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Abstract— The introduction of all-optical switching in data 

center interconnection networks (DCN) is key for addressing 

several of the shortcomings of state-of-the-art electronic switched 

solutions. Limitations in the port count and reconfiguration speed 

of optical switches, however, require novel DCN designs offering 

network scalability and dynamicity. We present the NEPHELE 

DCN which relies on hybrid electro-optical top-of rack (TOR) 

switches to interconnect servers over multi-wavelength all-optical 

rings. We described in detail the NEPHELE control cycle which 

follows the SDN paradigm. We evaluate the performance of 

NEPHELE regarding the effect of the control plane delay under 

realistic traffic. 

Keywords— Time-Wavelength-Space division multiplexing; 

slotted and synchronous operation; dynamic resource allocation, 

scheduling; matrix decomposition 

I. INTRODUCTION 

The widespread availability of cloud applications to billions of 

end-users and the emergence of platform- and infrastructure-as-

a-service models rely on concentrated computing infrastructures, 

the Data Centers (DCs). As traffic within the DC (east-west) is 

higher than incoming/outgoing traffic, and both are expected to 

continue to increase [1], DC networks (DCN) play a crucial role. 

High throughput, scalable and energy/cost efficient DCN 

networks are required to fully harness the DC potential. 

State-of-the-art DCNs are based on electronic switches 

connected in fat-tree topologies using optical fibers, with 

electro-opto-electrical transformation at each hop [2]. However, 

fat-trees tend to underutilize resources, require a large number of 

cables and switches, suffer from poor scalability and 

upgradability (lack of transparency), and they result in very high 

energy consumption [3], [4]. Application driven networking [5], 

[6], an emerging trend, would benefit from a network that 

flexibly allocates capacity where needed.  

The introduction of optical switching in DCN is a key for 

solving these shortcomings. Many recent works proposed hybrid 

electrical/optical DCN, a survey of which is presented in [7]. 

The authors of [8] and [9], proposed a DCN in which heavy 

long-lived (elephant) flows are selectively routed over an optical 

circuit switched (OCS) network, while the rest of traffic goes 

through the electronic packet switched (EPS) network. The 

identification of elephant flows is rather difficult on the fly, 

while it was observed that such flows are not very typical [4], 

making it difficult to sustain high OCS utilization. Instead, a 

high connectivity degree is needed [4]. To enable higher 

connectivity, [10] proposed and prototyped a very dense hybrid 

DCN that also supports multi-hop connections. The total delay, 

including control plane and OCS hardware reconfiguration 

(micro electro-mechanical system – MEMS – switches), was 

measured to be in the order of hundreds of msec. Multi-hop 

routing was exploited as shared circuits in [11] controlled via 

extended OpenFlow [12], showing that circuit sharing 

compensates for slow OCS reconfigurations.  

Other proposed DC interconnects completely lack electrical 

switches. Proteus, an all-optical DCN architecture based on a 

combination of wavelength selective switches (WSS) and 

MEMS was presented in [13]. Again, multi-hop is used to 

improve the utilization and hide the low reconfiguration speed of 

MEMS. [14] introduced hybrid OCS and optical packet/burst 

switching (OPS/OBS) architectures, controlled using SDN. 

Various other architectures based on OPS/OBS were proposed 

in [7], [15] and references therein. However, OPS/OBS 

technologies are not yet mature, so their current target could be 

only small-scale networks with limited upgradability potentials.  

The authors in [16] presented a hybrid DCN architecture 

called Mordia, which uses WSS to achieve switching times of 

11.5 μs. Mordia operates in a dynamic slotted manner to achieve 

high connectivity. However, the scalability of Mordia is limited 

as it uses a single wavelength division multiplexing (WDM) ring 

that can support traffic for a few racks, while resource allocation 

algorithms exhibit high complexity and cannot scale to large 

DCs. 

The European project NEPHELE developed an optical DCN 

that leverages hybrid electrical/optical switching with SDN 

control to overcome current datacenter limitations [17]. To 

enable dynamic and efficient sharing of optical resources and 

collision-free communication, NEPHELE operates in a 

synchronous slotted manner. Timeslots are used for rack-to-rack 
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communication and are assigned dynamically, on a demand 

basis, so as to attain efficient utilization, leading to both energy 

and cost savings. Moreover, multiple wavelengths and optical 

planes are utilized for a scalable and high capacity DC network.  

 The NEPHELE network relies on WSSs, which are faster 

than MEMS used in [8]-[11], and more mature than OPS/OBS 

used in [14]-[15]. The fast switching times, along with the 

dynamic slotted operation, provide high and flexible 

connectivity. Compared to Mordia [16], which also relies on 

WSS, NEPHELE is more scalable: it consists of multiple WDM 

rings, re-uses wavelengths, and utilizes cheap passive routing 

components and scalable scheduling schemes. We present fast 

scheduling algorithms for NEPHELE DCN to meet dynamic 

reconfiguration requirements and evaluate their effect along with 

the control plane overhead on the performance of realistic 

applications.  

In the following we shortly present the NEPHELE data plane 

(Section II) and then we describe in detail its control cycle 

(Section III) and the scheduling approaches (Section IV). 

Finally, using a packet level simulator we evaluate the effect of 

the control plane delay under realistic traffic (Section V). 

II. NEPHELE NETWORK ARCHITECTURE 

The NEPHELE DCN, shown in Fig. 1, is divided into 𝑃 pods 

of racks and is built out of hybrid electrical/optical top-of-rack 

(TOR) switches and all-optical POD switches. A pod consists of 

𝐼 POD switches and 𝑊 TOR switches, interconnected as 

follows: each TOR switch has 𝐼 ports with tunable transmitters 

(Tx) and each one is connected to a different POD switch 

(among I). A rack consists of 𝑆 servers connected through 𝑆 

corresponding ports to the TOR switch. The POD switches are 

interconnected through WDM rings to form optical planes. An 

optical plane consists of a single POD switch per pod (for a total 

of 𝑃 POD switches) connected with 𝑅 fiber rings. Each fiber 

ring carries WDM traffic of 𝑊 wavelengths (by design equals 

the number of racks/pod). There are 𝐼 identical and independent 

optical planes. In total, there are 𝐼 ⋅ 𝑃 POD switches, 𝑊 ⋅ 𝑃 TOR 

switches and 𝐼 ⋅ 𝑅 fiber rings. 

The key routing concept is that each TOR switch listens to a 

specific wavelength and wavelengths are re-used among pods. 

Each TOR employs Virtual Output Queues (VOQ) per TOR 

destination to avoid head-of-line blocking. The NEPHELE 

TORs employ tunable Tx that are tuned according to the desired 

destination. Thus, the tunable Tx selects the destination/ 

wavelength to route traffic. The 1 × 2 space switch inside the 

corresponding POD switch is set according to whether the 

destination is in the same pod with the source or not. Intra-pod 

traffic is forwarded to an AWG that passively routes it towards 

the selected destination. Inter-pod traffic is routed via the 1 × 2 

switch towards a 𝑊 ×  𝑅 CAWG and then to one of the 𝑅 fiber 

rings (according to the input port/source and the wavelength 

used). The traffic propagates in the ring passing through 

intermediate POD switches and is dropped at the destination 

pod, by setting appropriately the related WSSs. The drop port is 

connected to an AWG that again passively routes the traffic. 

Finally, NEPHELE operates in a slotted and synchronous 

manner as discussed in the next section. A parallel EPS network 

can also be utilized to handle high priority traffic and/or ACK 

TCP packets which, according to simulations presented in this 

paper, seem to play a major role in the network performance. A 

more detailed description of the NEPHELE data plane is 

provided in [17][18]. Also [17] presents some basic techno-

economic results. 

III. NEPHELE CONTROL CYCLE 

NEPHELE exploits the SDN concept that decouples the data 

and control planes through open interfaces, enabling 

programmability of the networking infrastructure [17]. A key 

functionality of NEPHELE SDN controller is the coordination 

of the resource usage, including the timeslot/plane dimension 

[19]. Thus, an important building block of the SDN controller is 

the scheduling engine, which allocates resources for TOR 

communication in a periodic and on demand manner.  

 Two scheduling approaches are envisioned in NEPHELE. 

 

Fig. 1. NEPHELE Resource allocation and Data cycles. 
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We assume that long and medium term traffic variations can be 

solved with offline scheduling algorithms. The offline 

scheduling algorithms that run periodically or on demand 

(triggered by significant application/traffic changes) can 

calculate the optimum resource allocation (schedule) since their 

running time is not crucial. Then sort-time traffic variations or 

failure events are treated by faster online scheduling algorithms 

that calculate incremental changes in the running schedule.  

Moreover, we also envision two traffic identification modes: 

(i) application-aware and (ii) feedback-based. The former mode 

[5], [6] assumes that applications communicate to the 

NEPHELE SDN controller (or via the DC orchestrator) their 

traffic requirements. The latter, feedback-based, mode assumes 

that the central controller collects (monitors) data from the TOR 

queues [9]. Hybrid versions of these two modes are also 

applicable. 

In the NEPHELE network we divide the time in slots and we 

have periods of 𝑇 timeslots. In all scheduling and traffic 

identification cases, we assume that the controller creates the 

queue matrix 𝐐(𝑛) (of size (𝑊 ⋅ 𝑃) × (𝑊 ⋅ 𝑃)) for period 𝑛. We 

denote by 𝐀(𝑛) the matrix of arrivals at the queues during period 

𝑛, and by 𝐒(𝑛) the schedule calculated for period 𝑛.  

The NEPHELE network operates in two parallel cycles: a) 

Data communication cycles of 𝑇 timeslots (also referred to as a 

Data period), where actual communication between TORs takes 

place and b) Control plane cycles of duration 𝐶 (measured in 

Data periods), where control information is exchanged. Control 

plane cycle 𝑛 corresponds to Data period 𝑛, and computes the 

schedule 𝐒(𝑛) to be used during that period. Note, however, that 

the schedule is computed based on information that was 

available 𝐶 periods earlier than the Data period the control plane 

cycle is applied to. Thus, 𝐒(𝑛) is a function of 𝐐(𝑛 − 𝐶), i.e.,  

𝐒(𝑛)  = 𝑓 (𝑔[𝐐(𝑛 − 𝐶)]),  (1) 

where 𝐐̂(𝑛) = 𝑔[𝐐(𝑛 − 𝐶)] is the function that creates the 

estimated queue matrix 𝐐̂(𝑛) from 𝐐(𝑛 − 𝐶), upon which the 

schedule is calculated, and 𝑓 is the scheduling algorithm. When 

𝐶 > 1 period (control delay is larger than the Data period), a 

new Control plane cycle still starts every Data period. So, there 

are 𝐶 Control plane cycles running in parallel.  

The queues evolution is described by 𝐐(𝑛 + 1) = 𝐐(𝑛) +
𝐀(𝑛) − 𝐒(𝑛), where 𝐒(𝑛) is calculated as in Eq. (1). The control 

plane delay 𝐶 depends on many factors, including the execution 

time of the scheduling algorithm, the delay of the control 

protocol carrying information from TORs to the SDN controller 

and from the SDN controller to the data plane devices. Both 

delays depend on the network size and the choice of the Data 

period 𝑇. For the scheduling decisions to be efficient, the 

scheduling matrix 𝐒(𝑛) computed based on an estimated queue 

matrix 𝐐̂(𝑛) [which in turn is calculated from 𝐐(𝑛 − 𝐶)] should 

be a “good” scheduling to be used during Data interval 𝑛. This 

is true when 𝐐̂(𝑛) is a good approximation of 𝐐(𝑛). In case of 

slowly or moderately changing traffic, we expect calculations 

made for previous periods to be valid. 
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Fig. 2. NEPHELE Data and Control plane cycles. 

 

In estimating 𝐐̂(𝑛) from 𝐐(𝑛 − 𝐶), it is possible to use 

statistical predictions, filters, and other (notably, predefined 

cluster application communication patterns) methods to improve 

performance. Moreover, it is possible for the scheduler to void 

fill the unallocated resources in 𝐒(𝑛) to enable opportunistic 

transmissions. Finally, the overall scheme is “self-correcting”: if 

some queues are not served for some periods due to poor 

scheduling and their size grows due to new arrivals, this will be 

communicated with some delay to the controller, and they will 

eventually be served. 

IV. SCHEDULING ALGORITHMS 

We now focus on the scheduling problem in the NEPHELE 

network. In any traffic identification mode (application-aware or 

feedback-based), we start from the estimated queue matrix 𝐐̂(𝑛) 

and devise algorithms to calculate the schedule 𝐒(𝑛) (function 𝑓 

in Eq. (1)). For reference, we can assume that we calculate the 

estimated queue matrix (function 𝑔 in Eq. (1)) as 𝐐̂(𝑛) =

𝐀(𝑛 − 𝐶 − 1) + 𝐐̂(𝑛 − 1) − 𝐒(𝑛 − 1), where in the expression 

we acknowledge that due to control plane delay 𝐶, the central 

scheduler has access to (delayed) arrival information 𝐀(𝑛 − 𝐶 −
1) instead of 𝐀(𝑛).  This corresponds to the case where the 

schedule 𝐒(𝑛) calculated on 𝐐̂(𝑛) serves the arrived traffic 

𝐀(𝑛 − 𝐶 − 1), plus a correction equal to traffic not served in the 

previous period 𝐐̂(𝑛 − 1) − 𝐒(𝑛 − 1). 

The scheduling algorithm provides the schedule 𝐒(𝑛), which 

identifies the TOR pairs that communicate during each timeslot 

and for each optical plane for Data period 𝑛. Note that 

wavelengths and rings are dependent resources; the selected 

wavelength is determined by the destination and the ring 

depends on the source and destination [18]. So, in NEPHELE, 

the allocated resources are the timeslots and the optical planes 

(𝐼 ⋅ 𝑇 in total), also called generalized slots. The scheduling 

algorithm takes the estimated queue matrix 𝐐̂(𝑛) and 

decomposes it (fully or, if not possible, partially) into a sum of 

𝐼 ⋅ 𝑇 permutation matrices. These identify the source and 

destination TORs that communicate at each generalized slot. 

The scheduling algorithm takes into account the constraints 

under which a TOR can transmit/receive to/from a single TOR.  

As discussed earlier, there are two scheduling approaches: 

offline and incremental, trading off execution time for 

optimality.  
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A. Offline Scheduling  

Offline scheduling pertains to the optimal decomposition of 

matrix 𝐐̂(𝑛). We define the critical sum 𝐻[𝐐̂(𝑛)] = ℎ as the 

maximum of the row sums and column sums of matrix 𝐐̂(𝑛). 

The decomposition of 𝐐̂(𝑛) can be performed in an optimal 

manner following the well-known Hall’s theorem (an integer 

version of the Birkhoff-Von Neumann theorem). A more 

detailed analysis of these techniques is discussed in [18].  

The column sums will be on the average ≤ 𝑆 ⋅ 𝑇, if the 

destinations of packets are uniformly distributed, or with high 

probability, if the network operates at less than full load. Also, a 

flow control mechanism can be applied to smoothen the traffic 

going to a given destination and enforce this constraint. In such 

a (“typical”) case, the column sums of the arrival matrix 𝐀(𝑛) 

will be ≤ 𝑆 ⋅ 𝑇 and so will also be its critical sum, and thus the 

schedule 𝐒(𝑛), that is calculated based on 𝐐̂(𝑛) = 𝐀(𝑛 − 𝐶), 

assuming 𝑆 ≤ 𝐼, can be chosen so as to completely serve all the 

arrivals in 𝐀(𝑛 − 𝐶) in the available 𝐼 ⋅ 𝑇 generalized slots. 

Thus, in the typical case, NEPHELLE provides both full 

throughput and delay guarantees.  

In the worst case, the optimal algorithm executes a maximum 

matching algorithm 𝐼 ⋅ 𝑇  times. Finding a maximum matching 

with e.g. the well-known Hopcroft–Karp algorithm exhibits 

complexity of 𝑂(𝑀(𝐐̂) ⋅ √𝑊 ⋅ 𝑃), where 𝑀(𝑸̂) is the number of 

nonzero elements in 𝐐̂, which in the worst case equals (𝑊 ⋅ 𝑃)2.  

B. Incremental Scheduling  

It is evident from the above discussion and related results [18] 

that offline scheduling is not suitable to serve short-term varying 

traffic. Measurements in commercial data centers indicate that 

application traffic can be relatively bursty, with flows activating/ 

deactivating within ms [4]. However, the traffic tends to be 

highly locally persistent: a server tends to communicate with a 

set of destinations that are located in the same rack or the same 

cluster/ pod [4]. Note that TOR switches in NEPHELE 

aggregate the flows of the servers in a rack, smoothening out the 

burstiness of individual flows, especially considering locality 

persistent traffic.  

A detailed definition of locality persistency is given in [18]. 

We denote by 𝐃(𝑛) = 𝐀(𝑛) −  𝐀(𝑛 − 1) the arrival matrix 

difference, and by 𝛿(⋅) the density of a matrix. Then, the 

Locality Persistency Property holds if  𝛿(|𝐃(𝑛)|) ≪ 1. We also 

define the estimated queue matrix difference as 𝐃𝐐̂(𝑛) =

𝐐̂(𝑛) −  𝐐̂(𝑛 − 1). Note that when arrivals have the locality 

persistency property, then we also expect 𝛿(|𝐃𝐐̂(𝑛))|) ≪ 1.  

Motivated from the high locality observation, we investigated 

incremental scheduling, i.e. rely on the previous schedule to 

calculate the new one. The expected benefit is that we need to 

update only changed elements of the permutation matrices of the 

decomposition of 𝐐̂(𝑛 + 1), with no need to modify the rest. A 

number of incremental scheduling algorithms are presented in 

[18] where we also present a greedy incremental heuristic with 

complexity of 𝑂(𝛿(|𝐃𝐐̂|) ∙ 𝛪 ⋅ 𝛵 ⋅ (𝑊 ∙ 𝑃)2), where 𝛿(|𝐃𝐐̂|) ≪ 1 

in view of the persistency property.  

This heuristic achieves throughput that is close to optimal and 

running time in the order of hundreds of ms [18], using Matlab 

and an Intel® Core™ i5 laptop. A parallel implementation of the 

heuristic algorithm on an FPGA was presented in [20] and 

showed that the schedule can be computed in tens of ms even for 

dense input matrices (𝛿(|𝐃𝐐̂| < 0.25) using incremental 

algorithms. This implies that we can calculate the schedule 

within 1 Data period, which is quite promising for the 

performance of the NEPHELE architecture. However, the 

control plane overhead 𝐶 depends also on the signaling 

overhead: monitoring (in feedback based traffic estimation 

mode) and transferring the schedule to the data plane devices, 

the NEPHELE POD and TOR switches. The effect of the total 

control plane overhead is examined in the next section.  

V. PERFORMANCE EVALUATION 

A. Simulation Model and parameters 

To evaluate the performance of the NEPHELE architecture, 

we developed a packet level network simulator. The simulator is 

an extension of OMNET++ 4.3.1 with INET 2.4.0, a framework 

that contains implementations for various real-life network 

components and protocols. We evaluated the network 

performance using an application that simulates MapReduce, 

which was implemented by Mellanox.  

In our simulation model, we consider that the control plane 

delay, which includes the time to gather monitoring information 

(if we operate the network in feedback based, would be zero in 

application-aware mode), to calculate the schedule (which as 

previously discussed is fast, within 1 Data period [20]) and to 

distribute the schedule to the data plane devices, is described 

through the parameter 𝐶. This in turn defines the number of 

multiple identical (virtual) schedulers that work in parallel. We 

also assume that each parallel scheduler knows the 𝐶 previous 

schedules (feasible, as the schedule is computed in 1 Data 

period).  

In the simulated network we run a number of MapReduce 

jobs simultaneously. Each MapReduce job requires a number of 

worker nodes: mappers, reducers and storage servers and runs 

for a number of iterations. The communication pattern for each 

particular MapReduce job, regarding the server where each 

worker node resides, the size of the MapReduce data produced 

in each phase, the number of MapReduce iterations and the 

computational delay for map and reduce operations, are 

described using appropriate semantics in an input file. In the 

simulations the assignment of the worker nodes to the servers 

was random. This means that a server could host simultaneously 

multiple types of worker nodes for the same or different jobs.  

The communication between the worker nodes is achieved 

via Ethernet packets over TCP/IP. We assumed full-duplex 10G 

Ethernet from a server to the corresponding NEPHELE TOR 

switch. For the TOR to TOR communication we rely on 

NEPHELE TDMA operation. The Ethernet packets are stored in 
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Virtual output queues (VOQ) and served in slots according to the 

computed schedules.  

We study the impact of various parameters, such as the 

Control cycle delay 𝐶, the number of MapReduce jobs, or the 

cluster size (𝑃 ⋅ 𝑊), on the throughput, in terms of total 

makespan. The makespan is defined as the time it takes for all 

MapReduce jobs to finish. TABLE I. summarizes the NEPHELE 

network parameters, as well as the TCP-related parameters. Note 

that a target for the NEPHELE network would be to have 1600 

racks with 20 servers each, while each timeslot (of duration 

200μs) aggregates the traffic of all servers residing in a rack. 

Since it is not possible to simulate a fully-fledged NEPHELE 

network, but only smaller clusters with fewer servers per rack, 

the NEPHELE parameters are also scaled down accordingly. We 

assumed 𝐼 = 2 optical planes, and the scheduling period 𝑇 took 

values so that the generalized slots/resources equals to the 

number of racks (𝑇 ⋅ 𝐼 = 𝑃 ⋅ 𝑊). 

The key parameters that we examine are the Control cycle 

delay 𝐶, the number of MapReduce jobs that run simultaneously 

in the cluster and the number of cluster’s racks; their default 

values are 4, 5 and 8, respectively. In all scenarios, the ratios of 

the MapReduce worker nodes types remained the same: the 

number of mappers equals to half, while the number of reducers 

and storage servers equals to a quarter of the available servers. A 

parallel (dual) network (utilizing 1 Gbps capacity) is also used to 

route the TCP ACKs.  

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 
Number of servers in each rack (𝑆) 2 

Number of planes (𝐼) 2 

Link capacity per plane (each direction) 10Gbps 

Timeslot duration 200μs 

Maximum segment size (MSS) 625 bytes 

TCP window size 65000 bytes 

Storage server Mapper Reducer output 5 10 5 Mbytes 

Mapper processing time 25μs 

Reducer processing time 20μs 

Number of MapReduce iterations 3 

 

We examine three queue matrix estimation policies. The first 

estimation policy assumes static uniform traffic under which no 

traffic identification mode (monitoring or application awareness) 

is assumed and the resource allocation is evenly distributed 

among the TOR pairs (round-robin scheduling). The second 

policy assumes that 𝐐̂(𝑛) (described in Sections III and IV) is 

computed based on the most recent known arrivals 𝐀(𝑛 − 𝑐 −
1). The third policy is a simplistic prediction mechanism that 

assumes that the arrivals for the next 𝐶 Data periods will be 

equal to the latest 𝐀(𝑛). It then virtually applies the latest 𝐶 

known schedules and computes an estimation for the remainder 

in the queues when the schedule will be applied (after 𝐶 Data 

periods). The above queue estimation policies are combined 

with the incremental scheduling algorithm which is extended 

with a greedy randomized void filling heuristic. Void filling is 

used to fill the unallocated slots left empty by the scheduling 

algorithm. In particular, a randomized greedy heuristic greedily 

computes a set of matchings in order to fill the free slots in an 

uniform way, taking into account the previously allocated slots 

and the transmission constraints that they yield. 

B. Simulation Results 

We initially examine the effect of utilizing i) a parallel packet 

switched network over which we sent TCP ACK packets and ii) a 

randomized void filling heuristic to fill the empty slots/ 

permutations of the schedules on slot (network capacity) 

utilization over time. As it can be observed in Fig. 3, both the 

effect of the parallel network and the randomized void filling 

heuristic is quite significant. Since, TCP features congestion 

control, the TCP window limits the traffic load the servers 

transmit. This has a major impact to the overall slot utilization 

and thus to the throughput and the makespan of the network. 

These two techniques improve the TCP window pipelining 

resulting to improved slot utilization and reduced makespan. In 

particular, we observed a reduction of the makespan for the 4 

MapReduce jobs from ~27,4 s  in the case of no parallel/no void 

filling to ~27,2 s in the case of parallel/no void filling and to ~14 

s in the case of no parallel/void filling. The combination of 

parallel/ void filling achieves a substantially lower makespan of 

~10,3 s. In the following we will assume that the NEPHELE 

network uses both parallel/ void filling.  

 

Fig. 3. Impact of the parallel network and randomized void filling heuristic 

on slot utilization. 

We now examine the effect of the control delay 𝐶 which was 

varied from 0, 5, 10, 20, 50 to 200 Data periods. As it is shown 

in Fig. 4, the makespan for the case of the static round-robin 

policy remains constant at about 0.36 s, regardless of the Control 

cycle delay. Meanwhile, the other two policies seem to perform 

better for at most 19%, given that they take into account the 

traffic (monitoring or application awareness) and carry out 

scheduling based on 𝐐̂(𝑛) estimates. This performance 

improvement decreases as the Control cycle delay increases, and 

eventually in the sample of Control cycles equal to 200 Data 

periods, it gets worse than the static round-robin for at most 

13%. This is expected, since the longer control delay results to 

an increased chance the actual traffic at the queues to 

substantially differ from the calculated schedule. It can also be 

observed that in small numbers of Control cycles, utilizing 

prediction also improves the performance. However, this 

improvement fades out from 20 Control cycles and on. 

In the next scenario, we consider the cases where we have 1, 

4, 7 and 10 MapReduce jobs simultaneously running on the 

252 Invited papers ONDM 2018



cluster. It is expected that as the number of jobs increases, the 

network load increases, but also the traffic dynamicity 

decreases, given that the assignment of the worker nodes with 

the servers is done randomly and uniformly. As shown in Fig. 5, 

the makespan increases with the job number in all queue matrix 

estimation policies, since the network load increases. However, 

especially in the case of 1 job, where only certain parts of the 

network are utilized in each Mapreduce phase, we can see that 

the static round-robin policy performs much worse than the 

other two policies for about 32%. This difference is reduced for 

larger numbers of jobs to at least 16%. 

In the last considered scenario, we have different cluster sizes, 

namely of 4, 8, 16 and 32 racks (8, 16, 32 and 64 servers, 

respectively). Fig. 6 shows the performance of the three queue 

matrix estimation policies. In particular, we can observe that the 

policies that take into account the traffic have a much better 

performance than the static round-robin that ranges between 12-

48% and increases with the increase of the cluster size.  

In our tests we compared NEPHELE with a fat-tree topology. 

We observed that when Control cycle was set to 0, NEPHELE 

performed similarly to a fat-tree, in terms of makespan. 

 
Fig. 4. Impact of control cycle (in Data periods) on makespan. 

 

Fig. 5. Impact of the number of MapReduce jobs on makespan. 

 

Fig. 6. Impact of cluster size on makespan. 

VI. CONCLUSIONS 

We presented the NEPHELE DCN architecture and described 

the related resource allocation problem. In NEPHELE, a 

centralized SDN controller allocates slots and optical planes to 

communicating pairs, and thus coordinates over time, space and 

wavelength to avoid collisions and achieve efficient operation. 

We described the NEPHELE control cycle, including the 

importance of the policy used to obtain good queue matrix 

estimates that approximate the traffic pattern after the control 

cycle delay. We conducted simulations using OMNET++ under 

MapReduce realistic traffic. We examined the effect of utilizing a 

parallel network for TCP ACKs, and of a void filling heuristic. 

We observed that both these techniques, improve the makespan. 

We considered the case of applying a static round-robin policy 

and two policies that take into account the traffic. We observed 

that when the control cycle delay is high, a static round-robin 

policy seems preferable. The policies that take into account the 

traffic induce a significant improvement to the total makespan 

that can reach 48% when the short-term load dynamicity is high. 
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