice similar behavior to the case of Fig. 5 
(and again slightly worse MAE), indicating that our proposed 
NN can achieve good estimation accuracy for both additive 
and non-additive metrics examined. 

V. CONCLUSIONS 

In this paper we presented a novel ML formulation for 
Network Tomography under the assumptions of incomplete 
topology knowledge and dynamic routing. We designed 
suitable features that work well under these assumptions that 
are present in modern networks. The results indicate 
significant improvement in estimation accuracy compared to 
other approaches especially when the number of unknown 
network links is high and there are many different routing 
decisions for a given source destination pair (the difference in 
accuracy can be in an order of magnitude). Future work 
includes the evaluation of other ML algorithms such as 
gaussian process regression, and the localization of failures. 
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Fig. 6.  Accuracy (bandwidth metric) of the algorithms for different number of paths and a) 𝑘 = 1, b) 𝑘 = 2, c) 𝑘 = 3 
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Fig. 7.  Accuracy (bandwidth metric) of the algorithms for different number of unknown links and a) k=1, b) k=2, c) k=3  
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