
Scheduler Accelerator for TDMA Data Centers

Ioannis Patronas1,2, Nikolaos Gkatzios1

Vasileios Kitsakis1 and Dionysios Reisis1,2
1National and Kapodistrian University of Athens,

Electronics Lab, Physics Dpt,

GR-15784 Zografos Greece,
2Institute of Communications and Computers (ICCS)

National Technical Univ. of Athens

Email: {johnpat,ngkatz,bkits,dreisis}@phys.uoa.gr

Konstantinos Christodoulopoulos
and Emmanouel Varvarigos

National Technical University of Athens,

School of Electrical and Computer Engineering

Email: kchristodou@ceid.upatras.gr,

vmanos@central.ntua.gr

Abstract—Today’s Data Centers networks depend on optical
switching to overcome the scalability limitations of traditional
architectures. All optical networks most often use slotted Time
Division Multiple Access (TDMA) operation; their buffers are
located at the optical network edges and their organization relies
on effective scheduling of the TDMA frames to achieve efficient
sharing of the network resources and a collision-free network
operation. Scheduling decisions have to be taken in real time, a
process that becomes computationally demanding as the network
size increases. Accelerators provide a solution and the present
paper proposes a scheduler accelerator to accommodate a data
center network divided into points of delivery (pods) of racks
and exploiting hybrid electro-optical top-of-rack (ToR) switches
that access an all-optical inter-rack network. The scheduler
accelerator is a parallel scalable architecture with application
specific processing engines. Case studies of 2, 4, 8, 16 processors
configuration are presented for the processing of all the transfer
TDMA time slot requests for the cases of 512 and 1024 ToR
network nodes. The architecture is realized on a Xilinx VC707
board to validate the results.

Keywords —Data Center, Scheduler, Parallel Algorithms,
FPGA accelarator

I. INTRODUCTION

Currently, data centers include a large number of servers

running Virtual Machines (VMs) and their performance relies

on the provided computing capacity, the architecture, the

features and the performance of the underlying interconnection

network. Interconnection designs most often are based on Fat

Tree or even folded Clos architectures [1], [2], which for large

scale data centers require a very high number of switches, ca-

bles and transceivers. More efficient interconnection schemes

are proposed that involve an optical circuit switching and an

electrical packet switching network [3], [4], [5], [6], [7]. The

data centers of [2], [8] distinguish the heavy and long-lived

traffic to assign it to the circuit switched network and the

remaining to the packet switched network. Among the most

important tasks in the course of the design process of a data

center is the scheduling [6], [9], [10], [11], [12], leading

to a high utilization of the network capacity. To improve

the scheduling performance the authors of [12] propose a

scalable parallel technique for real time scheduling of an

optical interconnection.

Aiming at the dynamic sharing of the optical resources and

a collision-free network operation, the Nephele data center

architecture [13] follows the approach of the Time Division

Multiple Access (TDMA) operation in the optical data center

interconnection using slots as fixed time segments; at each

link connecting a transmitter and a receiver node, each slot

is dedicated to the transmission of a TDMA frame between

these two nodes. The scalable, high capacity Nephele network

can utilize up to 1600 Top-of-Rack (ToR) switches, each with

20 links. Consequently, the scheduling of the frames in the

Nephele, network, i.e. the assignment in real time of each

slot, link and wavelength to a rack-to-rack communication

becomes a computationally demanding task. The assignment

of the slots is planned for a scheduling period lasting for a

relatively small number of time slots [14] and it is based on

the servers requests. During a scheduling period the network

performs the planned communication, while it gathers the

updated servers communication demands to compute the slot

assignments of the following period. Another important fact

is that the data center is a scalable architecture and thus, the

performance of the scheduling algorithm has to meet the real

time requirements of any future network expansion.

Focusing on providing a time wise efficient technique for

the slot assignment in the Nephele the current paper presents a

scheduling accelerator architecture. The proposed architecture

is based on a parallel greedy technique, it gets as input

a two dimensional traffic matrix with the communication

requests and it produces the permutation matrix containing

the slot assignments. The proposed scheduler accelerator is

advantageous because: a) it is able to perform using simple

processing elements, b) it is scalable with respect to the

number of processing elements used, a fact which leads to

a real time scheduler architecture meeting the data center re-

quirements and future expansions, c) it utilizes data structures

that can be divided and mapped to the processing elements

in a way that minimizes dependencies and consequently, the

communication among the processors. FPGA architectures

implemented with 2, 4, 8 and 16 processing elements on a

Xilinx VC707 validate the results.

The paper is organized as follows: Section II highlights

the data center architecture. Section III gives the problem

162

26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

0-7695-6380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/PDP2018.2018.00030

definition and the data structures that lead to efficient mapping

of the computations on the processing elements of the accel-

erator. Section IV introduces the parallel technique. Section V

shows the details of the accelerator architecture and the FPGA

implementation, Section VI presents the results and finally,

Section VII concludes the paper.

II. NEPHELE NETWORK ARCHITECTURE

The Nephele network is divided in points-of-delivery (pods)

of racks and is built out of hybrid electrical/optical top-of-rack

(ToR) switches and all-optical pod switches. In the Nephele

interconnect there are I parallel optical planes, each of which

consists of R unidirectional rings connecting P pods. Each

one of the R fiber rings of the I planes carries wavelength

division multiplexing (WDM) traffic. Figure 1 depicts the

Nephele network. A pod consists of I pod switches and W
ToR switches interconnected: each ToR switch has I ports

facing the I pod switches and, in particular, each port is

connected to a different pod switch. The ToR switch has S
southbound ports (hosts, storage devices, or other systems).

Buffers are located only at the ToR switches and the

Nephele network operates in a slotted TDMA manner to avoid

collisions, resembling the operation of a single TDMA switch.

Time slots are dynamically assigned for each plane to ToR-

to-ToR communications by a central scheduler based on their

respective traffic requirements. Scheduling decisions are taken

in periods of T time slots to enable the aggregation and

suppression of monitoring and control information.

In Nephele the communication begins with traffic originat-

ing from a ToR entering a pod switch a fast 1 × 2 space

switch keeps it within the pod if the destination ToR belongs

to the pod else it forwards it to the rings and to the next

pod switch. The local intra-pod traffic is passively routed by a

1×W arrayed waveguide grating (AWG) based on the signal

wavelength and the input port.

Inter-pod traffic is routed via the fast 1× 2 switch towards

a second W × R cyclic arrayed waveguide grating (CAWG)

followed by couplers that combine multiple CAWG outputs

into the fiber rings. So, the traffic enters the ring according

to the CAWG function, propagates in the same ring through

intermediate pod switches and is dropped at the destination

pod. These routing decisions are applied by setting appropri-

ately the related wavelength selective switches (WSS) in the

pod switches. The WSSs can select whether traffic is passed

or dropped on a per-fiber, per-wavelength and per-slot basis.

Thus, each intermediate pod sets the related WSS to the pass

state, while at the destination the related WSS is set to drop.

The drop ports of the WSSs - corresponding to all the rings -

are introduced into a 1×W AWG and are passively routed to

the W ToRs in that pod. Through this AWG the traffic reaches

the specific destination ToR.

ToR switches periodically report their bandwidth requests

to the network controller, or applications report their re-

quirements to the controller. Then, the controller constructs

a (W ×P)× (W ×P) traffic matrix (TM) at the end of each

reporting period: each TM((w1, p1), (w2, p2)) corresponds to

Fig. 1. NEPHELE Network

the number of time slots requested for the communication be-

tween a source TOR(w1, p1) with a destination TOR(w2, p2),
where p1 and p2 indicate the source and destination pods and

w1 and w2 indicate the wavelength/position of the source and

destination TORs inside the related pods, 1 ≤ w1, w2 ≤ W
and 1 ≤ p1, p2 ≤ P . Constraints are met to avoid collisions.

III. PROBLEM DEFINITION AND DATA STRUCTURES

The current section describes first, the scheduling problem

and the dependencies limiting a parallel accelerator design;

second, it presents the data structures given as input to the

scheduler and those that are produced as output to the network

controller.

A. Scheduling Problem Definition

Following the above description of the Nephele network and

the TDMA operation, where the transmission time is divided

into TDMA (time) slots and during each slot we can transmit

one TDMA frame, the scheduling problem is as follows: divide

the network operation time into scheduling periods with each

period consisting of a few (T) TDMA slots; for each TDMA

slot of the next period, the scheduler has to map a request

for sending a TDMA frame from a ToR transmitter to a ToR

receiver so that there are no conflicts with respect to the

assignment of the other transmitters, receivers and the network

links that are appointed to them. For example, during a slot

transmitters p and q cannot both send to the receiver w and

also, the requests for transmission from p to w and from q
to y cannot be both met if their paths share any link and

wavelength.

To accomplish the above, the scheduler gets as input a two

dimensional array, namely the Traffic Matrix requesting for

each transceiver pair (i, j) the number of frames to be sent

during the next period. In the course of the scheduling process,

in order to avoid conflicts during each period the scheduler

has to keep track of the assignments made so far for each

slot. For this purpose, it creates two auxiliary arrays: the first

163

is the Receiver Constraint Matrix storing for each receiver

the slots already assigned as busy and the second array is

the respective Transmitter Constraint Matrix. The output of

the scheduling process is the two dimensional array called

the Permutation Matrix showing for each transmitter to what

receiver and which slot is going to transmit in the next period.

Given the size of the network and the real time constraints,

the scheduling process becomes a complicated task, which a

single processor cannot complete in a scheduling period. The

proposed scheduling accelerator based on a parallel architec-

ture is a suitable approach. The problem though, as described

above is not inherently parallel, because a straightforward

division of requests into multiple processors will let each

processor to handle requests as responsible for a subset of

either transmitters or receivers. In the former case there will

be conflicts when the processors will try to access the same

receiver array entries and in the latter case the same holds for

the transmitter array entries. Moreover, the dividing strategy

for the transmission requests and the parallel technique have to

result in an interconnection among the accelerator processors

and memory modules of relatively low latency and implemen-

tation cost. The proposed parallel technique is based on an

effective strategy for dividing and handling the requests, it

results in an accelerator architecture with simple processing

elements and a barrel shifter for interconnection. Moreover, it

can be scaled with respect to the number of processors and/or

the network size.

B. Data Structures

Traffic Matrix: The Traffic Matrix (TM) is a N ×N array

created by the central management (the SDN Controller)

and it is the input of the scheduling algorithm. Note that

N is the number of the ToRs and that also, N = W × P
(W = 80 wavelengths and P = 20 planes); moreover,

N/P are the time slots of each scheduling period. Entry

(i, j) has the number of time slots requested for the

communication between the transmitter i and the receiver

j: each row i, where i = w × p, of the Traffic Matrix

represents the transmitter of the wth ToR of the pth pod;

and each column j (as above j = w × p) represents the

receiver of the wth ToR of the pth pod. Figure 2 depicts the

format of the Traffic Matrix for a network with eight (8) ToRs.

Permutation Matrix (PM): PM is the output of the schedul-

ing algorithm. It is a N ×N two dimensional array with each

row i standing for the transmitter i and each column j the jth

generic slot, which is defined as the combination of a time

slot and a specific plane, i.e. a time slot for 20 different planes

is equal to 20 different generic slots. Hence, the number of

generic slots in a scheduling period is the number of slots N/P
(from paragraph III-B) multiplied by the number of planes P ;

thus, the total number of generic slots is N . Each entry (i, j) of

the PM contains the id of the receiving ToR switch. Hence, the

PM includes all the required information for coupling during

any slot of a scheduling period: the transmitter i (specifies the

ToR identification and the plane for transmission p) during

the generic slot j (specifies the slot and the plane p to receive

from) is coupled with the ToR receiver written in the entry

(i, j). The format of the Permutation Matrix for a network

with eight (8) ToRs is shown in Figure 3.

Constraints Matrices: the scheduling algorithm satisfies the

traffic requests while conforming with the network’s con-

straints to avoid collisions at any layer of the network. The

Nephele’s network constraints can be expressed in the form

of the binary matrices presented in the following paragraphs.

Transmitter’s Constraint Matrix (TCM): TCM is a two

dimensional N × N array, which indicates that a transmitter

has been assigned for communication during a generic slot.

The rows of the TCM represent the transmitters of the ToR

switches and the columns the generic slots of the scheduling

period. Each entry (i, j) is either 0 or 1 depending on the

utilization of transmitter i during the generic slot j. An

example of the TCM format is shown in Fig. 4.

Receiver’s Constraint Matrix (RCM): it is a N ×N array

with each row i standing for the receiver i and each column j
for the jth generic slot and hence, (i, j) = 1 if the receiver is

occupied during that generic slot, 0 otherwise. Figure 5 shows

the format of the RCM for a network with eight (8) ToRs.

Fig. 2. Traffic Matrix

Fig. 3. Permutation Matrix

164

1 0 1 0 0 1 1 0

1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 0

0 1 1 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

Tx

Generic Slot

Fig. 4. Transmitter’s Constraint Matrix (TCM)

0 0 1 0 0 1 1 0

1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 0

0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Rx

Generic Slot

1

Fig. 5. Receiver’s Constraint Matrix (RCM)

IV. DESIGN OF THE PARALLEL ALGORITHM

The design of the scheduler accelerator follows the approach

of parallelizing a sequential greedy scheduling technique.

The parallel technique targets application specific process-

ing engines in the Single Instruction Multiple Data (SIMD)

model/class. The sequential greedy technique examines the

entries of the Traffic Matrix and for each non zero entry

processes the time slots: for each time slot it allocates an

appropriate entry of the Permutation Matrix, if the scheduling

constraints are met. The parallel technique includes similar

operations, it divides though the data structures into blocks

that can be processed in parallel to achieve minimization

of the communication among the processing elements and

avoid memory access conflicts or violation of the network’s

constraints. The current section presents first, how the data

structures are divided. Second, it presents the functionality of

the parallel technique, while the exact steps in an algorithmic

fashion will be described in section V.

A. Data Structures Handling

The Traffic Matrix is divided into blocks of rows

(rowblocks); each rowblock contains E rows, where E is

the number of processing elements. Each time a rowblock is

processed, a single processing element is assigned to process

one row of that rowblock. An example of four (4) processing

elements on a 8 × 8 TM and their currently assigned rows

are shown in Figure 2: the colored arrows represent four (4)

processing elements and the upper four rows the currently

processed rowblock. We note here that, by applying rotation

on the elements’ assignments the technique allows all the

processing elements to have access to all the rows of the TM.

The two constraint matrices TCM and RCM are divided

into N/E columnblocks, where N is the number of generic

slots (and that of the ToRs) and E is number of processing

elements. Each of the processing elements (e.g. Ei) has access

to only one of the columnblocks, (e.g. the columnblocki and

hence, we avoid collisions as it will be shown in section V-A).

The partition of TCM and RCM in columnblocks is depicted

in Figures 4 and 5 respectively: each processing element has

access to the columns that have the same color with the

element.

B. Parallel Algorithm

The parallel algorithm is executed in phases. During each

phase the algorithm processes one rowblock of the TM and

therefore, the total number of phases equals to the number of

rows of the TM divided by the number of processing elements

E. Each phase consists of a variable number of iterations,

the phase iterations. The number of phase iterations varies

between 1 and the number of processing elements E.

At the start of each phase, at the first iteration, the pro-

cessing elements are assigned to the rows of the TM, so that

the processing element Ei will process the ith row of the

rowblock and as mentioned in section IV-A has access to the

columnblocki of the RCM. The processing elements execute

the operations of the sequential greedy technique on their

assigned row: for each time slot request in the TM, the element

allocates an appropriate entry of the Permutation Matrix, if the

scheduling constraints are met. In order to a) avoid conflicts

by letting each Ei to assign different generic slots than each

Ej and b) balance the computational load among the Eis: we

allow each element, when it processes a row, to assign up to

N/E (the number of generic slots divided by the number of

elements) generic slots. The iteration is completed when all

the processing elements have finished their task: each element

Ei it a) has completed processing the row’s requests, or b)

run out of the generic slots that is allowed to use (reached the

number N/E), or c) has filled all the entries in columnblocki.
In the following iterations: during the phase iteration j the

processing element Ei processes the (i+j) mod E row of the

currently processed rowblock while it has still access only to

the columnblocki. We note here that, the phase iterations has

been designed to overcome the fact that the processing element

Ei has access to only a subset of all the slots (columnblocki)
and to guarantee that the requests of ith row of the Traffic

165

Matrix can be satisfied in the entire set of slots (all the

columnblocks) by letting all the processing elements access

that row.

The algorithm proceeds to the next phase if all the entries

of the rowblock are equal to zero or if the number of

iterations equals the number E. In the latter case there are

still communication requests of the current rowblock that are

not met; these requests will be added to the Traffic Matrix of

the next scheduling period.

It is noteworthy here that, the design of the algorithm’s

iterations leads to an accelerator architecture of low imple-

mentation cost, because it consists of E simple processing

elements, E memory banks (each stores N/E rows of the

TM) and an interconnecting switch, which has to realize only

cyclic shifts during each iteration.

V. ACCELERATOR ARCHITECTURE AND FPGA

IMPLEMENTATION

The scheduler accelerator architecture is based on a parallel

scheme organized in SIMD model with E simple processing

elements. The architecture’s main blocks also include: a mem-

ory storing the TM divided into E banks, which communicate

through a Barrel Shifter with the processing elements, since

only cyclic shifts are needed in each phase; the local banks of

the processing elements storing the E parts of the RCM; and

finally, the global controller of the architecture. Figure 6 de-

picts the main blocks of the scheduling accelerator architecture

(example of an 8 processing elements configuration).

A. Accelerator Architecture

The controller creates and manages the phases and the

iterations of the parallel technique (section IV-B). Depending

on the current phase and iteration the controller dictates the

configuration of the barrel shifter in order to realize the

required connections between the processing elements and

the rows of the TM, that are stored in the TM Block Rams.

In addition, the controller manages the functionality and the

synchronization of the processing elements: the controller

awaits all of the processing elements to complete the pro-

cessing of their currently assigned TM row and by realizing

a cyclic shift through the barrel shifter, it assigns a new row

to each processing element. Then it signals to the elements

for the start of the next iteration and if the phase is over,

the signal will mark also the start of another phase. As

described in Section IV-B the phases of the algorithm consist

of a variable number of iterations, that can be lesser than

the maximum if the currently processed rowblock contains

zero requests. The processing elements notify the Rowblock

Utilization Block regarding the status of the TM row they

processed: rowserved if the row has no more requests to

be processed and row not served if there are still requests

pending in the row. The controller gathers the row status
signals from all the elements and proceeds to the next phase

if all the rows of the rowblock are served. The exact steps

that the controller executes are shown in the Algorithm 1.

while current phase number ≤ total phases do
while current iteration number ≤ total iterations do

read processing elements status;

if all rows served then
proceed to next phase;

else
proceed to next iteration;

end
end
proceed to next phase;

end

Algorithm 1: Controller Algorithm

1: Receive iteration number j from the controller;

status ← processing;

2: Process (i+ j)mod(E) row of the current rowblock;

3: while { not all cells checked
and generic slots for elementi < full
and columnblocki �= full } do

process next request ;

end
4: if row requests = 0 then

status ← row served;

else
status ← row not served;

end
5: Wait for next iteration;

Algorithm 2: Processing Element Ei Algorithm

Figure 7 presents the architecture of the processing element.

At the beginning of each iteration the TCM Vector Register is

initialized with zeros and the RCM Vector Register receives

the appropriate vector from the local RCM Block Ram. These

vectors (utilization vectors) represent the occupation status of

the transmitter and the receiver respectively during the generic

slots that each processing element is allowed to process: each

������

������

�����	

������
�����

���������
�

���������
�

���������
	

�����

�����

����	

�����������������
�����

������ ������ !�����"#	 �

!�$

��%������

�����
��%������& �

�������� �	

������
�����

��'����(�
)*��+�*�%

�,���

-�����.�

��%�������/%��

�����
��%������& �

�������� ��

23�������%����

���3����%�����%���
������

�����������

Fig. 6. Scheduler Accelerator Architecture’s Main Blocks

166

�������	
��
����	��

�������	
��
����	��

������	��
����	��

�����	� ����	�

�
�	�
��
���	

�
����������
4�������
	�����	

����	

5�	�����

�
�	�
�������

������4� �����4��

�
�	�
�� �	��	�

����	�

Fig. 7. Processing Element Architecture Overview

bit represents one generic slot. The Requests Register stores

temporarily the traffic requests of the currently processed

cell of the TM. For each request in the TM, the Compare

and Assign Slots Unit compares the two utilization vectors

and searches for an index where both vectors have a zero;

that means that both the receiver and the transmitter are not

utilized; hence, they are able to serve the traffic request during

the examined slot (given by the index). Then, it repeats the

search until it will locate all such indexes or it will complete

the TM’s requests.

The Traffic Matrix is stored in a set of Memory Banks. Each

of the memory banks can be accessed by any of the processing

elements via the barrel shifter: in the example of Figure 6

is 8 × 8. The entries of the Traffic Matrix are distributed in

the memory banks so that all the rows of any rowblock that

are assigned to the processing elements during a given phase

are located in a different bank to avoid collisions. Row i of

the Traffic Matrix is stored in memory bank j where j =
(i)mod(E) and E is the number of processing elements. Since

each processing element i has access to a subset of the generic

slots, each columnblocki of the RCM can be stored in its local

memory (RCMi in Figure 6). We note here that, the parallel

implementation does not use the entire TCM structure. Instead,

for efficiency purpose, each element Ei creates a row of the

TCM (all entries are 0), each time is using the corresponding

row of the TM, and it sets ”1” to a TCM entry whenever it

assigns a generic slot to that transmitter.

The steps executed by each processing element, for all the

elements in parallel, are described in Algorithm 2. In step 1 the

element waits for the iteration number given by the controller

and starts processing in Step 2. During step 3 it processes the

requests in that row while it a) has not completed processing

the row’s requests, and b) still is allowed to use generic slots

(has assigned less than N/E slots), and c) columnblocki has

still zero entries. Step 4 informs the controller regarding the

status of processing the row and finally, in step 5 if Ei has

stopped, it waits the message from the controller that all the

elements stopped and a new iteration will begin.

B. Accelerator Scalability

The above description leads to the fact that is a straightfor-

ward task to scale the accelerator architecture with respect to

the number of processing elements, since the only module to

be augmented is the barrel shifter switch. In the following

we will show the results of implementing the architecture

with 2, 4, 8 and 16 processing elements and in Section VI

the performance that these configurations can achieve. The

implementations include networks for 512 and 1024 ToR

switches.

C. FPGA implementation

Our first experiment was the parallel accelerator imple-

mented on a Virtex VC707 board. The architecture targeted

the scheduling of a 512-ToR network featuring scheduling

period of 512 generic slots, TM size 512 × 512 and number

of planes P = 16. According to these specifications the

scheduling period is 6.8ms and the time needed to transfer

the TM or output the PM is less than 1ms. We note here

that: a) the network load is defined as the ratio of the total

ToR traffic in a reporting period over the total capacity of

the ToR; b) the density of the traffic matrix is defined as

the ratio of the total number of transceiver pairs requesting

communication over the total number of transceiver pairs.

Fig. 8 shows that the 8 processing elements configuration can

accomplish the scheduling task in real-time even in the case

of load 50% and density 1.5% (Fig. 8 iii); such cases are

considered as extreme for the operation of data centers, since

the load seldom is greater than 20% Density though, varies

from 1% to 25%. Regarding the FPGA resources utilization:

a single processing element occupies 295 LUTs and 195 FFs

and the 8-element parallel accelerator’s processing elements

2660 LUTs and 1828 FFs, 216 LUTs are for the barrel shifter.

The resources occupied by the 8-element configuration, apart

the 8 × (295 LUTs and 195 FFs) is required for their

interconnection. The Fmax is 202.02 MHz.

The scalability of the design is shown by the implemen-

tations of the architectures with 2, 4, 8 and 16 processing

elements. Table I shows the resources occupied by the four

configurations of 2, 4, 8 and 16 processing elements all for the

512-ToR network (they all require the same memory volume

in the shared and local memories). Fmax is almost the same

for all configurations. The small variations are due to different

placements on the FPGA.

An advantage of the design is that each time we double the

processing elements, i.e. from 2 to 4, from 4 to 8 and from

8 to 16, the increase of the resources is linear with respect to

the number of processing elements: the 4 processing element

configuration uses almost 500 LUTs and 400 FFs more than

the 2. The 8 use almost 1000 LUTs and 800 FFs more than

the 4 and finally, the 16 use almost 2000 LUTs and 1600 FFs

than the 8.

These results prove that the approach of including only

cyclic shift permutations in the parallel technique constitutes

an attractive solution, which leads to a scalable parallel

accelerator architecture effectively supporting the scheduling

requirements of any size TDMA data center.

167

TABLE I
FPGA XILINX VC707 RESOURCES UTILIZATION FOR THE PARALLEL

ACCELERATOR WITH 2,4,8 AND 16 PROCESSING ELEMENTS.

Number of
Processors

Architecture’s
LUTs

Architecture’s
Flips Flops

Barrel Shifter
LUTs

Fmax
(MHz)

2 2150 1432 18 197.24
4 2660 1828 72 198.81
8 3672 2632 216 202.02
16 5600 4240 576 196.46

VI. RESULTS

Figure 8 depicts the execution times required by the imple-

mented accelerator configurations of 2, 4, 8 and 16 processing

elements for a variety of loads and densities (defined in

subsection V-C) and two network configurations: 512 and 1024

ToRs. The first nine curves show the experimental results for

the 512-ToR network and the last three for the 1024-ToR

network. For sake of comparison we have used the same

operating frequency in all the experiments: 196 MHZ (5.1

nsec clock). We focus on densities and loads that are common

to the data centers operation. These are loads that are up to

25% and we include the 50% load to show the architecture’s

performance in extreme cases. The densities range from 1%
to 25%.

The first significant result comes from the observation that

in all the experiments the speedup, using the 2 processing

element configuration as the comparison basis, achieved by the

architecture follows the N/log2N Ahmdal’s law, where N is

the number of processing elements. For example, in the curve

i) the execution times are 2.13, 1.01, 0.6 and 0.44 msec for the

2, 4, 8 and 16 processing element architectures respectively.

All the other eleven curves report results that follow similar

shape and thus, they show the same speedup for processing

all the examined cases of loads and densities in both network

configurations (512 and 1024 ToRs).

The second notable result is that the execution times in-

crease linearly with respect to either the load or the density

of the communication requests in the data center. This fact

provides the advantage of a predictable performance of the

scheduler accelerator in the majority of the cases. Finally, for

the two different sized networks, the execution times follow

the Traffic Matrix size: for the cases of densities 1.5% and

4% and load 10% that were examined for both networks, the

execution times are about four times greater for the 1024-ToR

network compared to those of the 512-ToR network.

VII. CONCLUSION

The current paper introduced a scheduler accelerator parallel

architecture for TDMA data centers. The accelerator is based

on a parallel greedy technique and its performance benefits

from the fact that two dimensional arrays can be divided into

blocks and be assigned to the processing elements in a way that

minimizes the communication among the processors. The par-

allel technique leads to scalable parallel architecture achieving

N/log2N speedup, implementation cost proportional to the N

processing elements and effectively supporting the real-time

scheduling decision requests in the data center.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1402946.1402967

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and
flexible data center network,” in Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, ser. SIGCOMM ’09.
New York, NY, USA: ACM, 2009, pp. 51–62. [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592576

[3] D. Alistarh, H. Ballani, P. Costa, A. Funnell, J. Benjamin, P. Watts,
and B. Thomsen, “A high-radix, low-latency optical switch for data
centers,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, ser. SIGCOMM ’15. New
York, NY, USA: ACM, 2015, pp. 367–368. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2790035

[4] H. H. Bazzaz, M. Tewari, G. Wang, G. Porter, T. S. E. Ng,
D. G. Andersen, M. Kaminsky, M. A. Kozuch, and A. Vahdat,
“Switching the optical divide: Fundamental challenges for hybrid
electrical/optical datacenter networks,” in Proceedings of the 2Nd
ACM Symposium on Cloud Computing, ser. SOCC ’11. New
York, NY, USA: ACM, 2011, pp. 30:1–30:8. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038946

[5] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios:
A hybrid electrical/optical switch architecture for modular data
centers,” in Proceedings of the ACM SIGCOMM 2010 Conference, ser.
SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 339–350.
[Online]. Available: http://doi.acm.org/10.1145/1851182.1851223

[6] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun,
T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating
microsecond circuit switching into the data center,” in Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 447–458. [Online].
Available: http://doi.acm.org/10.1145/2486001.2486007

[7] K. Tokas, C. Spatharakis, I. Kanakis, N. Iliadis, P. Bakopoulos,
H. Avramopoulos, I. Patronas, N. Liakopoulos, and D. Reisis, “A
scalable optically-switched datacenter network with multicasting,” in
2016 European Conference on Networks and Communications (EuCNC),
June 2016, pp. 265–270.

[8] Q. Li, S. Rumley, M. Glick, J. Chan, H. Wang, K. Bergman, and R. Dutt,
“Scaling star-coupler-based optical networks for avionics applications,”
IEEE/OSA Journal of Optical Communications and Networking, vol. 5,
no. 9, pp. 945–956, Sept 2013.

[9] J. E. Hopcroft and R. M. Karp, “A n5/2 algorithm for maximum
matchings in bipartite,” in Proceedings of the 12th Annual Symposium
on Switching and Automata Theory (Swat 1971), ser. SWAT ’71.
Washington, DC, USA: IEEE Computer Society, 1971, pp. 122–125.
[Online]. Available: http://dx.doi.org/10.1109/SWAT.1971.1

[10] D. Shah and J. Shin, “Randomized scheduling algorithm for queueing
networks,” CoRR, vol. abs/0908.3670, 2009. [Online]. Available:
http://arxiv.org/abs/0908.3670

[11] X. Lin and S. Rasool, “A distributed joint channel-assignment, schedul-
ing and routing algorithm for multi-channel ad-hoc wireless networks,”
in IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications, May 2007, pp. 1118–1126.

[12] J. A. Corvera, S. M. G. Dumlao, R. S. J. Reyes, P. Castoldi,
N. Andriolli, and I. Cerutti, “Hardware implementation of an
iterative parallel scheduler for optical interconnection networks,” in
Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom,
SOF). Optical Society of America, 2016, p. NeM3B.4. [Online].
Available: http://www.osapublishing.org/abstract.cfm?URI=Networks-
2016-NeM3B.4

[13] www.nepheleproject.eu.
[14] K. Christodoulopoulos, K. Kontodimas, K. Yiannopoulos, and E. Var-

varigos, “Bandwidth allocation in the nephele hybrid optical intercon-
nect,” in 2016 18th International Conference on Transparent Optical
Networks (ICTON), July 2016, pp. 1–4.

168

0,00

0,50

1,00

1,50

2,00

2,50

2 4 8 16

i) Density: 1,5%
Load: 10%

0,00

1,00

2,00

3,00

4,00

5,00

2 4 8 16

iii) Density: 1,5%
Load: 50%

0,00

0,50

1,00

1,50

2,00

2,50

2 4 8 16

iv) Density: 4%
Load: 10%

0,00

2,00

4,00

6,00

2 4 8 16

vi) Density: 4%
Load: 50%

0,00

1,00

2,00

3,00

4,00

5,00

2 4 8 16

vii) Density: 25%
Load: 25%

0,00

2,00

4,00

6,00

2 4 8 16

viii) Density:25%
Load: 38%

0,00

2,00

4,00

6,00

8,00

10,00

2 4 8 16

ix) Den: 25%
Load: 50%

0,00

0,50

1,00

1,50

2,00

2,50

2 4 8 16

ii) Density: 1,5%
Load: 20%

0,00

1,00

2,00

3,00

2 4 8 16

v) Density: 4%
Load: 20%

0,00

2,00

4,00

6,00

8,00

10,00

2 4 8 16

x) Density: 1,5%
Load: 10%

0,00

5,00

10,00

15,00

2 4 8 16

xi) Density: 4%
Load: 10%

0,00

10,00

20,00

30,00

40,00

2 4 8 16

xii) Density: 25%
Load: 25%

Traffic Matrix Size: 512 x 512

Traffic Matrix Size: 1024 x 1024

msec

PEs

msec msec

msec msec msec

msec msec msec

msec msec msec

PEs PEs

PEs PEs PEs

PEs PEs PEs

PEs PEs PEs

Fig. 8. Execution Time for the 2, 4, 8 and 16 processing element Parallel Architectures for a variety of densities and loads. On the Horizontal axis appear
the number of processing elements and on the Vertical axis the execution times in msec.

169

