
Efficient Bandwidth Allocation in
the NEPHELE Optical/Electrical

Datacenter Interconnect
K. Christodoulopoulos, K. Kontodimas, A. Siokis, K. Yiannopoulos, and E. Varvarigos

Abstract—The NEPHELE data center interconnection
network relies on hybrid electro-optical top-of-rack
switches to interconnect servers over multi-wavelength
optical rings. The bandwidth of the rings is shared, and
an efficient utilization of the infrastructure calls for co-
ordination in the time, space, and wavelength domains.
To this end, we present offline and incremental dynamic re-
source assignment algorithms. The algorithms are suitable
for implementation in a software defined network control
plane, achieving efficient, collision-free, and on demand
capacity use. Our simulation results indicate that the pro-
posed algorithms can achieve high utilization and low
latency in a variety of traffic scenarios that include hot
spots and/or rapidly changing traffic.

Index Terms—Dynamic resource allocation; Matrix
decomposition; Scheduling; Slotted and synchronous oper-
ation; Time-wavelength-space division multiplexing.

I. INTRODUCTION

T he widespread availability of cloud applications to bil-
lions of end users and the emergence of platform- and

infrastructure-as-a-service models rely on concentrated
computing infrastructures, the data centers (DCs). DCs
typically comprise of a large number of interconnected
servers running virtual machines. As traffic within the
DC (east–west) is higher than incoming/outgoing traffic,
and both are expected to continue to increase [1], DC
networks (DCNs) play a crucial role. High throughput, scal-
able, and energy/cost efficient DCN networks are required
to fully harness DC potential.

State-of-the-art DCNs are based on electronic switching
in fat-tree topologies [2]. Fat-trees tend to underutilize re-
sources, require a large number of cables, and suffer from

poor scalability and low energy efficiency [3,4]. To reduce
cost, fat-trees are typically oversubscribed (e.g., 1:4), and
do not offer full bisection bandwidth (FBB) that may be
needed for certain applications. Application-driven net-
working [5,6], an emerging trend, would benefit from a
network that flexibly allocates capacity where needed.

To cope with the shortcomings of fat-trees, many recent
works proposed hybrid electrical/optical DCN, a survey of
which is presented in Ref. [7]. The authors of Refs. [8,9] pro-
posed a DCN in which heavy long-lived (elephant) flows are
selectively routed over an optical circuit switched (OCS)
network, while the rest of traffic goes through the elec-
tronic packet switched (EPS) network. These solutions rely
on the identification of elephant flows, which is rather dif-
ficult, while it was observed that such long-lived heavy
flows are not typical [4], making it difficult to sustain high
OCS utilization. Instead, a high connectivity degree is
needed [4]. To enable higher connectivity, Ref. [10] pro-
posed and prototyped a very dense hybrid DCN that also
supports multi-hop connections, along with a custom built
control stack. The authors measured the total delay, includ-
ing control plane and OCS hardware reconfiguration (mi-
croelectromechanical system—MEMS—switches), to be of
the order of hundreds of milliseconds. Multi-hop routing
was exploited anew as shared optical circuits in
Ref. [11], where an OpenFlow (OF)-based control plane
was developed [12], showing that circuit sharing reduces
the effect of slow OCS reconfigurations.

Other proposed DC interconnects completely lack electri-
cal switches. Proteus, an all-optical DCN architecture based
on a combination of wavelength selective switches (WSSs)
and MEMS was presented in Ref. [13]. Again, multi-hop
is used to achieve high utilization. However, it is still hard
to compensate the MEMS slow reconfiguration times
through sophisticated control. References [14,15] introduced
hybrid OCS and optical packet/burst switching (OPS/OBS)
architectures, controlled using SDN. Various other architec-
tures based on OPS/OBS were proposed [7,16] (and referen-
ces therein). However, OPS/OBS technologies are not yet
mature, so the current target could be small-scale networks
with limited upgradability potential.

The authors of Ref. [17] presented a hybrid DCN architec-
ture called Mordia, which uses WSS to provide switching
times of 11.5 μs. Mordia operates in a dynamic slotted man-
ner to achieve high connectivity. However, the scalability ofhttps://doi.org/10.1364/JOCN.9.001145
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Mordia is limited as it uses a single wavelength division
multiplexing (WDM) ring whose capacity can accommodate
only a few racks, while resource allocation algorithms
exhibit high complexity and cannot scale to large DCs.

The European project NEPHELE is developing an
optical DCN that leverages hybrid electrical/optical
switching with SDN control to overcome current datacen-
ter limitations [18]. To enable dynamic and efficient shar-
ing of optical resources and collision-free communication,
NEPHELE operates in a synchronous slotted manner.
Timeslots are used for rack-to-rack communication and
are assigned dynamically, on a demand basis, so as to
attain efficient utilization, leading to both energy and cost
savings. Moreover, multiple wavelengths and optical
planes are utilized to implement a scalable and high
capacity DC network infrastructure.

The NEPHELE network relies on WSSs, which are faster
than the MEMS used in Refs. [8–11] and more mature than
the OPS/OBS used in Refs. [14–16]. The fast switching times,
along with the dynamic slotted operation, provide high and
flexible connectivity. Compared toMordia [17], which also re-
lies onWSSs,NEPHELE ismore scalable: it consists ofmulti-
ple WDM rings, re-uses wavelengths, and utilizes cheap
passiveroutingcomponentsandscalableschedulingschemes.
The latter is the major contribution of this paper, which
presents fast scheduling algorithms to meet NEPHELE dy-
namic reconfiguration requirements.

Regarding resource allocation, scheduling problems
similar to those addressed in this paper were studied in the
past for satellite and ATM switches [19–26]. Indeed, one
can view the entire NEPHELE multi-ring DCN as a large
distributed switch. The key difference of our work is that
we consider huge network installations and dynamic time-
divisionmultiplexing (TDM) operation; thus strict optimality
is not the objective, but we rather target low complexity.

We also encounter certain internal collision constraints that
are particular to the NEPHELE architecture (Section VI),
and thuswe need to extend previous TDM algorithms appro-
priately.Apart from[17],which considersdynamicTDMoper-
ation, a somehowrelevantalgorithmicwork is [27],where the
authors present an integrated optical network-on-chip (NoC)
basedonaring topologyandmicro-ringresonators (MRs).The
keydifferencewiththeNEPHELEnetworkis thatMRstarget
NoC and small networks, where propagation and control
plane delays are negligible. Thus, scheduling does not take
place in periods, as in NEPHELE, but on a per slot basis as
in electronic switches [28].

The remainder is organized as follows. In Section II,
we describe the NEPHELE architecture. In Section III, we
describe the dynamic resource allocation problem. In
Section IV we provide a set of algorithms to solve it. In
Section V we analyze the resource allocation constraint
induced by the NEPHELE architecture. In Section VI we
evaluate the performance of the proposed algorithms.
Finally, we provide our conclusions in Section VII.

II. NEPHELE ELECTRICAL/OPTICAL INTERCONNECT

NEPHELE is a hybrid electrical/optical DCN architec-
ture, built out of POD and top-of-rack (TOR) switches.
Figure 1 describes the NEPHELE DCN. The NEPHEL
DCN is divided into P pods1 of racks. A pod consists of I
POD switches and W TOR switches, interconnected as
follows: each TOR switch listens to a specific wavelength
(thus, by design, the number of wavelengths equals the
number W of racks in a pod) and has I ports. Each port
is connected to a different one of the I POD switches. A rack
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Fig. 1. NEPHELE DCN architecture.

1The term “pod” refers to the cluster of racks, and “POD” to a NEPHELE pod
switch.
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consists of S (computer, storage, or memory) servers. The
TOR is a hybrid electrical/optical switch and each of the
S servers of the rack connects to it via a link. Thus, a
TOR switch has S ports facing “south” to the servers.

POD switches are interconnected viaWDM rings to form
“optical planes.” An optical plane consists of a single POD
switch per pod (for a total of P POD switches in the DCN)
connected with R fiber rings. Each fiber ring carries WDM
traffic over W wavelengths (W, by design, equals the num-
ber of racks in the pod), propagating in the same direction.
There are I identical and independent/parallel (in the
sense that traffic entering a plane stays in it until the
destination) optical planes. In total, there are I · P POD
switches, W · P TOR switches, and I ·R fiber rings.

We now explain how communication is performed in the
NEPHELE DCN (Fig. 1). The key routing concept is that
each TOR switch listens to a specific wavelength (out of
W available), and wavelengths are re-used among pods.
The NEPHELE TORs use tunable transmitters that are
tuned according to the desired destination. Each TOR em-
ploys virtual output queues (VOQs) per TOR destination
(W · P VOQ per TOR) to avoid head-of-line blocking.

Traffic in the form of an optical signal originating from
a port (plane) of a TOR switch enters a POD switch and
is switched through a fast 1 × 2 space switch according to
locality: if the traffic is destined to a TOR in the pod
(intra-pod), it remains within the POD switch; otherwise,
it is routed to the rings and to the next POD switch. Local
intra-pod traffic enters aW × 1 power combiner, located after
the 1 × 2 space switch, and then a 1 ×W arrayed waveguide
grating (AWG). The AWG passively routes the traffic, de-
pending on the used wavelength, to the desired destination.

Inter-pod traffic is routed via the fast 1 × 2 switch toward
a W × R cyclic AWG (CAWG) followed by couplers that
combine the CAWG outputs into the R fiber rings. The
W ×R CAWG has a passive routing functionality, with the
incoming signal being routed to the output port (ring):

r � �ws �wd − 1�modR; (1)

where 1 ≤ ws ≤ W is the input port (the index of the source
rack in the source pod, which equals its listening wave-
length), 1 ≤ wd ≤ W is the wavelength that has to be used
to reach the specific destination (thus, also equal to the in-
dex of the destination rack in the destination pod), and
“mod” denotes the modulo operation. In the simple (not
cyclic) 1 ×W AWG, the output depends only on the used
wavelength. So, the traffic enters the ring according to
the CAWG function, propagates in the same ring through
intermediate POD switches, and is dropped at the destina-
tion pod. These routing decisions are applied by setting ap-
propriately the wavelength selective switches (WSSs) in
the related POD switches. The WSSs can select whether
traffic passes through or drops on a per-fiber, per-
wavelength, and per-slot basis. Thus, each intermediate
POD sets the corresponding WSS to the pass state, while
at the destination the related WSS is set to the drop state.
The drop ports of all the WSSs—corresponding to all the
rings—are connected to a power combiner and a 1 ×W

AWG. So again, the traffic once dropped is passively routed
to the desired TOR according to the wavelength used.

Following the above, wavelengths are statically assigned
to racks, to simplify optical routing, and are re-used for ef-
ficient operation. Conflicts on the WDM rings are avoided
in the time and space (plane) domains. Regarding the time
domain, NEPHELE operates in a synchronous slotted
manner that closely resembles the operation of a single
(huge and distributed) time-division multiple access
(TDMA) switch. In particular, NEPHELE maintains the
timeslot component of TDMA, but timeslots are not stati-
cally assigned; instead, a central scheduler dynamically
assigns them based on traffic needs, enabling efficient
utilization of the resources. However, making scheduling
decisions on a per-timeslot basis is prohibitive, due to high
communication and processing latency. Instead, it is both
more efficient and less computationally demanding to
perform resource allocation periodically, so that scheduling
decisions are made for periods of T timeslots; this approach
facilitates the aggregation and suppression of monitoring
and control data and also absorbs traffic peaks.

From the control plane perspective, configurable compo-
nents are the tunable transmitters (I per TOR switch), the
1 × 2 optical switches (W per POD switch), and the WSSs
(R per POD switch). The timeslot duration is lower
bounded by the slowest component, which is the WSS with
a switching time of about 10 μs [17]. This is reserved as a
guardband and the timeslot is taken to be 0.2 ms, so that
the network exhibits 95% efficiency. The amount of data
transmitted during a timeslot equals the wavelength
transmission rate times the timeslot duration (i.e.,
0.2 ms × 10 Gbps � 2 Mbits) and will be referred to as a
data unit (DU). This is also the switching granularity of
a NEPHELE DCN. A reference number for T is 80
timeslots, corresponding to a period of 16 ms.

The existence of I parallel planes provides an additional
domain, the space, to resolve conflicts: each timeslot of each
plane can be independently allocated. We will refer to a
timeslot/plane combination as a generic (time)slot, imply-
ing that the space and time domains are interchangeable in
NEPHELE.

Variations of the above described baseline NEPHELE
architecture include cases where each TOR does not listen
to a specific wavelength. One such variation will be given in
Section V. Still, the NEPHELE routing function remains
similar: the transmitter needs to select the appropriate
wavelength, which is pre-calculated based on certain
parameters (the source, the destination, the plane, etc.,
as opposed to only the destination in the baseline architec-
ture), while the WSSs are configured according to that
wavelength mapping.

Since a CAWG is used to route the W wavelengths on R
rings, we must have W ≥ R in order for the CAWG to be
able to use all R egress ports. This is a system constraint.
We can also derive the required conditions for achieving
FBB assuming that the NEPHELE network is nonblocking
(see Sections IVand V). We say that a DC interconnect has
FBB if for any bisection of the servers in two equal parti-
tions, each server of one partition is able to communicate at
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full rate with any server of the other partition. Since a TOR
supports S servers, the number of PODs connected to a
TOR must be at least I ≥ S, so that all servers of a TOR
can communicate with servers outside their rack.
Considering the whole network, there are P ·W · S server
ports, whereas the overall capacity in the POD-to-POD net-
work is I · R ·W. Thus, for FBB, we need to have
I ·R ·W ≥ P ·W · S �> I ·R ≥ P · S. Assuming I � S, the
FBB requirement becomes R ≥ P. More flexibility is
obtained by increasing the number of planes I. In the
presence of traffic locality, the FBB requirement can be re-
laxed to support larger DCs. Table I presents target values
satisfying the above constraints (including FBB) for a fully
fledged NEPHELE network using commodity off-the-shelf
(COTS) equipment and a reference DC size (32K servers).

III. BANDWIDTH ALLOCATION IN NEPHELE

NEPHELE architecture exploits the SDN concept that
decouples data and control planes through open interfaces,
enabling programmability of the networking infrastruc-
ture. NEPHELE utilizes an optical network with I optical
planes,R fibers/plane andW wavelengths/fiber to intercon-
nect the TOR switches in P pods. As discussed above, the
network operates in a slotted and synchronous manner.
A key functionality of the NEPHELE SDN controller is the
coordination of the networking resources usage, including
the timeslot/plane dimension. Thus, an important building
block of the SDN controller is the scheduling engine, which
allocates resources to communicating TOR pairs in a
centralized, periodic, and on-demand manner.2

Recall that the number of racks per pod is equal to the
number of wavelengths, and each rack listens to a specific
wavelength. A TOR switch s is thus defined by a unique
pair s � �ps; ws�, where ps, 1 ≤ ps ≤ P, is the index of the
pod it belongs to, and ws, 1 ≤ ws ≤ W, is the rack index
within the pod (ws is also the wavelength on which TOR
s receives data). It will sometimes be convenient to re-
present the TOR switch by the scalar index s �
ps · �W − 1� �ws instead of the pair representation
�ps;ws�; as the mapping between the two representations
is one-to-one, we will use, with a slight abuse of notation,
the same symbol s to stand for the TOR itself, the scalar
index, and the pair representing it.

We assume that a Data period consists of T timeslots,
and we denote by Q�n� the queue matrix for period n.
The queue matrix Q�n� is of size �W · P� × �W · P�, and
element Qsd�n� corresponds to the number of DUs that
are queued at the start of period n at source TOR s and

have as destination TOR d, with s � ps · �W − 1� �ws,
d � pd · �W − 1� �wd, 1 ≤ ws;wd ≤ W, and 1 ≤ ps; pd ≤ P.
That is, Qsd�n� is the number of DUs in VOQ �s; d� at
the start of period n. Since the scheduling problems of
the different wavelengths are not independent, we will
avoid breaking this matrix per wavelength.

Two operation modes are envisioned for the NEPHELE
network: (i) application-aware and (ii) feedback-based net-
working. The former approach [5,6] assumes that applica-
tions communicate to the NEPHELE SDN controller
(or via the DC orchestrator) their topology and traffic re-
quirements. In that case, the queue matrix is constructed
from input from the applications. The latter, feedback-
based, mode assumes that the central controller collects
(monitors) data from the TOR queues [9] to build the queue
matrix. We can also have a hybrid application-aware and
feedback-based network. In the following we focus on the
feedback-based approach, which is the hardest of the
two from the control and scheduling viewpoint. The analy-
sis and the proposed algorithms are applicable with minor
changes to application-aware and hybrid operation.

Recall that matrix Q�n� records the queue sizes at the
start of period n. We denote by A�n� the matrix of arrivals
at the queues during period n and by S�n� the schedule
calculated for period n. Element Qsd�n� denotes the DUs
in the �s; d� queue at the start of period n, element
Asd�n� the DU arrivals during period n, and element
Ssd�n� the DUs scheduled to be transferred from s to d dur-
ing period n. We will describe in the next section the way
schedule S�n� is calculated.

Under feedback-based operation, the NEPHELE net-
work operates in two parallel cycles:

1) data communication cycles of T timeslots (also referred
to as a Data period), where the actual communication
between TORs takes place, and

2) resource allocation cycles of duration C (measured in
Data periods of T timeslots), where control information
is exchanged. If the duration of the resource allocation
process is not fixed, C is an upper bound on it.

Resource allocation cycle n corresponds to Data period n,
and computes the schedule S�n� to be used during that
period. Note, however, that the schedule is computed based
on information that was available C periods earlier than
the Data period to which the resource allocation cycle cor-
responds (and is applied). Thus, S�n� is a function of
Q�n − C�, i.e.,

S�n� � f �g�Q�n − C���; (2)

where Q̂�n� � g�Q�n − C�� is the function that creates the
estimated queue matrix Q̂�n� from Q�n − C� upon which
the schedule is calculated, and f is the scheduling algo-
rithm. When C > 1 period (control delay larger than the
Data period), a new resource allocation cycle still starts
every Data period. So, there are C resource allocation
cycles (or virtual control planes) running in parallel. For

TABLE I
FULLY FLEDGED NEPHELE NETWORK PARAMETERS

Parameter W P S I

Value 80 20 20 20

2In the following, the terms “bandwidth allocation,” “resource allocation,”
and “scheduling” will be used interchangeably.
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determining the schedule S�n� to be used during Data
period n:

a) the traffic matrix engine of the SDN controller collects
the queue sizes from the TORs to build Q�n − C� and
runs the queue estimation algorithm g to create the
estimated queue matrix Q̂�n� � g�Q�n − C��,

b) the scheduling engine of the SDN controller runs algo-
rithm f to calculate the schedule S�n� � f �Q̂�n��, and

c) the SDN controller communicates the scheduling out-
put S�n� to the NEPHELE data plane devices (POD
and TOR switches) to be used during Data period n.

Figure 2 shows the NEPHELE resource allocation and
data cycles (control and data plane, respectively). As dis-
cussed, there is a delay between the two cycles: schedule
S�n� applied in Data cycle n is computed based on queue
matrix Q�n − C�, since it takes C periods to compute and
reach the data plane devices. The queue evolution is
described by

Q�n� 1� � Q�n� � A�n� − S�n�; (3)

where S�n� � f �g�Q�n − C���. The valueC does not affect the
achievable throughput, as long as scheduling decisions are
efficient (more on that later), but affects the traffic delay.
The control plane delay C depends on many factors, on
the execution time of the scheduling algorithm, and the de-
lay of the control protocol carrying information from TORs
to the SDN controller (if monitoring is assumed) and from
the SDN controller to the data plane devices. Both delays
depend on the network size and the choice of the Data
period T.

For scheduling decisions to be efficient, the scheduling
matrix S�n�, computed based on an estimated queue ma-
trix Q̂�n�, which in turn is calculated by Q�n − C�, should
be a “good” scheduling to be used during Data interval
n. This is true when Q̂�n� is a good approximation of
Q�n�. For slowly and medium changing traffic, we expect
calculations made for previous periods to be valid. In
estimating Q̂�n� from Q�n − C�, it is possible to also use
statistical predictions, filters, and other (notably applica-
tion-aware) methods to improve performance. Moreover,
it is possible for the scheduler to fill unallocated resources
in S�n� by opportunistic transmissions, which can have col-
lisions or be collision free (e.g., nodes agree to use slots in
lexicographic order, mimicking static TDM, which under
heavy load is efficient). Finally, the overall scheme is
“self-correcting”: if some queues are not served for some

periods due to poor scheduling and their size grows due
to new arrivals, this will be communicated with some delay
to the controller, and the queues will eventually be served.
A study of the effect of the control plane delay and ways to
mitigate it is part of our future plans.

In the following we will focus on the scheduling problem
in the NEPHELE network. We start from the estimated
queue matrix Q̂�n� and devise fast algorithms to calculate
the schedule S�n� [function f in Eq. (2)]. For reference we
can assume that we calculate the estimated queue matrix
[function g in Eq. (2)] as Q̂�n� � A�n − C − 1� � Q̂�n − 1�−
S�n − 1�, where we acknowledge that due to control plane
delay C, the central scheduler has access to (delayed)
arrival information A�n − C − 1� instead of A�n�. This corre-
sponds to the case where the schedule S�n� calculated on
Q̂�n� serves the arrived traffic A�n − C − 1�, plus a correc-
tion equal to traffic not served in the previous
period Q̂�n − 1� − S�n − 1�.

We now describe the form of the schedule S�n�. The
scheduling engine provides the TOR pairs that communi-
cate during each timeslot and for each optical plane within
the upcoming Data period. Note that wavelengths and
rings are dependent resources; the selected wavelength
is determined by the destination, and the ring depends
on the source and destination according to Eq. (1). Thus,
in NEPHELE the allocated resources are the timeslots
and the optical planes (I · T in total), or the generic slots,
as stated previously.

The scheduling algorithm takes the estimated queue
matrix Q̂�n� and decomposes it (fully or, if not possible, par-
tially) into a sum of I · T permutation matrices P�n; g�,
g � 1;…; I · T, each corresponding to a generic slot. A per-
mutation matrix is binary of size �W · P� × �W · P�; an entry
Psd�n; g� equals “1” if a DU is to be transferred from TOR s
to TOR d during the gth generic slot of period n, and “0”
otherwise. In other words, Psd�n; g� identifies if one DU
at the d-VOQ of TOR s will be transmitted during the
gth generic slot of period n.

A permutation matrix determines a configuration of the
network for a specific generic slot. For the communication
to be contention free, the scheduling constraints SC1, SC2,
and SC3 that are summarized in Table II should be satis-
fied. In particular, the first two constraints, SC1 and SC2,
ensure that each TOR transmits to and receives from at
most one TOR per generic slot. Constraints SC1 and SC2

Fig. 2. NEPHELE resource allocation and data cycles.

TABLE II
SCHEDULING CONSTRAINTS (SC)a

Constraint
ID Description

SC1
P

sPsd�n; g� ≤ 1
SC2

P
dPsd�n; g� ≤ 1

SC3 Psd�n; g� � Ps0d0 �n; g� ≤ 1, for ps < ps0 < pd or
ps < pd0 < pd, and �ws0 −ws�modR � 0

aPsd�n; g� � 1, s � p:
s�W − 1� �ws, and d � pd · �W − 1� �wd

indicate that one DU is scheduled for transfer from source TOR
�ws; ps� to destination TOR �wd; pd� in the gth generic slot of
period n.
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are relevant to all TDMA-like architectures and are readily
enforced by the decomposition process.

The third constraint, SC3, is related to the (not nonblock-
ing character of the) architecture, and particularly, it is a
result of the usage of static routed CAWGs as opposed to
dynamically configured components. To better illustrate
SC3, assume that a source TOR �ws; ps� communicates with
a destination TOR �wd; pd�. This communication takes
place over the optical ring that is calculated from
Eq. (1), and it occupies wavelength wd on the ring segment
between ps and pd. If another source TOR �ws; ps0 � within
the aforementioned ring segment (i.e., ps < p0

s < pd) concur-
rently communicates with destination TOR �wd; pd0 �, a
collision will occur irrespective of the destination pod
(pd0 ), since it occupies the same ring andwavelength. A sim-
ilar contention will occur if the destination pod lies in the
initial ring segment (i.e., ps < p0

d < pd), irrespective of the
source pod. Note that SC3 is alleviated for R ≥ W, which,
however, leads to underutilization of rings. Moreover, the
effect of the lack of the nonblocking property for the archi-
tecture (when seen as a huge switch), or equivalently the
existence of SC3, is small, and will be discussed in
Sections V and VI.

The set P�n; g�, g � 1;2;…; I · T, of permutationmatrices
comprise schedule S�n�, which records information for all
generic slots of period n. The permutation matrices
P�n; g� are stored as sparse matrices, each with W · P
entries. Similarly, S�n� is sparse with I · T ·W · P entries.

IV. SCHEDULING ALGORITHMS

Having described NEPHELE DCN operation, we now
proceed to present a set of NEPHELE scheduling algo-
rithms. We assume that we start with the estimated queue
matrix Q̂�n� and calculate the schedule S�n� [function f in
Eq. (2)]. To target both static and dynamic resource alloca-
tion scenarios, we developed two classes of scheduling
algorithms: (i) offline and (ii) incremental. Offline algo-
rithms, given in Subsection IV.A, take the estimated queue
matrix Q̂�n� and compute schedule S�n� “from scratch.”
Incremental algorithms, given in Subsection IV.C, use
the previous schedule S�n − 1� and update it based on traf-
fic changes to obtain S�n�. Offline algorithms are better
suited for semi-static traffic, take longer to execute, and
achieve better utilization; incremental algorithms are
faster and can handle dynamic scenarios.

A. Offline Scheduling

As discussed above, offline scheduling decomposes
the matrix Q̂�n� into a set of permutation matrices
S�n� � fP�n; g�g, g � 1; 2;…; I · T, without taking into
account the previous decomposition. We start by present-
ing the optimal offline scheduling algorithm.

The decomposition of Q̂�n� can be performed in an
optimal manner following the well-known Hall’s theorem
(an integer version of the Birkhoff–Von Neumann theorem

[24]). We define the critical sum [�HQ̂�n�� � h of matrix
Q̂�n� as the maximum of its row sums and column sums.
Then the following theorem holds:

Hall’s Theorem: An integer matrix of critical sum h can
be written as the sum of h permutation matrices.

The following algorithm calculates the optimal decompo-
sition of matrix Q̂�n�:

1. Find a matrix of nonnegative integers E�n� so that ma-
trixM�n� � Q̂�n� � E�n� is a perfect matrix with critical
sum H�M�n�� � H�Q̂�n�� � h. A perfect matrix has the
sum of each row and each column equal to the critical
sum. An algorithm to obtain E�n� is found in Ref. [21].

2. Treat M�n� as a (bipartite) graph adjacency matrix and
obtain a maximum matching j → p�j�, j � 1; 2;…; P ·W.
This matching can then be represented as a permuta-
tion matrix P�n; i�, whose �j; p�j�� entries are equal to 1,
and all other entries are 0.

3. Find the weight ci as the smallest element of M�n� that
corresponds to a nonzero entry in P�n; i�.

4. Repeat P�n; i� for ci times in the schedule and
update M�n� � M�n� − ci · P�n; i�.

5. IfM�n� is not equal to zero, repeat steps 2–4. Otherwise,
an optimal decomposition for M�n� has been found.

6. Set the entries of the dummy matrix E�n� to zero.

Steps 2–4 are repeated h times at most and we have thatP
ici � h. Note that the decomposition of an integer matrix

as a sum of h permutation matrices is not unique and that
the permutation matrices in the decomposition ofM�n� are
full rank (corresponding to full utilization of the I · T
generic slots), while those in the decomposition of Q̂�n� �
M�n� − E�n� may not be full rank [leaving some generic
slots unused, namely, the entries of E�n�, and available
for opportunistic transmissions]. In general, decomposi-
tions that use a limited number of permutations, each car-
rying a considerable amount of traffic ci, are preferable as
they result in fewer reconfigurations in the NEPHELE
switches.

The preceding algorithm assumes that the critical (row
or column) sum is constrained, but this will not always be
the case. The arrival matrix A�n� corresponds to traffic cre-
ated by the servers and aggregated at the related TOR
switches in period n. Since one link connects a server to
the TOR, the server sends to its TOR switch at most 1
DU during a timeslot. Therefore, the row sums of A�n�
are at most S · T. Some of A�n� ’s column sums, however,
may be larger than that, e.g., in the presence of hotspot des-
tinations. Note that the capacity connecting a TOR to the
destination servers can transfer S · T DU, and this is the
same for all DCNs. So hotspot problems, where traffic
toward some TORs (columns of A) exceeds the available
capacity, are present in all DCNs and not only in
NEPHELE.

We could, in principle, devise flow control mechanisms
to guarantee that the critical sum of A�n� satisfies
H�A�n�� ≤ S · T. Using an entry flow control mechanism
between servers and source TORs, like the “stop and go”
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queueing proposed in Ref. [29], which limits (smoothens)
the entry of DUs toward the destinations, we can enforce
the column sum to be less than S · T. In particular, each
source TOR can check the destination TOR d of the pack-
ets forwarded to it by the source servers and, through a
backpressure mechanism, guarantee that packets equiva-
lent to at most �S:T�∕�W:P� DUs are destined for each des-
tination during a period of duration T. Such a source flow
control mechanism, however, may be too restrictive, unnec-
essarily, and introduce large entry delays, as packets are
queued at the servers, outside the interconnection network.
To relax somewhat the constraint, a credit-based flow con-
trol mechanism can be used at the pod level, where each
source POD is givenWd � �S:T�∕P credits for each destina-
tion TOR d per period, which it can distribute to the TORs
below it that can, in turn, distribute them to the servers.
This would relax considerably the input flow control con-
straints and the corresponding delays at the servers, but
requires a clever mechanism for distributing credits.

Even if a flow control mechanism is not present, the
column sums will be on average ≤S · T, assuming the desti-
nations of packets are uniformly distributed on average.
Actually, the critical sum will be ≤S · T not only on average
but also with high probability, if the network operates at less
than full load. Finally, note that TCP flow control smoothens
the traffic to a given destination. Since the downstream links
from a TOR to the servers can support up to S · T DU per
Data period, the previous condition will tend to hold with
high probability in a DC network that employs TCP.

Based on the previous discussion we conclude that in the
“typical case” the column sums of the arrival matrix A�n�
will be ≤S · T and so will also be its critical sum (since the
row sums are always ≤S · T). In that case, the schedule
S�n�, that is calculated based on Q̂�n� � A�n − C�, assum-
ing S ≤ I, can be chosen so as to completely serve all the
arrivals in A�n − C� in the available I · T generic slots.
Note that in the reference FBB network scenario we as-
sume S � I and so we will interchangeably use S and I
in the following. Thus, in this case, all packets generated
in a Data period will be served C periods later, emptying
the queue from such packets. So the delay in the
NEPHELLE network is upper bounded by C periods when
appropriate input flow control is used, or with high prob-
ability when the load is far enough from full load. Thus, in
the typical case, NEPHELLE provides both full throughput
and delay guarantees.

In themore general case where the critical sum of Q̂�n� is
not bounded by I · T, we stop when we find the first I · T
permutations, while the traffic Q�n� − S�n� that is not
served is fed to produce the estimated matrix for next
period Q̂�n� 1�. Fairness and priority issues can also be
handled with small extensions to the above process without
a requirement for additional flow control.

B. Complexity of Offline Scheduling and Stability

For general traffic, we define the load intensity between
source destination TOR pair �s; d� as

ρsd�A� � E�Asd�∕�I · T�; (4)

whereE�� stands for expected value and 0 ≤ ρsd�A� ≤ 1 for a
FBBNEPHELE network (S � I). The load intensity matrix
P�A� is defined as the matrix with ρsd�A� entries. The row
sums of P�A� are always less than or equal to 1, while for a
stable network (finite queues), the column sums should
also be less than or equal to 1.

Necessary condition for stability: For the NEPHELE
network to be stable, the load intensity matrix P�A� should
be at most a double stochastic matrix.

When the previous condition does not hold, it is impos-
sible to finda schedule to serve the queues ofNEPHELE in
a stable manner. It is thus up to the DC orchestrator to
allocate tasks to servers so that their communication re-
quirements meet this constraint. Our target is to provide
schedules that can serve any (long-term) stable
matrix P�A�.

We define the average network load ρ�A� (also
represented by ρ) for arrival matrices A as the scalar

ρ�A�� ρ�
X
sd

ρsd�A�∕�P ·W��
X
sd

E�Asd�∕�I ·T ·P ·W�; (5)

and 0 ≤ ρ�A� ≤ 1. The quantity ρ · P ·W · I · T equals the
average of the entries of arrival matrix A during a period
(or, equivalently, ρ · P ·W · I is the average number of
arrivals per timeslot and TOR-to-TOR pair).

Besides the load, another parameter that is important in
characterizing the arrival process and the algorithmic com-
plexity is the arrival matrix density δ�A�, which is comple-
mentary to the sparsity of A. In particular, if we define the
indicator function 1��, as 1�x� � 1, when x > 0 and 1,
otherwise, then the density δ�A� of matrix A is defined as

δ�A� � E
�X

sd

1�Asd�
�
∕�W · P�2; (6)

where E�Psd1�Asd�� is the average number of nonzero en-
tries of A and, clearly, 0 ≤ δ�A� ≤ 1. In other words, δ�A� is
the fraction of nonzero entries of A. Then, the number of
nonzero entries M�A� is given by M�A� � δ�A� · �W · P�2.

In the worst case, the optimal algorithm described ear-
lier executes a maximum matching algorithm I · T times
(uniform traffic). Finding a maximum matching can be
time consuming, and even the well-known Hopcroft–
Karp bipartite graph matching algorithm [25] exhibits
complexity of O�M�A� ·

������������
W · P

p
�, whereM�A� is the number

of nonzero elements in A. The number of different matches
is ρ · I · T, and thus the complexity of the optimal offline
algorithm is O�ρ · δ · I · T · �W · P�52�.

An indicative example of the execution time required for
optimal decomposition with the Birkhoff–Von Neumann
andHopcroft–Karp algorithms is shown in Fig. 3, for a fully
fledged NEPHELE network (parameters listed in Table I).
The algorithm was developed in MATLAB and the simula-
tions were performed on an Intel Core i5 laptop. Figure 3
plots the average execution time of the optimal decompo-
sition algorithm against the load ρ and density δ, which
are shown to range from tens of seconds to minutes.
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In these simulations, the traffic was created as follows: at
each period, each source TOR communicated with δ ·W · P
uniformly chosen TOR destinations by transmitting a
total number of ρ · I · T DUs.

Based on the above result, and given the size of a fully
fledged FBB NEPHELE DCN (Table I), we deduce that,
even with an optimized software and hardware environ-
ment, the optimal algorithm would only be viable under
a static resource allocation scenario, where traffic remains
unchanged for prolonged periods. The requirement for
dynamic resource allocation can be pursued via
non-optimal algorithms that employ maximal rather than
maximum matchings, at the expense of blocking at high
loads. To this end, we also developed faster offline heuris-
tics of reduced complexity and performance quite close to
the optimal. In particular, we developed a greedy offline
algorithm of complexity O�ρ · �W · P�2 · I · T�, which is lin-
ear in the size of the problem [note that the number of
DUs to be scheduled is O�ρ · �W · P�2� and the number of
resources is O�I · T�]. For brevity, we do not discuss this
algorithm, as it still cannot meet dynamic resource allo-
cation requirements, but describe a variation of it in
the next subsection. To further reduce scheduling com-
plexity, we have to exploit the variations (temporal and
spatial) of traffic, as is done in the incremental scheduling
algorithms of the next subsection.

C. Incremental Scheduling Algorithms for Locality
Persistent Traffic

Itisevidentfromthepreviousresultsthatofflinescheduling
isnot suitable forbursty traffic.Measurements incommercial
DCs indicate that application traffic can be relatively bursty,
with flows activating/deactivating within milliseconds [4].
Although traffic can be bursty, it tends to be highly locally per-
sistent: a server tends to communicate with a set of destina-
tions that are located in the same rack or the same cluster/
pod [4]. This is due to the way applications are placed in
DCs, each occupying only a small fraction of the DC.

TOR switches in NEPHELE aggregate the flows of the
servers in a rack, smoothening out the burstiness of

individual flows, especially considering locality persistent
traffic. To formally define locality persistency, we define the
arrival matrix difference as DA�n� � A�n� − A�n − 1�, the
load ρ�jDA�n�j�, and the density δ�jDA�n�j� of the difference
by replacing A with jDAj in Eqs. (5) and (6), where j · j
stands for the entrywise absolute value.

Locality Persistency Property: holds if

δ�jDA�n�j� ≪ 1: (7)

We also define the estimated queue matrix difference as
DQ̂�n� � Q̂�n� − Q̂�n − 1�. Note that when arrivals have the
locality persistency property [i.e., Eq. (6) holds], then, in
view of the Section III discussion, we also expect
δ�jDQ̂�n��j� ≪ 1. For example, in the typical case where
Q̂�n� � A�n − C − 1� � Q̂�n − 1� − S�n − 1�, the persistency
property of A also holds for the estimated matrix Q̂.

Motivated from this observation, we propose and inves-
tigate incremental scheduling, i.e., rely on the previous
schedule to calculate the new one. The expected benefit
is that we need to update only specific elements of the per-
mutation matrices of the decomposition of Q̂�n� 1�, corre-
sponding to traffic that has changed, but there is no need to
modify the rest of the elements.

To be more specific, let Q̂�n� be the estimated queue
matrix and S�n� be the schedule produced at period n. To
compute schedule S�n� 1� for the next period n� 1 with
estimated queue matrix Q̂�n� 1�, we perform the
following:

1. Compute DQ̂�n� � Q̂�n� 1� − Q̂�n� [Fig. 4(b)].
2. Split DQ̂�n� into D��n� and D−�n�, where
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Fig. 3. Average execution time of optimal decomposition
algorithm as a function of load ρ and arrival matrix density δ.

Fig. 4. Concept of incremental scheduling.
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• D��n� denotes the matrix consisting only of the positive
entries of difference matrix DQ̂�n�, and

• D−�n� denotes the matrix consisting only of the negative
entries of difference matrix DQ̂�n�.

3. Use algorithm A1 to free entries of S�n� according to
matrix D−�n� and obtain the half-filled schedule, de-
noted as S0�n� 1� [Fig. 4(c)].

4. Use algorithm A2 to add entries in S0�n� 1� (half-filled
schedule) according to D��n� to obtain the current
period’s schedule S�n� [Fig. 4(d)].

Algorithm 1: Linear Greedy Algorithm
Given: D��n�, S0�n� 1�, TC�n�, RC�n�, P, W, T, I
Return S�n� 1�, TC�n� 1�, RC�n� 1�
1: S�n� 1� � fP�n� 1; g�g ← S0�n� 1�;
2: TC�n� 1� ← TC�n�, RC�n� 1� ← RC�n�;
3: for s ← 1 to P ·W do
4: for d ← 1 to P ·W
5: slots ← D�

sd�n�;
6: g ← 1;
7: while g ≤ T · I and slots > 0
8: if TCs�n� 1; g� � 0 and RCd�n� 1; g� � 0 then
9: Psd�n� 1; g� � 1;
10: TCs�n� 1; g� � 1; RCd�n� 1; g� � 1;
11: slots ← slots − 1;
12: end if
13: g ← g � 1;
14: end while
15: end for
16: end for

The complexity of incremental scheduling is
O�δ�jDQ̂j� · ρ · I · T · �W · P�2�, where δ�jDQ̂j� ≪ 1 in view of
the persistency property of Eq. (6) and the related
discussion.

The above describes the core of the incremental algo-
rithms. In the first two algorithms that we will present,
we used a greedy algorithm A1 in Step 3 to free entries that
works as follows: by iterating each element of D−�n�, we
find the last permutation matrix of S�n� that serves that
element, and we free that entry (set it to zero). This algo-
rithm frees sequentially the scheduled resources for the
demands whose traffic was reduced, leaving the entries
that satisfy the current traffic. Regarding step 3, we
present threeA2 schemes, each corresponding to a different
incremental scheduling algorithm.

1) Linear-Time Greedy Incremental Heuristic: The
greedy heuristic is a non-optimal algorithm running in
linear time to the size of the problem and the number of
generic slots per period. The greedy heuristic can be used
as an offline or as an incremental algorithm. In the follow-
ing we focus on the incremental case. The algorithm takes
as input the difference traffic matrix DQ̂(n) [or Q̂�n� 1� in
offline]. It follows steps 1–3 described above, so that it finds
the half-filled schedule, denoted as S0�n� 1� and the pos-
itive differencematrixD��n�. By iterating on each non-zero
element of D��n�, it greedily finds the available generic
slots to use. This is done by taking into account constraints
SC1 and SC2, of Table II, which ensure that at each generic

slot a TOR can send to or receive from only one other TOR.
Data structures TC�n� and RC�n� are used to keep track of
these two constraints. In particular, element TCs�n; g� [or
RCd�n; g�] records whether the transmitter (or receiver) at
source s (or destination d, respectively) and generic slot g is
active or not. The pseudo-code of the incremental greedy
algorithm is given in Algorithm 1.

2) Sublinear Greedy Incremental Heuristic: The sublin-
ear greedy algorithm is a variation of the linear greedy
heuristic, but it schedules blocks of DUs instead of DUs.
In particular, an integer k � O�I� is chosen and used to cal-
culate the block estimated queuematrix Q̂k�n� � Q̂�n�

k (in our
implementation we chose k � 5, and I was a multiple of 5).
The purpose of this procedure is to reduce the amount of
load to be scheduled, within a span of T · Ik generic slots,
speeding up the scheduling process roughly by a factor
of k. The block estimated queue matrix is treated as the
estimated queue matrix, while applying the previous
greedy algorithm. The schedule produced by the greedy al-
gorithm is reproduced k times, in order to cover the initial
traffic. As expected, the speedup obtained comes at a cost:
dummy DUs are introduced when the ceiling function is
applied, which are allocated some generic slots, reducing
the resource usage. In particular the load overhead
introduced is

Number of dummy DUs �
X
s;d

�
k ·

�
Q̂s;d�n�

k

�
− Q̂s;d�n�

�
:

(8)

In order for the algorithm to run in sublinear time
(a speedup of roughly k is expected), some filtering has
to be applied to Q̂�n� in such a way that its critical sum
is at most T·I

k after the division, rather than T · I. This proc-
ess takes place in the estimated queue matrix creation
module and requires at least linear time to complete.
These two operations, however, namely, the estimated
queue matrix creation and the scheduling, are performed
by different modules. The queue matrix creation module
can start executing while receiving monitoring informa-
tion; once the block estimated queue matrix is created,
the scheduling algorithm is executed in sublinear time.
We consider this to be technically feasible for the
NEPHELE’s architecture.

3) Randomized Heuristic: A randomized variation of the
greedy heuristic was also implemented for an incremental
resource assignment. Randomized operation avoids the
greedy first find approach, aiming to increase (on average)
the traffic that is served [30]. The algorithm follows an ap-
proach similar to the four steps presented at the start of
this subsection: it receives as input the previous period’s
schedule S�n�, the estimated queue matrix Q̂�n� 1�, and
calculates the schedule S�n� 1�. In the first phase, it
examines the previous period’s permutation matrices
P�n; g� against the traffic they can carry in the new
period and discards any P�n; g� that carries less traffic
than

P
sdQ̂sd�n� 1�∕�I · T�, expecting that a new random-

ized allocation could provide a better solution for the
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corresponding generic slot. The P�n; g� that carry their fair
share of the traffic load are then subtracted from Q̂�n� 1�:

1. If the subtraction of a P�n; g� leaves no negative entries,
then the P�n; g� is kept unaltered in S0�n� 1�.

2. Whenever negative entries occur, the corresponding
entries on both P�n; g� and Q̂�n� 1� are set to zero,
and the updated P�n; g� is used in S0�n� 1�.

The previous steps calculate (i) the updated set of per-
mutations S0�n� 1�, by skipping the calculation of D−�n�,
and (ii) the positive change matrix D��n�, which is the
Q̂�n� 1� matrix after the subtractions. In this case,
D��n� includes the new connections, the old connections
with increased traffic, and the old connections that
belonged to discarded permutations. Then the entries of
D��n� are distributed randomly on S0�n� 1� following
the algorithm below:

1. Select a random destination TOR (column) d of D��n�.
2. Find the m active source TORs for destination d, corre-

sponding to rows fs1; s2;…; smg of the non-zero entries
in column d, and re-arrange them randomly.

3. For each row sk in the randomized arrangement:
a. Find the existing P�n� 1; g� that are available

for the �sk; d� communication (by checking the
related scheduling constraints—using the data
structures TC�n� and RC�n�, as discussed in
Subsection IV.C.1).

b. If the number of available P�n� 1; g� is greater than
the D�

sk;d
�n� entry (i.e., more resources are available

than those required), randomly select the required
number; otherwise select all of them.

4. Repeat steps 1–3 for all columns of D��n�.

Finally, if any traffic remained in D��n� and not all the
I · T permutations are utilized, then the algorithm
performs a final round where it repeats steps 1–4, with
the only difference being that new permutations are
considered to be initially available to all connections.

V. ARCHITECTURE-RELATED CONSTRAINT

The resource allocation problem at hand is quite similar
to scheduling problems for TDM satellite or ATM crossbar
switches [19–23]. Scheduling constraints SC1 and SC2 are
common, but constraint SC3 (Table II) is new and is a result
of specific architecture choices, and particularly of using
static routed (C)AWGs instead of reconfigurable compo-
nents. This design choice, which was decided to keep the
cost and routing complexity low, results in a NEPHELE
DCN (when seen as a huge switch connecting TORs) losing
its nonblocking character even for I � S. In the previous
section, we described algorithms that operate without
taking into account SC3, whose effect is studied here.

To evaluate the performance under the additional con-
straint SC3, we extended the incremental greedy heuristic
Subsection IV.C.1) to account for SC3. The algorithm to be
described is referred to as the ring-segment greedy

heuristic. To be more specific, consider a transmission from
source TOR s � �ws; ps� to destination TOR d � �wd; pd� at
generic slot g (timeslot t over optical plane i), where ps < pd

without loss of generality. Such a communication is repre-
sented in the schedule by Psd�n; g� � 1. Under the baseline
architecture of Section II that uses W ×R CAWGs at the
input of the rings, this communication uses wavelength
wd and ring rsd � ��ws �wd − 1�modR�, according to
Eq. (1). So, the communication from s to d captures the
ring-wavelength resource, indexed

lsd � ��ws �wd − 1�modR� ·W �wd: (9)

Resource lsd is actually captured only for the segment
of the ring that is between pods ps and pd and can be used
by other connections if they use non-overlapping segments
of the ring. SC3 constrains that s to d communication can-
not take place simultaneously with communication from
s0 � �ws0; ps0� to d0 � �wd0; pd0�, with ps < ps0 < pd or ps <
pd0 < pd and wd0 � wd and �ws0 −ws�modR � 0 (see
Table II).

The ring-segment greedy heuristic algorithm keeps
track of the utilization of the ring-wavelength resources
and the specific ring segments utilized. To accommodate
the communication from s to d at generic slot g, we need
to check whether ring-wavelength resource lsd is used be-
tween pods ps and pd. If it is not used, we reserve it to block
any future conflicting communication. The data structure
records for each generic slot g � 1; 2;…; I · T the ring-
wavelength resource l � 1; 2;…; R ·W and the specific ring
segment it uses (P ring segments in the worst case), result-
ing in size O�P ·R ·W · I · T�. This data structure can be
similar to TC�n� and RC�n� used to keep track of SC1
and SC2 (Subsection IV.C.1), which, however, are of size
O�P ·W · I · T�. Specifically, line 8 of the pseudo-code of
Algorithm 1, should also search for maximum P ring
segments, which increases the complexity.

The worst case traffic pattern is obtained when we have
the maximum number of conflicting communication pairs
defined by SC3, and all of them carry maximum traffic.
Regarding the constraint on the overlapping of ring seg-
ments, there are P such conflicting �s; d� pairs for unidirec-
tional traffic (p1 to pP, p2 to p1;…; pP−1 to pP; pP to pP−1),
and since they are in different pods they can have maxi-
mum traffic equal to Q̂sd�n� � S · T. In this case, we require
I � P · S planes to fully serve the worst case traffic. Such
worst case traffic is, of course, highly improbable to occur.
Still, our simulations show that the throughput is affected
even in the average case when considering SC3, while
the execution time increases, since we need to account
for the ring segment utilization.

We developed two solutions to address this problem:
the first extends the incremental greedy algorithm of
Subsection IV.C.1, considering in a more coarse way the
utilization of the ring-wavelength resources, while the
second relies on a variation of the architecture that uses
spectrum-shifted optical planes.
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A. Full-Ring Greedy Heuristic

In the first solution, called the full-ring greedy heuristic
algorithm, communication from s to d is taken to occupy
the entire ring-wavelength resource lsd, i.e., the whole ring
and not only the segment between pods ps and pd. This
reduces the size of the data structure needed to O�R ·W ·
I · T� and improves the execution time over the ring-
segment greedy heuristic discussed above, sacrificing
somewhat the (already lower) throughput performance.

B. Spectrum-Shifted Optical Planes

A problem of the baseline NEPHELE architecture is
that, if two communicating source–destination pairs,
�s; d� and �s0; d0�, conflict over an optical plane, by using
the same ring-wavelength resource lsd � ls0d0 � l, they will
use the same resource l and conflict over all planes. This
problem affects all planes, so we have available only the
time domain (T) to resolve such conflicts, as opposed to
having both the plane and time dimensions (all I · T generic
slots), resulting in lower performance. To address this, we
developed an architecture variation where the optical
planes are spectrum shifted. To be more specific, in the ar-
chitecture of Fig. 1, traffic for destination TOR d � �wd; pd�
always uses wavelength wd. The main idea of spectrum-
shifted optical planes is to make the ring-wavelength in
Eq. (9) depend on plane i and on other source/destination
location parameters. This proposed variation uses the
desired passive components, i.e., (C)AWGs, instead of
replacing them by reconfigurable ones that would
significantly increase the cost, due to their high radix.

The goal is to design all-pair conflict-free optical planes,
so that TOR pairs conflicting on some optical plane do not
conflict on another one. There are various ways to achieve
that, such as permuting the rings between pods, or varying
the CAWG routing function by changing the way CAWGs
are coupled/added to the rings. One such efficient solution
is to replace the 1 ×W AWG connected to the drop ports of
the WSSs with an P ×W CAWG connected as follows: We
connect the drop ports of all the WSSs of plane i and pod p
through the R × 1 power combiner to input port z�i; p�, 1 ≤
z�i; p� ≤ P of the P ×W CAWG. The W output ports of the
P ×W CAWG are connected to the TORs as before. We
make the wavelength wsd�i�, used for communication be-
tween source s � �ws; ps� and destination d � �wd; pd� over
plane i depend on s, d, and i, as opposed to the baseline
architecture where this was fixed and equal to wd.
Considering the routing function of the CAWG, wsd�i�
should satisfy the following condition in order to reach
the desired destination:

�wsd�i� � z�i; pd� − 1�modW � wd; (10)

where wd in this equation indicates only the location of the
destination TOR in the related pod (and not, as previously,
the receiving wavelength), and z�i; pd� is the input port
of the CAWG. The routing function of the CAWG that adds
the traffic to the rings at the source gives the ring used:

rsd�i� � �ws �wsd�i� − 1�modR: (11)

Then, the ring-wavelenth resource of plane i that is used
is

lsd�i� � ��ws �wsd�i� − 1�modR� ·W �wsd�i�: (12)

Consider now another TOR pair communication s0 �
�ws0; ps0� → d0 � �wd0; pd0� on the same plane i. To create con-
flict, this communication has to use the same wavelength
and the same ring with the s → d communication, i.e.,

wsd�i� � ws0d0 ∧ �i��ws �wsd�i��mod R

� �ws0 �ws0d0 �i��modR; (13)

or, equivalently,

z�i; pd� − z�i; pd0 � � �wd −wd0 �modW�ws0 � ws�modR:
(14)

Our goal is to avoid pairs s → d and s0 → d0 to conflict in
any other plane. This can be satisfied if jz�i; pd�−
z�i; pd0 �j ≠ jz�i0; pd� − z�i0; pd0 �j, for all 1 ≤ i0 < I, i0 ≠ i.
Generally, we want that to hold for any conflicting pair
of any plane, i.e., we need the following to hold for all
i; �i0i0 ≠ i�, all pd; pd0 :

jz�i; pd� − z�i; pd0 �j ≠ jz�i0; pd� − z�i0; pd0 �j: (15)

Remember that 1 ≤ z�i; p� ≤ P, since z�i; p� corresponds
to the input port of the P ×W CAWG that the WSSs of
pod p at plane i are connected. For a prime number of pods
P, one choice (along with others) that satisfies Eq. (14) is

z�i; p� � �1� �p − 1� · �i − 1��modP: (16)

For prime P, with the above function we construct P
all-pair conflict-free planes. The number of planes I
required to serve any pattern is then I ≥ P. To see this, as-
sume that we have several conficting pairs on a plane (P is
the maximum number of pairs, as discussed previously),
and each requires the full capacity (all the timeslots) of
the plane. This plane can serve any of those, but the re-
maining pairs conflicting on that plane are not conflicting
on the other I − 1 planes. Thus, if I ≥ P (which also holds for
the reference NEPHELE architecture—Table I), conflicts
can be solved using the plane dimension in addition to
the timeslot dimension. In that case, the entire
NEPHELE network is actually a nonblocking time–
wavelength–space switch.

If P is not prime (in the reference P � 20), the above
function constructs all-pair conflict-free planes equal to
the smallest divisor (= 2 for the reference architecture).
However, even in this case, the conflicts are reduced
substantially. The average performance improves when
the number of conflicting pairs among the planes is small,
and the proposed solution reduces this number. All-pair
conflict-free planes mean that this number is zero, which
results in the best worst case and average performance.
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We rely on simulations to evaluate the performance of our
solution for average traffic.

The extensions needed in the scheduling algorithm to
account for spectrum-shifted planes are straightforward,
and require the calculation of the wavelength based on
the source, destination, and plane. This can be done with
pre-calculated tables and does not affect the complexity. We
also need to use either the ring-segment or the full-ring
heuristic algorithm to keep track of ring-wavelength re-
source utilization. We decided to use the faster full-ring
greedy heuristic in the performance evaluation section.

VI. PERFORMANCE EVALUATION

A. Evaluation Without Architecture Constraint SC3

The proposed incremental scheduling algorithms
were evaluated via simulations for various traffic
scenarios. We assumed a NEPHELE network with
W � 80 racks∕pod, P � 20 pods, S � 20 server ports/rack,
and I � S � 20 optical planes (see Table I), and set T � 80
timeslots. We used a custom traffic matrix generator where
we could control the following parameters [31]:

1. the average network load ρ�A�, defined from Eq. (4) as
the ratio of the total traffic over the total capacity. The
individual TOR loads ρsd�A�were generated as indepen-
dent Gaussian random variables, assuming that a TOR
aggregates a large number of TCP/UDP flows. The
distribution mean was set equal to the desired load,
while its variance was correlated to the load dynamicity
ρ�jDAj�;

2. the load dynamicity ρ�jDAj�, defined as the average
change in traffic between successive periods;

3. the connection density δ�A�, defined from Eq. (6). Low
connection density corresponds to a small number of
destinations per source, thus an increased number of
traffic hotspots. To accommodate the description of traf-
fic patterns of previous works [4], where TORs system-
atically prefer to communicate with peers in specific
pods, or even the same pod, we further distinguished
between intra-POD density δin�A� and inter-POD
density δout�A�. A locality parameter is then defined
as the traffic percentage that is destined within the
same pod over the total load:

l � δin ·W
δin ·W � δout ·W · �P − 1� ;

given that the local POD comprisesW TORs out ofW · P
that are available in total; and

4. the locality dynamicity δ�jDAj�, defined as the average
number of connections that change from active to
inactive and vice versa at each period. Traffic exhibits
locality persistency [Eq. (7)] when δ�jDAj� is low.

To evaluate the proposed algorithms, we developed
a simulator in MATLAB. For each simulation instance,
we chose to vary one parameter, while the rest of the

parameters were set to their default values (Table III).
To focus on the performance of the scheduling algorithms,
we assumed a resource cycle with C � 1, which corre-
sponds to the schedule being calculated within a Data
period. We also assumed the reference case where the es-
timated queue matrix on which the schedule is calculated
based on the arrivals: Q̂�n� 1� � A�n − C� � Q̂�n� − S�n�.
As discussed in Subsection IV.C, this ensures that the per-
sistency property of A is also true for the estimated queue
matrix Q̂.

For each parameter set, we measured a) the additional
average queuing latency, i.e., the average number of peri-
ods a packet remains buffered in addition to the C � 1
period that it takes for the schedule to be calculated, so
as to focus on the efficiency of the algorithm and not of
the whole control cycle, and b) the schedulimg algorithm’s
execution time (s) against the network load. We also mea-
sured the maximum network throughput, defined as the
maximum offered load at which the queues and the latency
are finite. Thus, the maximum throughput indicates the
load that can be transferred by the network under stable
operation. Note that maximum throughput is identified
in the latency/load graphs as the load at which the latency
becomes (assymptotically) infinite.

1) Queuing Latency: Initially, we present the results on
the latency. In the first set of simulations, the examined
parameter is intra-POD density, which is set to 100% for
the results of Fig. 5(a) and to 2.5% for Fig. 5(b); the other
parameters were set to their default values (Table III).
Figure 5(a) shows that the sublinear greedy heuristic
clearly underperforms, as expected, the other two algo-
rithms, resulting in average latency that increases at load
0.7 and becomes (asymptotically) infinite at load 0.8
(= maximum network throughput). The linear greedy heu-
ristic comes next, followed by the randomized heuristic
with slightly better performance. In the results of the sec-
ond set of simulations, shown in Fig. 5(b), the density of
intra-POD connections is set very low to 2.5%. The queuing
latency of all three algorithms start to increase at load
around 0.7. The increase is steeper for the sublinear greedy
heuristic, followed by the linear greedy, and finally by the
randomized heuristic. The latter two algorithms have very
similar performance regarding latency and stability.

Locality considerably impacts the performance. The
greedy and the random algorithms are more efficient when
the matrix is concentrated in small blocks [δin high, heavy
intra-POD traffic—Fig. 5(a)] than when it is spread out
[Fig. 5(b)]. In contast, the sublinear algorithm underper-
forms when locality is high; introducing several dummy

TABLE III
NETWORKING PARAMETERS

Parameter Symbol Value Default

Network load ρ�A� 0.1–0.9 —

Intra-POD connection density δin�A� 100%, 25%, 2.5% 25%
Inter-POD connection density δout�A� 25%, 2.5%, 0.5% 2.5%
Load dynamicity ρ�jDAj� 10%, 1%, 0.1% 1%
Locality dynamicity δ�jDAj� 10%, 1%, 0.1% 1%
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DUs in a small block increases the column sum more than
when traffic and the locations of the dummy DUs are
spread out.

We next examine the effect of the locality dynamicity
parameter δ�jDAj�. When δ�jDAj� � 0.1% [Fig. 6(a)], all
three heuristic algorithms start to induce high latency at
network load of about 0.7. As in the previous cases, the
queuing latency increase with network load is steeper
for the case of the sublinear heuristic, followed by the lin-
ear greedy, and then by the randomized heuristic. This is
more clear at load 0.8, where the sublinear greedy heuristic
is already in the unstable region, while the linear greedy
and the randomized heuristic remain stable until load 0.85.

When the locality dynamicity parameter δ�jDAj� � 10%
[Fig. 6(b)], all three algorithms improve their results by in-
creasing their maximum throughput (latency asymptote
moves to the right). Higher dynamicity reduces the persist-
ency of bad scheduling matrices, improving the perfor-
mance, but as expected, has negative effects on
execution times, as will be discussed in the following.

2) Scheduling Algorithms Execution Times: Next, we
present results on the execution times of the considered
algorithms. We provide four plots for the same parameters
examined in Subsection VI.A.1.

As shown in Fig. 7(a), the algorithms’ performance in or-
der of increasing execution times is randomized, linear

greedy, and sublinear greedy heuristic. As expected, the
average execution times increase with the load. At load
0.8, the randomized heuristic needs an average of 1.5 s
to complete. Next comes the linear greedy heuristic with
an execution time (at 0.8 load) of about 0.7 s, and last comes
the sublinear greedy heuristic with about 0.5 s. These re-
sults were expected from the theoretical complexity analy-
sis given in Section IV. The relative order of the algorithms
with respect to their execution times remains the
same when intra-POD connection density is set to 2.5%
[Fig. 7(b)]. The decrease in the execution times for low
intra-POD density is due to the fewer connections, each
of higher load, which reduces the complexity of all three
algorithms. The execution times for different values of
locality dynamicity parameter δ�jDAj� are depicted in
Fig. 8. As expected, by complexity analysis, execution time
increases as load and locality dynamicity δ�jDAj� increases.

3) Maximum Network Throughput: We now focus on the
maximum network throughput achieved by the scheduling
algorithms, defined as the load at which the queues and the
latency become (asymptotically) infinite and the system be-
comes unstable. The throughput is examined with respect
to two parameters that were not discussed above: (i) the
inter-POD connection density δout and (ii) the load dynam-
icity ρ�jDAj�. The results are shown in Table IV. We see that
the impact of inter-POD connection density δout is quite sig-
nificant, since for dense traffic (δout � 50%), the throughput

Fig. 5. Average queuing latency resulting from the examined
scheduling algorithms, measured in Data periods additional to
the control cycle, for intra-pod density δin equal to (a) 100% (locality
68%) and (b) 2.5% (locality 5%).

Fig. 6. Average queuing latency resulting from the examined
scheduling algorithms, measured in Data periods additional to
the control cycle, for locality dynamicity δ�jDAj� equal to
(a) 0.1% and (b) 10%.

Christodoulopoulos et al. VOL. 9, NO. 12/DECEMBER 2017/J. OPT. COMMUN. NETW. 1157



reaches about 0.97, while for sparse traffic, it drops to
0.85 at most. The reason is similar to the one discussed
for the role of intra-POD density. It should be noted that,
for dense inter-POD connections (δout � 0.5%), the sublin-
ear greedy heuristic is unstable even at low traffic loads,
since it wastes too much capacity. This should be expected,
as small and spread demands result in many entries that
create many dummy DUs, thus wasting network capacity.
Regarding load dynamicity, we consider the cases ρ�jDAj� �
0.1% and ρ�jDAj� � 10%. We observe that this parameter
does not affect substantially the throughput, nor the exe-
cution time. The throughput performance of all the
algorithms was similar, with the sublinear greedy heuristic
being slightly worse and faster (lower than 0.4 s in almost
all cases).

B. Evaluating the Effect of the SC3 Constraint

We evaluated the performance of the NEPHELE net-
work under the architecture constraint SC3 and also for
the architecture variation that uses the spectrum-shifted
planes. In particular, we assessed the performance for

(a) reference architecture/greedy (no SC3),
(b) reference architecture/segment-ring greedy,
(c) reference architecture/full-ring greedy, and
(d) spectrum-shifted planes/segment-ring greedy.

In all examined cases, the number of planes was the
same (I � 20). Case (a) was examined in the previous sub-
sections and is used here as a reference. The network of
case (a) can achieve maximum throughput; that is, it can
accommodate any traffic if an optimal algorithm is used.
The network of cases (b) and (c) has worst-case traffic that
requires more (20 times) planes, while case (d) also re-
quires more planes than the I available, but lower than
those of cases (b) and (c). The probability of generating
the worst-case traffic is extremely low, but cases (b) and
(c) have several traffic instances that require more than
I planes, while for case (d) this probability is low. Note,
however, that we use a heuristic (incremental greedy)
and thus blocking is expected even for case (a).

Figure 9(a) shows the latency for density between pods
δout � 50%, corresponding to l � 2.5% locality (default
δin � 25%). Such a low locality results in heavy utilization

Fig. 7. Execution times of the algorithms for intra-pod density δin
equal to (a) 100% (locality l � 68%) and (b) 2.5% (locality l � 5%).

Fig. 8. Execution times of the algorithms considered for locality
dynamicity δ�jDAj� equal to (a) 0.1% and (b) 10%.

TABLE IV
MAXIMUM THROUGHPUT OF ALGORITHMS CONSIDERED AS A

FUNCTION OF INTER-POD CONNECTION DENSITY δout AND LOAD

DYNAMICITY ρ�jDAj�
Parameter Symbol Value Linear Randomized Sublinear

Inter-POD
connection density

δout 50% 0.97 0.97 0.4
0.5% 0.85 0.85 0.82

Load dynamicity ρ�jDAj� 0.1% 0.92 0.93 0.9
10% 0.88 0.88 0.87
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of the inter-pod WDM rings and creates SC3 conflicts. We
observe that the asymptotic throughput of the reference
architecture/segment-ring greedy reduces to 0.8 compared
to 0.9 of the reference architecture/greedy, where SC3 is ne-
glected. The reference architecture/full-ring greedy has
even lower throughput, measured to be 0.7, but exhibits
lower execution times (see the following). The spectrum-
shifted planes architecture resolves conflicts in one plane
by serving in another plane and thus improves the
throughput. The achieved throughput was 0.85, which is
close to the case where SC3 is neglected, as shown by the
reference architecture/greedy (no SC3).

As locality increases, inter-pod traffic decreases, and even-
tually, at high locality, the performance of all algorithms
converges. For example, in Fig. 9(c), where the density be-
tween pods is δout � 0.5% (or l � 70% locality), we observe
that the reference architecture/greedy (no SC3) achieves
throughput close to 0.95, very close to the rest of the cases
examined. Note that, according to [4], locality is very high
in a Facebook DC, higher than 50% for typical DC applica-
tions, such as web and map-reduce. Figure 10 shows the re-
lated execution times. We observe that the reference
architecture/segment-ring greedy has the highest running
time, well above 1 s. Keeping track of ring segments yields
higher complexity. Execution time is reduced in the reference
architecture/full-ring greedy (but it wastes resources—has
lower throughput, as seen in Fig. 9). The spectrum-shifted
planes/full-ring greedy case has quite low execution time,
similar to the reference architecture/full-ring greedy. Thus,
it combines the execution time benefits of the full-ring

algorithm while achieving throughput close to the case
without SC3 (by reducing the conflicting sets). As locality in-
creases, the execution times of the reference architecture/
full-ring and spectrum-shifted planes/full-ring converge to
that of the reference architecture/greedy (no SC3).

VII. CONCLUSIONS

Weproposed and evaluated a set of scheduling algorithms
for the NEPHELE DCN. In NEPHELE, resources are
dynamically allocated based on traffic requirements. To
avoid contention, a centralized allocation process enforces
three scheduling constraints. We described in detail the
NEPHELE control cycle, outlined its requirements, and pre-
sented an algorithm to optimally allocate resources. We also
proposed three incremental heuristic scheduling algorithms
that reduce the execution times of allocation, and evaluated
their performance through simulations. The randomized
and greedy heuristics exhibited normalized throughput
higher than 0.85 for all examined traffic scenarios. The ex-
ecution time of the greedy heuristic was measured in hun-
dreds of milliseconds, while the sublinear greedy heuristic
was faster, sacrificing some throughput. The parallel imple-
mentations of the proposed algorithms on specialized hard-
ware (field-programmable gate array) to further reduce
execution time is ongoing. We also studied the effect on per-
formance of the third scheduling constraint (SC3), which is
specific to the NEPHELE architecture. To cope with the re-
sulting reduction of throughput and increase of execution

(a) 

(b) 

Fig. 9. Latency (in periods) as a function of load for density be-
tween pods (a) δout � 50% (l � 2.5%) and (b) δout � 0.5% (l � 70%).

(a)

(b)

Fig. 10. Execution time as a function of load for density between
pods (a) δout � 50% (l � 2.5%) and (b) δout � 0.5% (l � 70%).
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time, we proposed an architecture variation that employs
spectrum-shifted optical planes and extended the greedy
heuristic to function in such a network. Simulations showed
that the throughput and execution time performance ap-
proaches that of a network without SC3. The proposed incre-
mental heuristic algorithms achieve high throughput and
low execution time, asserting the dynamic and efficient
operation of NEPHELE.
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