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Abstract This paper contributes to the well-known chal-

lenge of active user participation in demand side man-

agement (DSM). In DSM, there is a need for modern

pricing mechanisms that will be able to effectively incen-

tivize selfishly behaving users in modifying their energy

consumption pattern towards system-level goals like

energy efficiency. Three generally desired properties of

DSM algorithms are: user satisfaction, energy cost mini-

mization and fairness. In this paper, a personalized–real

time pricing (P-RTP) mechanism design framework is

proposed that fairly allocates the energy cost reduction

only to the users that provoke it. Thus, the proposed

mechanism achieves significant reduction of the energy

cost without sacrificing at all the welfare (user satisfaction)

of electricity consumers. The business model that the

proposed mechanism envisages is highly competitive

flexibility market environments as well as energy

cooperatives.
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1 Introduction

The electricity market is moving from a market where

energy is produced in a centralized fashion from traditional

and often environmentally harmful sources to a liberal-

ized/competitive and possibly distributed market that

exploits renewable energy sources (RESs) [1]. A major

challenge in this new environment is the alignment

between the varying and to large extent unpredictable en-

ergy supply (e.g. RES) and the ad-hoc energy demand of

the end users. In addition, innovative concepts such as

flexibility markets, energy poverty and energy efficiency

are continuously emerging in the energy sector. Towards

this goal, the research community focuses on the devel-

opment of pricing mechanisms, which are able to affect the

energy consumption by enabling a dynamic and sophisti-

cated interaction between the pricing of energy (incentives)

and the way end users consume it (scheduling). Studies

under this premise develop algorithms that belong to the

generic family of demand side management (DSM) algo-

rithms. This is a promising approach that aims to affect

energy consumption and create an additional tool in the

optimization and the stability of energy systems.

As analyzed in [2] residential participation in DSM is

commonly envisaged via aggregated participation because

of implementation and scalability issues.
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Along with these technical and socio-economic changes,

there is a rise of innovative business models for aggre-

gating the DSM participation of a set of users. In particular,

collective DSM participation can be undertaken by a non-

profit organization representing the interests of its portfolio

of users [3], a public (regulated) entity or a private com-

pany. In this paper, we assume that the aggregating entity

only passes the energy costs to the consumers without

extracting profit [4]. This use case represents the cases

where: � the private aggregating company operates in a

highly competitive environment; ` the profit margins of

the private aggregating company are regulated; ´ users

form a cooperative organization to represent their interests;

ˆ the aggregating company is a public and non-profit

entity.

Throughout this paper, we will refer to the aggregating

entity with electricity service provider (ESP) and cover all

four use cases.

In [5], we try to facilitate the easy, rich and deep

communication between energy efficiency stakeholders

and end users, allowing them to: � discover each other; `

educate themselves so as to understand the difficulties and

challenges each one faces; ´ interact and trade with each

other.

Under this perspective, we focus on the development of

pricing mechanisms that give to the end users the oppor-

tunity to derive direct financial benefits from the actions

they undertake regarding their energy consumption. In

more detail, through community pricing [6] or personalized

pricing mechanisms that we developed, we avoid the well-

known problem of the tragedy of the commons [7]. This is

a phenomenon, where users do not change their behavior

(energy consumption in this case) due to the low impact

that this change would have on their bill. In contrast, a

personalized pricing mechanism is able to treat different

users in different ways, according to their flexibility, and

thus achieve a specific behavioral change efficiently.

More specifically, in this paper we refer to ‘‘system

efficiency’’ as the maximization of Social Welfare, which

is defined as the aggregated users’ welfare (AUW) and

relates to the difference between the users’ satisfaction

from electricity consumption and the users’ bills.

The challenge lies in the fact that each user’s satisfac-

tion function is private and not known to the ESP, while

users are generally considered as selfish, which means that

each one opts for maximizing her own welfare, which is

not necessarily aligned with the system’s objective.

Moreover, for the use cases of the ESP that we consider,

it is very important that a DSM algorithm also exhibits two

positive externalities apart from efficiency. Those are:

1) Reduction of the system’s cost, which relates to

systems with: higher energy efficiency, more

stable and sustainable networks, lower capital expen-

diture in overprovisioned grid facilities, lower CO2

emissions etc.

2) Fair allocation of the system’s resources among the

users. This is particularly important for the business

cases considered, because all users will remain under

the ESP, only if they know that they get a fair

percentage of the benefits that they have incurred in

the first place. In our case, we want to allocate the

system’s energy savings to the users that provoke

those savings.

In such an environment, it is the job of the ESP to set the

rules of energy trading in a smart way, such that: the sys-

tem possesses the budget-balance property; selfish users’

actions bring the system to an equilibrium; and their

deliberate choices bring the system to an outcome with

desirable properties namely high users’ welfare (KPI1),

low system’s cost (KPI2), fairness (KPI3).

Designing such rules is studied by a special sector of

game theory, called ‘mechanism design’. The desirable

properties above constitute the mechanism’s key perfor-

mance indicators (KPIs) and they are generally adopted

widely in the literature.

A brief overview of energy pricing models for DSM

started with the enhancement of the traditional flat elec-

tricity tariff (fixed price per consumed unit of energy and

identical at all time instances) with inclining block rates

(IBRs) [8, 9]. In IBR, the price of each unit depends on the

total amount of energy a customer consumes. IBR was the

first simple solution to incentivize energy curtailments,

usually during a large time interval. A more sophisticated

approach is time-of-use (ToU) pricing where prices are

predetermined based on prediction of the relationship

between aggregate production and consumption. However,

TOU is insensitive to the users’ response to the prices and

often creates reverse peaks. Finally, real time pricing

(RTP) mechanisms create the price per energy unit

depending on the total cost of energy production and the

total consumption.

2 Related work

Liberalized electricity markets, smart grids and high

penetration of RES led to the development of novel mar-

kets whose objective is the harmonization between pro-

duction and demand (i.e. flexibility markets). This

necessitates the development of novel pricing schemes able

to allow ESPs to exploit flexibility in the energy con-

sumption curves of their consumers.

The general idea described above has been approached

in different ways in the literature, including ex-post
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[10, 11] & ex-ante pricing methods [12–24]. Many pricing

mechanisms [2, 12–15] opt for system efficiency (KPI1),

but at a risk of either running a deficit or extracting a large

surplus from the users as explained in [4] and are not

compatible with the emerging environments described. In

particular, the authors in [12, 13], achieve an efficient

allocation, but the system does not possess the budget-

balance property described in the introduction. Moreover,

users are considered to be price-takers, that is, they do not

consider the effect that their choices have on the price. In

[14], the users are considered as price-anticipators and the

efficient Vickrey-Clarke-Groves (VCG) mechanism is

applied, which is inherently not budget-balanced and

additionally requires a simple and well-defined form of the

user’s utility function in order to remain tractable.

Another class of DSM algorithms [4, 8, 16–20], have

been designed to guide the users’ behavior towards more

desirable demand profiles. This class of algorithms pos-

sesses the budget-balance property. In particular, in

[8, 17, 18, 20] the authors opt for minimizing the system’s

cost (KPI2), under the constraint that each load will be

fully satisfied within its defined interval. The efficiency of

the system is defined as the minimization of system’s cost.

In this class of studies, the users’ dissatisfaction from

deviation from their desired consumption profile is not

modeled. In [4, 19], where budget-balanced mechanisms

are also proposed, the model does not capture load cur-

tailments, but only load shifting. Moreover, none of the

above works considers the property of fairness.

Finally, a third class of studies [21–24], opts for

enhancing the system’s fairness (KPI3). In particular, the

authors in [21] propose a pricing model based on the

principle that each user should be billed according to her

contribution to the system’s cost. The Shapley value from

cooperative game theory is used to express this contribu-

tion. The same authors in their later work [22] argue that

the model of [21] sacrifices efficiency to achieve fairness.

In [22] the trade-off between fairness and cost minimiza-

tion in the design of pricing mechanisms is assessed.

However, the users are assumed to distribute evenly their

load throughout the eligible timeslots and the user’s satis-

faction is again disregarded.

Thus, through the study of the literature, one can con-

firm that the generally desired KPIs in the design of a

pricing mechanism are the ones that we presented in the

previous section and adopt in this paper’s context.

As analyzed in the previous paragraphs, the models

proposed so far in the literature cope only with one or two

of the above KPIs. To the best of our knowledge, there is

no prior work that directly assesses the issue of designing a

pricing mechanism that achieves an attractive trade-off

among all three of the above KPIs. Our approach for the

design of such a pricing mechanism is to adopt the concept

of personalized–real time pricing (P-RTP).

Motivated from the above, the major contributions of

this work are:

1) A P-RTP algorithm that reduces the energy cost

without sacrificing at all the AUW. Moreover, the

proposed scheme achieves a fair allocation of the

energy cost savings among the users.

2) An analysis on the proposed algorithm’s convergence

properties.

3) A comparison of the proposed P-RTP with the existing

RTP mechanisms that testifies its superiority according

to the aforementioned perspectives.

4) An analysis on the findings with useful guidelines

towards the design of pricing mechanisms in open and

competitive markets.

3 System model and problem formulation

In this section, we describe prerequisites that will

facilitate the presentation of our pricing mechanism and

existing widely accepted models (i.e. user model, energy

cost model) that will act as the testbed in order to objec-

tively evaluate and compare the proposed pricing

mechanism.

We consider a set (community) N ¼ 1; 2; . . .; nf g of n

energy consumers (users). Each user is equipped with a

smart meter, tracking his/her consumption at all time

instances and an energy management system that schedules

his/her consumption. We consider a finite time horizon,

which is divided into h time slots H ¼ 1; 2; . . .; hf g of

equal duration. An ESP, in coordination with the distri-

bution system operator (DSO), installs the necessary

equipment to each user and is responsible for the possible

failures and upgrades. Various parties, such as utilities and

DSOs, may act as ESPs, depending on the legislation of

each country. A communication network lies on top of the

electric grid and all parties are able to exchange messages

with each other.

The consumption of user i in timeslot t is denoted as xti,

where t 2 H and i 2 N. The comfort of user i at a time-slot

t is expressed by a utility function uti x
t
i;x

t
i

� �
, where xt

i is an

appropriate elasticity parameter. The utility function

expresses, in monetary units, how much user i values the

consumption xti at time t. To better characterize the prop-

erties of the utility function, the DSM literature draws on

two concepts from microeconomics [25]. The first concept

is that of diminishing returns, which, in our context, means

that:
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1) The more a user consumes, the more utility he/she

gains (uti x
t
i;x

t
i

� �
is increasing with xti).

2) The more a user consumes, the less the added utility

(uti x
t
i;x

t
i

� �
is concave).

The second concept relates to demand elasticity, defined

as the rate of change of the utility function with respect to

small changes in the consumption quantity. This is

expressed through parameter xt
i, where low values of xt

i

correspond to elastic demand (very responsive to price),

whereas higher values of xt
i correspond to inelastic demand

(less responsive to price). The dependence of xt
i on i and

t captures the fact that different users, at different times,

value consumption differently.

In what follows, we will sometimes use the shorthand

notation _uti, with the dot notating that it is a function. In the

evaluation of the results, we show that the performance of

the proposed mechanism is not affected by the particular

choice of _uti as long as it is based on the two concepts

presented above.

By the concavity of _uti, it is clear that there is a satura-

tion point beyond which utility no longer increases with xti.

This is regarded as the user’s maximum desired con-

sumption and is denoted it as ~xti. The respective u
t
i ~xti;x

t
i

� �
is

denoted as ~uti. In this paper, we assume that the user’s ~xti is

known to the ESP (e.g. through statistical data and machine

learning) but the particular form of the user’s utility

function as well as the user’s elasticity parameter xt
i,

remain private. The model can also be extended to model

the comfort derived from the consumption of each electric

appliance, in which case the total comfort of the user would

be the sum of concave functions of (1) for the different

appliances that the user possesses, and would again be

concave. For the scope of the current work and without loss

of generality (as in [2, 8, 13, 14, 21, 22]), we assume only

one continuous, dispatchable and positive load xti [ 0 for

user i, representing the sum of the consumptions of all his/

her electric appliances.

The supply side is usually modeled either as a game

(e.g. a market that admits to a Nash equilibrium [15, 26]) or

(more simplistically) as a cost function that approximately

relates the aggregate demand with the cost of the energy

supplied (e.g. [12–14, 18, 22]). In this work, we adopt the

latter approach, in which the system’s cost (denoted as Gt
N)

depends on the total load
P

i2N
xti of the users in set N at

timeslot t 2 H through an increasing convex function:

Gt
N ¼ G

X

i2N
xti

 !

ð1Þ

The cost function is commonly approximated by a

quadratic cost function in the literature:

Gt
N ¼ c

X

i2N
xti

 !2

ð2Þ

where c is a cost parameter. Equation (2) represents the

cost for the ESP to buy an amount of energy equal to the

total demand. As described in the introduction, the system

needs to be budget-balanced (the sum of the bills of the

participating users needs to be equal with the total system’s

cost). The aforementioned function offers a fair test-bed in

order to evaluate and compare pricing mechanisms and for

this reason it is widely accepted.

The objective at each timeslot t is to find the users’

consumptions x̂ti;8i 2 N that maximize the system’s effi-

ciency (maximize the user comfort and minimize the

energy cost):

max
i2N

X

i2N
_uti
� �

� Gt
N

( )

ð3Þ

s:t:
X

i2N
ptix

t
i

� �
¼ Gt

N ð4Þ

Constraint (4) expresses the budget-balanced (non-

profit) property. We present a model that deals only with

load curtailments, implying a memoryless system. This

means that the scheduling problem can be solved for the

time horizon H, by solving for each timeslot independently

[12, 13, 19]. In order to solve (3), it is required from all

users in N to disclose their comfort functions to the ESP

and also accept a direct ESP control over their loads. Since

these requirements are not generally met in practice, the

research community focuses on iterative pricing

mechanisms that converge to equilibrium (set of prices)

that satisfy the KPIs analyzed in the introduction.

Considering (4), the prices set by the ESP, are meant to

efficiently distribute the energy cost to the users and thus

inherently depend on Gt
N .

At the user’s side, we consider selfish users that choose

their xti, so as to maximize their own welfare under the

ESP’s pricing:

xti ¼ argmax
xt
i

f _uti � ptxtig ð5Þ

Equation (5) implies a price-taking user. This models a

user that either is very small compared to the aggregated

system’s consumption and therefore his/her choice of xti
does not affect the price pt or does not understand/consider

the effect of his/her choice of xti at price p
t. In that case, (3)

can be solved via dual decomposition, where the ESP

applies an efficient algorithm for finding the optimal set of

prices by exchanging messages with each user (as

presented in [13]). In contrast, we consider price-

anticipating users, who further consider the effect of their

xti on the price. Thus, user’s problem (5), is converted into:
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xti ¼ argmax
xt
i

f _uti � pt xti; x
t
�i

� �
xtig ð6Þ

where the expression to be maximized is referred to as the

user’s welfare. Moreover, vector xt�i denotes the con-

sumptions of users other than i. This, latter co-relation

essentially motivates a game C where game participants are

users i 2 N; a user’s strategy is his/her choice of xti; a user’s

payoff is his/her welfare.

Notice that the VCG mechanism is proved to converge

to the unique allocation x̂ti that optimizes (3). However,

constraint (4) excludes VCG from consideration, as argued

in the related work.

Moreover, efficient allocations in general, require dis-

closure of the users’ utility functions to the ESP. Such an

assumption would make the model convenient for analyt-

ical analysis. It is however a strong assumption and it

doesn’t properly capture the intricacies of household

energy usage, while also raising privacy as well as repre-

sentation issues. In contrast, we chose to remain agnostic to

the particular form of the user’s utility function. Because of

this latter property, the efficiency of equilibria cannot be

justified for the general case. Nonetheless, we focus on

designing a pricing mechanism, such that:

1) Game C converges to a Nash equilibrium (NE).

2) The system at equilibrium, achieves an attractive

trade-off among efficiency, low-cost and fairness.

4 Real time pricing

We start the description of our personalized pricing

mechanism by first presenting the existing RTP

approach.

For timeslot t 2 H, at the ESP-level, the users’ sched-

uled energy consumptions xti are taken as input and the

price pt of timeslot t (electricity per unit price, which under

RTP is common for all users i) is calculated according to:

pt ¼ Gt
NP

i2N
xti

ð7Þ

Equation (7) leads to a user’s bill which is proportional

to the user’s consumption
xtiP

i2N
xt
i

Gt
N

 !

, which ensures that

the system is budget-balanced (the users’ bills equals the

total energy cost).

At user-level, users sequentially choose their xti from (6).

During this calculation, xt�i is considered fixed. Notice that

although, user i might be agnostic of pt xti; x
t
�i

� �
, he/she can

however detect the pricing trend by exchanging messages

with the ESP. More specifically, by trying different xti and

receiving the respective pt, the user can detect

pt xti; x
t
�i

� �
,by applying some polynomial fitting algorithm.

This approach allows for a distributed implementation,

which is in line with state of the art requirements

[22, 27, 28].

After a limited number of sequential iterations (calcu-

lations) of each user’s updated xti, the system converges to

the equilibrium price where no user wishes to further

modify his/her xti. A user’s final xti at equilibrium is denoted

as x̂
t;RTP
i ; 8i 2 N. The procedure is described in Algorithm 1

(where k denotes the algorithm’s iterations).

5 Personalized–real time pricing

In this section we propose the concept of P-RTP,

meaning that the price will no longer be a scalar pt (same

for all users i 2 N) but each user will receive a different

price pti.

From the class of all possible P-RTP mechanisms, we

formulate a particular mechanism that is designed to per-

form well, in the three KPIs that described in Section 1.

The proposed mechanism allocates lower prices to those

users who consume a lower percentage of their desired

consumption (~xti), compared to users who consume a higher

percentage of their desired consumption. In particular, for a

user i and a timeslot t we allocate the price pti according to

the degree to which the user curtails his consumption.

Elastic users receive lower prices and inelastic users

receive higher prices. It is highlighted that P-RTP assumes

the knowledge of the desired energy consumption (~xti). In

case that we allow for a user to declare a fake (larger)

desired consumption, P-RTP would favor him. Thus, this

Algorithm 1 RTP

Initialization:

Set k=1, x
t;k
i ¼ ~xti;8 i 2 N and pt ¼ Gt

NP
i2N

xt
i

Repeat

for each i 2 N

repeat

Calculate pt from (7)

Calculate x
t;kþ1
i by solving (5)

until convergence

end for

Calculate divergence D ¼ maxfjxt;kþ1
i � x

t;k
i jg

Set k = k?1

until D\ e (desired accuracy)

End
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pricing mechanism is suitable for automated environments

(through ICT systems) where user do not manually declare

their consumption. On the other hand the exploitation of

the desired energy consumption leads to very effective

pricing mechanisms. In this paper, we present a pricing

model for the use case of automated environments, while in

[29], we cope up also with the other user case (private

~xti).

In order to achieve prices with a discount proportional to

the percentage of curtailments, we set:

ðpti � ~ptÞ=~pt ¼ ðxti � ~xtiÞ=~xti ð8Þ

where ~pt is introduced in order to tune the prices, so that

constraint (4) holds. Let us denote as cti the percentage of

the curtailment of user i at time instant t:

cti ¼ ðxti � ~xtiÞ=~xti ð9Þ

Thus, (8) through the use of (9) becomes:

pti ¼ ~pt 1þ cti
� �

ð10Þ

Now through the use of (4) we have:

~pt ¼ Gt
NP

i2N
xti 1þ ctið Þ½ � ð11Þ

If we now combine (10) and (11) we have:

pti ¼ 1þ cti
� �

Gt
N=
X

i2N
xti 1þ cti
� �� �

ð12Þ

In the proposed mechanism, we iteratively solve (6) and

calculate the prices from (12). The process is described in

Algorithm 2.

Theorem Algorithm 2 converges to a NE after a finite

number of iterations via best response dynamics.

Proof The strategy for the proof of the convergence of

P-RTP is to find a function that is bounded from above and

increases in every iteration of P-RTP. We consider the

AUW according to (13).

AUW ¼
X

i2N
_uti � ptix

t
i

� �
ð13Þ

AUW is bounded from above (the theoretical maximum is

in the case in which every user consumes all the energy that

(s)he needs and the price is zero). It remains now to prove

that AUW increases in every iteration of P-RTP. Note that

we cannot study the monotonicity of AUW by exploiting

its derivative, because no assumption is made on the

differentiability of _uti.

Consider an arbitrary instance of game C where it is user

i’s turn. User i’s state is xti and the state of users’ other than

i is fixed. We denote the latter as xtj;where j 2 N; j 6¼ i.

Holding xtj fixed, suppose i deviates to x̂ti. The calculation

of the change in AUW breaks down in the calculation of the

welfare of user i (12) and the welfare of users in set j.

According to (13) and the recent notation in order to prove

that AUW increases in every iteration of P-RTP it must be

proven that:

U x̂ti
� �

� x̂tip
t
i x̂ti; x

t
j

� �
þ
X

j6¼i

U xtj

� �
�
X

j 6¼i

xtjp
t
j x̂ti; x

t
j

� �

[U xti
� �

� xtip
t
i xti; x

t
j

� �
þ
X

j6¼i

U xtj

� �

�
X

j 6¼i

xtjp
t
j xti; x

t
j

� �

ð14Þ

Best response dynamics means that each user at any

instance selects a strategy that maximizes her/his own

welfare. So, since user i deviates, it holds by definition:

U x̂ti
� �

� x̂tip
t
i x̂ti; x

t
j

� �
[U xti

� �
� xtip

t
i xti; x

t
j

� �
ð15Þ

From (13) and (14), it suffices to prove that:
X

j 6¼i

xtjp
t
j xti; x

t
j

� �
[
X

j 6¼i

xtjp
t
j x̂ti; x

t
j

� �
ð16Þ

We present here the case for x̂ti [ xti. The exact same

proof holds symmetrically for x̂ti\xti. Since we have x̂
t
i [ xti

without harm of generality:

Gt
N

X

j6¼i

xtj þ x̂ti

 !

[Gt
N

X

j6¼i

xtj þ xti

 !

ð17Þ

Algorithm 2 P-RTP

Initialization:

Set k=1, x
t;k
i ¼ ~xti;8 i 2 N

Repeat

for each i 2 N

repeat

Calculate pt from (12)

Calculate x
t;kþ1
i by solving (6)

until convergence

end for

Calculate divergence D ¼ maxfjxt;kþ1
i � x

t;k
i jg

Set k = k?1

until D\ e (desired accuracy)

End
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which means that the system cost has increased by:

DG ¼ Gt
N

X

j 6¼i

xtj þ x̂ti

 !

� Gt
N

X

j 6¼i

xtj þ xti

 !

ð18Þ

In addition the bill of user i has increased by:

DBi ¼ x̂tip x̂ti; x
t
j

� �
� xtip xti; x

t
j

� �
ð19Þ

We will study now the relation between DBi and DG. In
case it is DBi [DG it means that user i pays more than the

cost difference that she/he creates and thus the new bills of

other users are lower in the new state which means that

(16) holds. In more formality, because of the budget-

balance property of P-RTP, it is:

DBi þ D
X

j 6¼i

Bj

 !

¼ DG ð20Þ

which means that (15) holds for:

DBi � DG[ 0 ð21Þ

By replacing (12) in (21) it is:

DBi � DG ¼
x̂ti 1þ cti
� �

Gt
N

P

j 6¼i

xtj þ x̂ti

 !

P

i2N
x̂ti 1þ ctið Þ½ � �

xti 1þ cti
� �

Gt
N

X

j 6¼i

xtj þ xti

 !,
X

i2N
xti 1þ cti
� �� �

�

Gt
N

X

j 6¼i

xtj þ x̂ti

 !

þ Gt
N

X

j 6¼i

xtj þ xti

 !

ð22Þ

After replacing cti from (9) and doing some calculus, we

have:

DBi � DG ¼

Gt
N

X

j 6¼i

xtj þ x̂ti

 !
~xti
� �2

~xti
P

j6¼i

xt
jð Þ2
~xt
i
þ ~xt

ið Þ2
~xt
i

 !� 1

2

66664

3

77775

� Gt
N

X

j6¼i

xtj þ xti

 !

�

xti
� �2

~xti
P

j 6¼i

xt
jð Þ2
~xt
i
þ xt

ið Þ2
~xt
i

 !� 1

2

66664

3

77775

ð23Þ

Observe that (23) can be written in the form DBi �
DG ¼ U ~xti

� �
� U xti

� �
with:

U zð Þ ¼ Gt
N

X

j 6¼i

xtj þ z

 !
z2

~xti
P

j 6¼i

~xt
ið Þ2
xt
j
þ z2

~xt
i

 !� 1

2

66664

3

77775
ð24Þ

Since it is x̂ti [ xti, it suffices to show that

dU zð Þ
dz

[ 0 ð25Þ

After replacing (2) and (23) in (24) and differentiating

we have:

2
P

j6¼i

xtjð Þ2
~xt
i

� 	
c zþ

P

j 6¼i

xtj

 !
P

j 6¼i

xtj

 !

z�
P

j 6¼i

xtjð Þ2
~xt
i

� 	 !

~xti

" #

z2 þ
P

j6¼i

xt
jð Þ2
~xt
i

� 	 !

~xti

" #2 [ 0

ð26Þ

which reduces to

z[

P

j 6¼i

xtjð Þ2
~xt
i

� 	" #

~xti

P

j 6¼i

xtj
ð27Þ

Observe that xtj=~x
t
i\1 (since the denominator is by

definition the upper limit of the nominator). We have that:

P

j 6¼i

xtjð Þ2
~xt
i

� 	" #

~xti

P

j 6¼i

xtj
¼

P

j6¼i

xtj
~xt
i
xtj

� �
~xti

P

j 6¼i

xtj
\~xti ð28Þ

Thus, because of (28) there is a feasible region of

xti 2

P
j6¼i

xt
jð Þ2
~xt
i

� 	� 	
~xti

P
j 6¼i

xt
j

; ~xti

2

664

3

775, for which condition (16) holds.

6 Performance evaluation and comparisons

In this section we present simulation results to demon-

strate the proposed P-RTP mechanism’s performance in the

KPIs sought. In order to have a benchmark for compar-

isons, we compare with the simple RTP mechanism (Al-

gorithm 1). The evaluation considers scenarios under a

variety of assumptions for the values of the parameters in

the two models.

In order to evaluate mechanisms, the research commu-

nity (e.g. [2, 4, 12–16] usually models end users as follows:

a concave and increasing function of xti and xt
i with a
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constant maximum value after a saturation point, has been

widely adopted:

uti x
t
i;x

t
i

� �
¼ ~uti � xt

i x
t
i � ~xti

� �2
0\xti\~xti

~uti xti � ~xti



ð29Þ

The utility function’s general form is assumed to be the

same for all i and t. In what follows, we present simulations

for a representative set of 100 users. Moreover, the

optimization problem can be solved for each timeslot

independently, as explained in Section 4. Thus, without

loss of generality, we run the simulation for one timeslot

(h ¼ 1) and present the results. Parameter ~uti expresses the

user’s maximum utility (i.e.utility at xti � ~xti) and was set to

~uti ¼ xt
i ~xti
� �2

. Unless stated otherwise, parameter c was set

to c ¼ 0:02. The flexibility parameter xt
i for each user

i was selected randomly in the interval [0.1, 5]. These

choices are in line with the literature [2, 4, 12–16] as well

as with datasets taken from real users and real-life tests

undertaken within [30].

In correspondence with the three KPIs presented in

Section 1, we define four index metrics for the evaluation:

1) AUW is a straightforward index for system efficiency

(KPI1).

AUW ¼
X

i2N
_uti � ptix

t
i

� �
ð30Þ

2) The allocation’s cost G is also a straightforward index

metric of system cost KPI2.

G ¼ c
X

i2N
xti
� �

 !2

ð31Þ

We evaluate P-RTP and simple RTP with respect to these

two KPIs for different values of c and xt
i in order to show

that the performance of our mechanism does not depend on

the parameters of the system. KPI1 and KPI2 are generally

mutually-conflicting; for example, a low system’s cost can

lead to lower users’ welfare (because of lower

consumption) unless we reward the users with lower

prices to compensate for the users’ welfare. We define

behavioral reciprocity (BR) as a metric that captures this

trade-off:3) BR of user i is the degree of correlation

between the behavioral change of i and the

reward that i gets for it:

BRi ¼
DA

i

DR
i

8i 2 N ð32Þ

where

DA
i ¼ ~xti � xti

� �G
PN

i¼1

~xti

� 	
� G

PN

i¼1

xti

� 	

PN

i¼1

~xti �
PN

i¼1

xti

ð33Þ

represents the discount achieved, i.e. the system cost

reduction, for which user i is responsible and:

DR
i ¼ ~xti

G
PN

i¼1

~xti

� 	

PN

i¼1

~xti

� xtip
t
i ð34Þ

represents the discount received, i.e. the difference between

the user’s bill with the original system’s state (xti ¼ ~xti) and

the actual user’s bill (after applying RTP or P-RTP).

Values of BRi close to 1 indicate a better trade-off between

AUW and G, and thus a more fair pricing mechanism.

4) User welfare deviation (UWD) is defined to capture

the degree of the deviation of user i from the average

user’s welfare:

UWDi ¼
_uti � ptix

t
i

� �
� AUW

n

� �

AUW
n

8i 2 N ð35Þ

Its scope is to depict that a mechanism’s performance,

does not come with the expense of treating a subset of users

unfairly. A low UWD means that there are no users with

very high welfare and users with very low welfare (which

means that they will leave the ESP in case of competition

or they will be very unhappy in case of monopoly). Thus,

the objective here is to keep UWD low.

Having defined the metrics of interest, we now proceed

to the presentation of the results obtained. In all figures we

normalize the metric by dividing with the highest metric

value. Figure 1 compares the energy costs (G) with RTP

and P-RTP pricing under various values of parameter c.

Fig. 1 Energy costs as a function of cost parameter
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As is obvious from Fig. 1, the proposed P-RTP reduces

the cost of energy for every value of c, thus showing that P-

RTP indeed manages to achieve a lower system cost,

regardless of the cost function we use. This is because P-

RTP leads to smaller load level than RTP. In order to show

that the results are not affected by the elasticity parameter

we use, we multiply xt
i by a factor (omega factor) xf in

0:1; 3½ �. According to these, Fig. 2 compares the energy

costs (G) with RTP and P-RTP pricing as a function of xf .

From Fig. 2 we observe that P-RTP always brings a

reduction in the energy cost. Thus, its performance is

consistent and significant for any choice of the flexibility

parameter for the participating users.

The reason behind the reduction of the energy costs is

clarified through Fig. 3, where we present the cumulative

distribution function (CDF) of the BRi metric exhibited by

the users i in N. The dotted vertical lines represent the

average UWD of all users. As is depicted in Fig. 3, under

P-RTP, users obtain benefits (discounts received) accord-

ing to their behavioral change (discount achieved). In more

detail, we observe that P-RTP not only offers a better trade-

off between AUW and G (the average BR for P-RTP is

closer to 1 than the average BR for RTP) but also results

into a much narrower distribution of users around the

average. This means that the behavioral change that the

users offer is better and more fairly reciprocated. In other

words, with the proposed P-RTP, inflexible users do not

benefit from the actions of flexible users. This implies that,

with P-RTP, flexible users have stronger motives to adapt

their behavior, as they know that they will benefit from

such an adaptation, while non adaptive users will not

receive benefits.

The following figures show that the reduction in the

energy cost is achieved without sacrificing at all the user’s

welfare. In more detail, Figs. 4 and 5 present metric AUW,

for the RTP and the P-RTP mechanism, as a function of c

and xf respectively.

By comparing Figs. 1 and 4, one can see that, the sys-

tem’s cost has been reduced and the system’s fairness has

been enhanced, without loss on users’ aggregated welfare,

that is without sacrificing efficiency. This is rationalized by

the fact that P-RTP allocates financial savings to the users

that provoke the cost reduction and not to the inflexible

ones. In comparison with the simple RTP model, this leads

to an increase in the flexible users welfare and a decrease in

the inflexible users’ welfare, thus the total AUW remains

the same.

Though the AUW metric is no better with RTP, we also

want to make sure that this benefit does not come with a

sacrifice of welfare from a particular subset of users. In

Fig. 6, we present the CDF for UWDi. The dotted vertical

Fig. 2 Energy costs of P-RTP and RTP as a function of omega factor

Fig. 3 CDF of metric BRi among participating users under RTP and

P-RTP pricing

Fig. 4 AUW under P-RTP and RTP as a function of cost parameter c
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lines represent the average UWD of all users in the set

N. The averages coincide with each other while the dis-

tribution with P-RTP is insignificantly narrower.

7 Future work

We considered a business model of a budget-balanced

aggregating entity serving as ESP for its registered users.

We proposed a P-RTP mechanism and evaluated its per-

formance against that of the classic RTP mechanism in

terms, of the most well established KPIs derived in the

literature. In order to focus on the merits of the main idea,

we kept the system model simple so as not to harm the

generality of the results. Future research can extend the

results to more advanced system models that include: � the

possibility of load shifting in addition to load curtailment;

` RES and energy storage systems (ESS). In addition, the

user’s utility function and the way the user makes decisions

is still an open area for research. Distinct models for dif-

ferent devices could be considered and applied under the

P-RTP paradigm. Moreover, in electricity markets, differ-

ent pricing mechanisms (P-RTP, RTP, flat-price, etc) are to

be offered to real users as an option, making the co-exis-

tence of different pricing mechanisms for different users in

a given market an interesting problem. Finally, the new

prospects of electricity pricing offered by P-RTP will

impact, if adopted, the sizing (investment cost) of RES and

ESSs. We believe that the integration of RES and ESS

sizing with P-RTP mechanism design may give rise to new

capabilities for self-sufficient micro-grids and advanced

demand side management.
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