Christodoulopoulos et al.

VOL. 9, NO. 12/DECEMBER 2017/J. OPT. COMMUN. NETW. 1145

Efficient Bandwidth Allocation in
the NEPHELE Optical/Electrical
Datacenter Interconnect

K. Christodoulopoulos, K. Kontodimas, A. Siokis, K. Yiannopoulos, and E. Varvarigos

Abstract —The NEPHELE data center interconnection
network relies on hybrid electro-optical top-of-rack
switches to interconnect servers over multi-wavelength
optical rings. The bandwidth of the rings is shared, and
an efficient utilization of the infrastructure calls for co-
ordination in the time, space, and wavelength domains.
To this end, we present offline and incremental dynamic re-
source assignment algorithms. The algorithms are suitable
for implementation in a software defined network control
plane, achieving efficient, collision-free, and on demand
capacity use. Our simulation results indicate that the pro-
posed algorithms can achieve high utilization and low
latency in a variety of traffic scenarios that include hot
spots and/or rapidly changing traffic.

Index Terms —Dynamic resource allocation; Matrix
decomposition; Scheduling; Slotted and synchronous oper-
ation; Time-wavelength-space division multiplexing.

|. INTRODUCTION

T he widespread availability of cloud applications to bil-
lions of end users and the emergence of platform- and
infrastructure-as-a-service models rely on concentrated
computing infrastructures, the data centers (DCs). DCs
typically comprise of a large number of interconnected
servers running virtual machines. As traffic within the
DC (east—west) is higher than incoming/outgoing traffic,
and both are expected to continue to increase [1], DC
networks (DCNSs) play a crucial role. High throughput, scal-
able, and energy/cost efficient DCN networks are required
to fully harness DC potential.

State-of-the-art DCNs are based on electronic switching
in fat-tree topologies [2]. Fat-trees tend to underutilize re-
sources, require a large number of cables, and suffer from

Manuscript received June 26, 2017; revised October 6, 2017; accepted
October 22, 2017; published November 29, 2017 (Doc. ID 300915).

K. Christodoulopoulos (e-mail: kchristo@mail.ntua.gr), K. Kontodimas,
and E. Varvarigos were with the Department of Computer Engineering
and Informatics, University of Patras, Greece. They are now with the
School of Electrical and Computer Engineering, National Technical
University of Athens, Greece.

A. Siokis is with the Department of Computer and Engineering and
Informatics, University of Patras, Greece.

K. Yiannopoulos is with the Department of Informatics and
Telecommunications, University of Peloponnese, Greece.

E. Varvarigos is also with the Department of Electrical and Computer
Systems Engineering, Monash University, Australia.

https://doi.org/10.1364/JOCN.9.001145

poor scalability and low energy efficiency [3,4]. To reduce
cost, fat-trees are typically oversubscribed (e.g., 1:4), and
do not offer full bisection bandwidth (FBB) that may be
needed for certain applications. Application-driven net-
working [5,6], an emerging trend, would benefit from a
network that flexibly allocates capacity where needed.

To cope with the shortcomings of fat-trees, many recent
works proposed hybrid electrical/optical DCN, a survey of
which is presented in Ref. [7]. The authors of Refs. [8,9] pro-
posed a DCN in which heavy long-lived (elephant) flows are
selectively routed over an optical circuit switched (OCS)
network, while the rest of traffic goes through the elec-
tronic packet switched (EPS) network. These solutions rely
on the identification of elephant flows, which is rather dif-
ficult, while it was observed that such long-lived heavy
flows are not typical [4], making it difficult to sustain high
OCS utilization. Instead, a high connectivity degree is
needed [4]. To enable higher connectivity, Ref. [10] pro-
posed and prototyped a very dense hybrid DCN that also
supports multi-hop connections, along with a custom built
control stack. The authors measured the total delay, includ-
ing control plane and OCS hardware reconfiguration (mi-
croelectromechanical system —MEMS —switches), to be of
the order of hundreds of milliseconds. Multi-hop routing
was exploited anew as shared optical circuits in
Ref. [11], where an OpenFlow (OF)-based control plane
was developed [12], showing that circuit sharing reduces
the effect of slow OCS reconfigurations.

Other proposed DC interconnects completely lack electri-
cal switches. Proteus, an all-optical DCN architecture based
on a combination of wavelength selective switches (WSSs)
and MEMS was presented in Ref. [13]. Again, multi-hop
is used to achieve high utilization. However, it is still hard
to compensate the MEMS slow reconfiguration times
through sophisticated control. References [14,15] introduced
hybrid OCS and optical packet/burst switching (OPS/OBS)
architectures, controlled using SDN. Various other architec-
tures based on OPS/OBS were proposed [7,16] (and referen-
ces therein). However, OPS/OBS technologies are not yet
mature, so the current target could be small-scale networks
with limited upgradability potential.

The authors of Ref. [17] presented a hybrid DCN architec-
ture called Mordia, which uses WSS to provide switching
times of 11.5 s. Mordia operates in a dynamic slotted man-
ner to achieve high connectivity. However, the scalability of

1943-0620/17/121145-16 Journal © 2017 Optical Society of America

1146 J. OPT. COMMUN. NETW./VOL. 9, NO. 12/DECEMBER 2017

Christodoulopoulos et al.

power
combiner

(= w
| wavelengths
f_txzwss compler 1 —
w
| wavelengths
L1 1x2Wss | I—Qu_pler/ 7] = —
Rxl]

-

‘HWL

1x2 WSS

phcoper]
coupl l
[_coupler)]

Rx1

power
combiner

Wxl |
power |:

Ll

L Optical Plane 1 |_ POD (1,P)
1x2
g g
% fast .. fast . £ E) fast
g POD (1,1) switch switch . : e & D (I,P) switch
Optical Plane 7 -/
qé A " Aw Aw A A
wavelength wayelength velength velength
. Tx I Ix . ’1‘3(T 1 'I‘x T
Rx 1 (Hbi) Rx I (tunable] Rx1 (tunable) Rx I tunable) Rx 1 (Khi) Rx I tunable) Rx1 (tunable) Rx I (tunable!
od 1 Servers (S ports) Servers (S ports) od P Servers (S ports) Servers (S ports)
Fig. 1. NEPHELE DCN architecture.

Mordia is limited as it uses a single wavelength division
multiplexing (WDM) ring whose capacity can accommodate
only a few racks, while resource allocation algorithms
exhibit high complexity and cannot scale to large DCs.

The European project NEPHELE is developing an
optical DCN that leverages hybrid electrical/optical
switching with SDN control to overcome current datacen-
ter limitations [18]. To enable dynamic and efficient shar-
ing of optical resources and collision-free communication,
NEPHELE operates in a synchronous slotted manner.
Timeslots are used for rack-to-rack communication and
are assigned dynamically, on a demand basis, so as to
attain efficient utilization, leading to both energy and cost
savings. Moreover, multiple wavelengths and optical
planes are utilized to implement a scalable and high
capacity DC network infrastructure.

The NEPHELE network relies on WSSs, which are faster
than the MEMS used in Refs. [8-11] and more mature than
the OPS/OBS used in Refs. [14-16]. The fast switching times,
along with the dynamic slotted operation, provide high and
flexible connectivity. Compared to Mordia [17], which also re-
lies on WSSs, NEPHELE is more scalable: it consists of multi-
ple WDM rings, re-uses wavelengths, and utilizes cheap
passive routing components and scalable scheduling schemes.
The latter is the major contribution of this paper, which
presents fast scheduling algorithms to meet NEPHELE dy-
namic reconfiguration requirements.

Regarding resource allocation, scheduling problems
similar to those addressed in this paper were studied in the
past for satellite and ATM switches [19-26]. Indeed, one
can view the entire NEPHELE multi-ring DCN as a large
distributed switch. The key difference of our work is that
we consider huge network installations and dynamic time-
division multiplexing (TDM) operation; thus strict optimality
is not the objective, but we rather target low complexity.

We also encounter certain internal collision constraints that
are particular to the NEPHELE architecture (Section VI),
and thus we need to extend previous TDM algorithms appro-
priately. Apart from [17], which considers dynamic TDM oper-
ation, a somehow relevant algorithmic work is [27], where the
authors present an integrated optical network-on-chip (NoC)
based on aring topology and micro-ring resonators (MRs). The
key difference with the NEPHELE network is that MRs target
NoC and small networks, where propagation and control
plane delays are negligible. Thus, scheduling does not take
place in periods, as in NEPHELE, but on a per slot basis as
in electronic switches [28].

The remainder is organized as follows. In Section II,
we describe the NEPHELE architecture. In Section III, we
describe the dynamic resource allocation problem. In
Section IV we provide a set of algorithms to solve it. In
Section V we analyze the resource allocation constraint
induced by the NEPHELE architecture. In Section VI we
evaluate the performance of the proposed algorithms.
Finally, we provide our conclusions in Section VII.

Il. NEPHELE ELecTrICAL/OPTICAL INTERCONNECT

NEPHELE is a hybrid electrical/optical DCN architec-
ture, built out of POD and top-of-rack (TOR) switches.
Figure 1 describes the NEPHELE DCN. The NEPHEL
DCN is divided into P pods’ of racks. A pod consists of I
POD switches and W TOR switches, interconnected as
follows: each TOR switch listens to a specific wavelength
(thus, by design, the number of wavelengths equals the
number W of racks in a pod) and has I ports. Each port
is connected to a different one of the I POD switches. A rack

'The term “pod” refers to the cluster of racks, and “POD” to a NEPHELE pod
switch.

Christodoulopoulos et al.

T
>

Traffic
Matrix
creation

Resource allocation
cycle for Data
period n

T
Monitori
dat: Transfexting of
network confi; tion
Data Q(n- ‘ Qs @0+ 1)

communication T according to|
cycle S

ArrivalsA(n—C—I)T arrivals A(n) T

Scheduling
algorithm

Fig. 2. NEPHELE resource allocation and data cycles.

determining the schedule S(n) to be used during Data
period n:

a) the traffic matrix engine of the SDN controller collects
the queue sizes from the TORs to build @(n — C) and
runs the queue estimation algorithm g to create the
estimated queue matrix Q(n) =glQ@(n - O)],

b) the scheduling engine of the SDN controller runs algo-
rithm f to calculate the schedule S(n) = f (Q(n)), and

¢) the SDN controller communicates the scheduling out-
put S(n) to the NEPHELE data plane devices (POD
and TOR switches) to be used during Data period n.

Figure 2 shows the NEPHELE resource allocation and
data cycles (control and data plane, respectively). As dis-
cussed, there is a delay between the two cycles: schedule
S(n) applied in Data cycle n is computed based on queue
matrix @(n — C), since it takes C periods to compute and
reach the data plane devices. The queue evolution is

described by
Q(n+1) =Q(n) +A(n) -Sn), 3)

where S(n) = f(g[Q(n — C)]). The value C does not affect the
achievable throughput, as long as scheduling decisions are
efficient (more on that later), but affects the traffic delay.
The control plane delay C depends on many factors, on
the execution time of the scheduling algorithm, and the de-
lay of the control protocol carrying information from TORs
to the SDN controller (if monitoring is assumed) and from
the SDN controller to the data plane devices. Both delays
depend on the network size and the choice of the Data
period T.

For scheduling decisions to be efficient, the scheduling
matrix S(n), computed based on an estimated queue ma-
trix Q(n), which in turn is calculated by @(n — C), should
be a “good” scheduling to be used during Data interval
n. This is true when Q(n) is a good approximation of
®(n). For slowly and medium changing traffic, we expect
calculations made for previous periods to be valid. In
estimating Q(n) from Q(n - C), it is possible to also use
statistical predictions, filters, and other (notably applica-
tion-aware) methods to improve performance. Moreover,
it is possible for the scheduler to fill unallocated resources
in S(n) by opportunistic transmissions, which can have col-
lisions or be collision free (e.g., nodes agree to use slots in
lexicographic order, mimicking static TDM, which under
heavy load is efficient). Finally, the overall scheme is
“self-correcting”: if some queues are not served for some

VOL. 9, NO. 12/DECEMBER 2017/J. OPT. COMMUN. NETW. 1149

periods due to poor scheduling and their size grows due
to new arrivals, this will be communicated with some delay
to the controller, and the queues will eventually be served.
A study of the effect of the control plane delay and ways to
mitigate it is part of our future plans.

In the following we will focus on the scheduling problem
in the NEPHELE network. We start from the estimated
queue matrix Q(n) and devise fast algorithms to calculate
the schedule S(n) [function f in Eq. (2)]. For reference we
can assume that we calculate the estimated queue matrix
[function g in Eq. (2)] as Q(n) =A(n-C-1) + Q(n - 1)-
S(n - 1), where we acknowledge that due to control plane
delay C, the central scheduler has access to (delayed)
arrival information A(n — C — 1) instead of A(n). This corre-
sponds to the case where the schedule S(n) calculated on
Q(n) serves the arrived traffic A(n — C - 1), plus a correc-
tion equal to traffic not served in the previous
period Q(n - 1) - S(n - 1).

We now describe the form of the schedule S(n). The
scheduling engine provides the TOR pairs that communi-
cate during each timeslot and for each optical plane within
the upcoming Data period. Note that wavelengths and
rings are dependent resources; the selected wavelength
is determined by the destination, and the ring depends
on the source and destination according to Eq. (1). Thus,
in NEPHELE the allocated resources are the timeslots
and the optical planes (I - T in total), or the generic slots,
as stated previously.

The scheduling algorithm takes the estimated queue
matrix Q(n) and decomposes it (fully or, if not possible, par-
tially) into a sum of I-T permutation matrices P(n,g),
g=1,....1-T, each corresponding to a generic slot. A per-
mutation matrix is binary of size (W - P) x (W - P); an entry
P, (n,g) equals “1” if a DU is to be transferred from TOR s
to TOR d during the gth generic slot of period n, and “0”
otherwise. In other words, P,;(n,g) identifies if one DU
at the d-VOQ of TOR s will be transmitted during the
gth generic slot of period n.

A permutation matrix determines a configuration of the
network for a specific generic slot. For the communication
to be contention free, the scheduling constraints SCy, SC,,
and SC; that are summarized in Table II should be satis-
fied. In particular, the first two constraints, SC; and SC,,
ensure that each TOR transmits to and receives from at
most one TOR per generic slot. Constraints SC; and SC,

TABLE II
ScHEDULING CONSTRAINTS (SC)*
Constraint
ID Description
SCy Psa(n.g) <1
SCq aPsam.g) <1
SC3 Psd(nsg) +Ps'd’ (n,g) < 17 for Ps <Pg <pq OT
Ps < Pag <Ppg, and (wy —w,)modR = 0
Py(n.g)=1, s=p;,(W-1)+w,, and d=pg-(W-1) +wy

indicate that one DU is scheduled for transfer from source TOR
(wg,ps) to destination TOR (wy,py) in the gth generic slot of
period n.

1150 J. OPT. COMMUN. NETW./VOL. 9, NO. 12/DECEMBER 2017

are relevant to all TDMA-like architectures and are readily
enforced by the decomposition process.

The third constraint, SCs, is related to the (not nonblock-
ing character of the) architecture, and particularly, it is a
result of the usage of static routed CAWGs as opposed to
dynamically configured components. To better illustrate
SCs, assume that a source TOR (w,, p,) communicates with
a destination TOR (w;,py). This communication takes
place over the optical ring that is calculated from
Eq. (1), and it occupies wavelength w, on the ring segment
between p, and p,. If another source TOR (wy, py) within
the aforementioned ring segment (i.e., p, < p; < pg) concur-
rently communicates with destination TOR (wg,ps), a
collision will occur irrespective of the destination pod
(pa), since it occupies the same ring and wavelength. A sim-
ilar contention will occur if the destination pod lies in the
initial ring segment (i.e., p; < p}; < pg), irrespective of the
source pod. Note that SCj is alleviated for R > W, which,
however, leads to underutilization of rings. Moreover, the
effect of the lack of the nonblocking property for the archi-
tecture (when seen as a huge switch), or equivalently the
existence of SCs, is small, and will be discussed in
Sections V and VI.

The set P(n,g),g = 1,2,...,1 - T, of permutation matrices
comprise schedule S(n), which records information for all
generic slots of period n. The permutation matrices
P(n,g) are stored as sparse matrices, each with W-P
entries. Similarly, S(n) is sparse with - T - W - P entries.

IV. SCHEDULING ALGORITHMS

Having described NEPHELE DCN operation, we now
proceed to present a set of NEPHELE scheduling algo-
rithms. We assume that we start with the estimated queue
matrix Q(n) and calculate the schedule S(n) [function f in
Eq. (2)]. To target both static and dynamic resource alloca-
tion scenarios, we developed two classes of scheduling
algorithms: (i) offline and (ii) incremental. Offline algo-
rithms, given in Subsection IV.A, take the estimated queue
matrix Q(n) and compute schedule S(n) “from scratch.”
Incremental algorithms, given in Subsection IV.C, use
the previous schedule S(n — 1) and update it based on traf-
fic changes to obtain S(n). Offline algorithms are better
suited for semi-static traffic, take longer to execute, and
achieve better utilization; incremental algorithms are
faster and can handle dynamic scenarios.

A. Offline Scheduling

As discussed above, offline scheduling decomposes
the matrix Q(n) into a set of permutation matrices
S(n) ={P(n.g)}, g=12,....1-T, without taking into
account the previous decomposition. We start by present-
ing the optimal offline scheduling algorithm.

The decomposition of @(n) can be performed in an
optimal manner following the well-known Hall’s theorem
(an integer version of the Birkhoff~Von Neumann theorem

Christodoulopoulos et al.

[?4]). We define the critical sum [[HQ(n)] = h of matrix
®@(n) as the maximum of its row sums and column sums.
Then the following theorem holds:

Hall 's Theorem: An integer matrix of critical sum A can
be written as the sum of A permutation matrices.

The following algorithm calculates the optimal decompo-
sition of matrix Q(n):

1. Find a matrix of nonnegative integers E(n) so that ma-
trix M(n) = Q(n) + E(n) is a perfect matrix with critical
sum H[M(n)] = H[Q(n)] = h. A perfect matrix has the
sum of each row and each column equal to the critical
sum. An algorithm to obtain E(n) is found in Ref. [21].

2. Treat M(n) as a (bipartite) graph adjacency matrix and
obtain a maximum matching; p(j),j=1,2,....,P-W.
This matching can then be represented as a permuta-
tion matrix P(n,i), whose [j, p(j)] entries are equal to 1,
and all other entries are 0.

3. Find the weight c; as the smallest element of M (n) that
corresponds to a nonzero entry in P(n,1).

4. Repeat P(n,i) for c¢; times in the schedule and
update M(n) = M(n) —c; - P(n,i).

5. If M(n) is not equal to zero, repeat steps 2-4. Otherwise,
an optimal decomposition for M (n) has been found.

6. Set the entries of the dummy matrix E(n) to zero.

Steps 2-4 are repeated A times at most and we have that

;c; = h. Note that the decomposition of an integer matrix
as a sum of 4 permutation matrices is not unique and that
the permutation matrices in the decomposition of M (n) are
full rank (corresponding to full utilization of the I-T
generic slots), while those in the decomposition of Q(n) =
M(n) - E(n) may not be full rank [leaving some generic
slots unused, namely, the entries of E(n), and available
for opportunistic transmissions]. In general, decomposi-
tions that use a limited number of permutations, each car-
rying a considerable amount of traffic ¢;, are preferable as
they result in fewer reconfigurations in the NEPHELE
switches.

The preceding algorithm assumes that the critical (row
or column) sum is constrained, but this will not always be
the case. The arrival matrix A(n) corresponds to traffic cre-
ated by the servers and aggregated at the related TOR
switches in period n. Since one link connects a server to
the TOR, the server sends to its TOR switch at most 1
DU during a timeslot. Therefore, the row sums of A(n)
are at most S -7T. Some of A(n)’s column sums, however,
may be larger than that, e.g., in the presence of hotspot des-
tinations. Note that the capacity connecting a TOR to the
destination servers can transfer S -T DU, and this is the
same for all DCNs. So hotspot problems, where traffic
toward some TORs (columns of A) exceeds the available
capacity, are present in all DCNs and not only in
NEPHELE.

We could, in principle, devise flow control mechanisms
to guarantee that the critical sum of A(n) satisfies
H[A(n)] <S-T. Using an entry flow control mechanism
between servers and source TORs, like the “stop and go”

Christodoulopoulos et al.

queueing proposed in Ref. [29], which limits (smoothens)
the entry of DUs toward the destinations, we can enforce
the column sum to be less than S - T. In particular, each
source TOR can check the destination TOR d of the pack-
ets forwarded to it by the source servers and, through a
backpressure mechanism, guarantee that packets equiva-
lent to at most (S-T)/(W-P) DUs are destined for each des-
tination during a period of duration 7T'. Such a source flow
control mechanism, however, may be too restrictive, unnec-
essarily, and introduce large entry delays, as packets are
queued at the servers, outside the interconnection network.
To relax somewhat the constraint, a credit-based flow con-
trol mechanism can be used at the pod level, where each
source POD is given W, = (S-T)) /P credits for each destina-
tion TOR d per period, which it can distribute to the TORs
below it that can, in turn, distribute them to the servers.
This would relax considerably the input flow control con-
straints and the corresponding delays at the servers, but
requires a clever mechanism for distributing credits.

Even if a flow control mechanism is not present, the
column sums will be on average <S - T, assuming the desti-
nations of packets are uniformly distributed on average.
Actually, the critical sum will be <S - T' not only on average
but also with high probability, if the network operates at less
than full load. Finally, note that TCP flow control smoothens
the traffic to a given destination. Since the downstream links
from a TOR to the servers can support up to S -7 DU per
Data period, the previous condition will tend to hold with
high probability in a DC network that employs TCP.

Based on the previous discussion we conclude that in the
“typical case” the column sums of the arrival matrix A(n)
will be <S - T and so will also be its critical sum (since the
row sums are always <S-7T). In that case, the schedule
S(n), that is calculated based on Q(n) =A(n-C), assum-
ing S <1, can be chosen so as to completely serve all the
arrivals in A(n —C) in the available I-T generic slots.
Note that in the reference FBB network scenario we as-
sume S =1 and so we will interchangeably use S and I
in the following. Thus, in this case, all packets generated
in a Data period will be served C periods later, emptying
the queue from such packets. So the delay in the
NEPHELLE network is upper bounded by C periods when
appropriate input flow control is used, or with high prob-
ability when the load is far enough from full load. Thus, in
the typical case, NEPHELLE provides both full throughput
and delay guarantees.

In the more general case where the critical sum of Q(n) is
not bounded by I - T, we stop when we find the first I - T
permutations, while the traffic @(n) — S(n) that is not
served is fed to produce the estimated matrix for next
period Q(n + 1). Fairness and priority issues can also be
handled with small extensions to the above process without
a requirement for additional flow control.

B. Complexity of Offline Scheduling and Stability

For general traffic, we define the load intensity between
source destination TOR pair (s,d) as

VOL. 9, NO. 12/DECEMBER 2017/J. OPT. COMMUN. NETW. 1151

saA) =E@Ay)/U-T). 4)

where E() stands for expected valueand 0 < ,;(A) < 1fora
FBB NEPHELE network (S = I). The load intensity matrix
P(A) is defined as the matrix with ,;(A) entries. The row
sums of P(A) are always less than or equal to 1, while for a
stable network (finite queues), the column sums should
also be less than or equal to 1.

Necessary condition for stability: For the NEPHELE
network to be stable, the load intensity matrix P(A) should
be at most a double stochastic matrix.

When the previous condition does not hold, it is impos-
sible to find a schedule to serve the queues of NEPHELE in
a stable manner. It is thus up to the DC orchestrator to
allocate tasks to servers so that their communication re-
quirements meet this constraint. Our target is to provide

schedules that can serve any (long-term) stable
matrix P(A).
We define the average network load (A) (also

represented by) for arrival matrices A as the scalar

A= = qA/P-W)=

sd sd
and 0 < (A) < 1. The quantity -P-W - -I-T equals the
average of the entries of arrival matrix A during a period
(or, equivalently, -P-W-I is the average number of

arrivals per timeslot and TOR-to-TOR pair).

EAy)/d-T-P-W), (5

Besides the load, another parameter that is important in
characterizing the arrival process and the algorithmic com-
plexity is the arrival matrix density (A), which is comple-
mentary to the sparsity of A. In particular, if we define the
indicator function 1(), as 1(x) =1, when x>0 and 1,
otherwise, then the density (A) of matrix A is defined as

A =E 1Aq) /(W-P) (6)
sd

where E[,;1(Ayy)] is the average number of nonzero en-
tries of A and, clearly, 0 < (A) < 1. In other words, (A) is
the fraction of nonzero entries of A. Then, the number of
nonzero entries M(A) is given by M(A) = (A) - (W -P)%

In the worst case, the optimal algorithm described ear-
lier executes a maximum matching algorithm 7 - T times
(uniform traffic). Finding a maximum matching can be
time consuming, and even the well-known Hopcroft—
Karp bipartite graph matching algorithm [25] exhibits
complexity of O(M(A) - vW - P), where M(A) is the number
of nonzero elements in A. The number of different matches
is -I-T, and thus the complexity of the optimal offline
algorithm is O(- -1-T- (W -P)}).

An indicative example of the execution time required for
optimal decomposition with the Birkhoff~Von Neumann
and Hopcroft-Karp algorithms is shown in Fig. 3, for a fully
fledged NEPHELE network (parameters listed in Table I).
The algorithm was developed in MATLAB and the simula-
tions were performed on an Intel Core i5 laptop. Figure 3
plots the average execution time of the optimal decompo-
sition algorithm against the load and density , which
are shown to range from tens of seconds to minutes.

Christodoulopoulos et al.

e D" (n) denotes the matrix consisting only of the positive

entries of difference matrix DQ(n), and

e D~(n) denotes the matrix consisting only of the negative

entries of difference matrix DQ(n).

3. Use algorithm A; to free entries of S(n) according to
matrix D~ (n) and obtain the half-filled schedule, de-
noted as S'(n + 1) [Fig. 4(c)].

4. Use algorithm A, to add entries in S'(n + 1) (half-filled
schedule) according to DT (n) to obtain the current
period’s schedule S(n) [Fig. 4(d)].

Algorithm 1: Linear Greedy Algorithm

Given: D*(n), S(n+ 1), TC(n), RC(n), P, W, T, I
Return S(n+ 1), TC(n+ 1), RC(n + 1)

1. Sn+1)={Pn+19}<Smn+1);

2: TC(n+1) « TC(n), RC(n + 1) « RC(n);

3: for s<1to P-Wdo
4. for d<1to P-W
5: slots < D/, (n);
6: g1
7 while g< T-I and slots >0
8: if TCy(n+ 1,g) =0and RCy(n + 1,g) = 0then
9: P,n+1g) =1
10: TC,n+1,8) =1, RCy(n+1,8) = 1;
11: slots « slots — 1;
12: end if
13: g«g + 1
14: end while
15: end for
16: end for
The complexity of incremental scheduling is

O((IDphy- -I-T- (W - P)2), where (IDg)) < 1 in view of
the persistency property of Eq. (6) and the related
discussion.

The above describes the core of the incremental algo-
rithms. In the first two algorithms that we will present,
we used a greedy algorithm A; in Step 3 to free entries that
works as follows: by iterating each element of D~ (n), we
find the last permutation matrix of S(n) that serves that
element, and we free that entry (set it to zero). This algo-
rithm frees sequentially the scheduled resources for the
demands whose traffic was reduced, leaving the entries
that satisfy the current traffic. Regarding step 3, we
present three A, schemes, each corresponding to a different
incremental scheduling algorithm.

1) Linear-Time Greedy Incremental Heuristic: The
greedy heuristic is a non-optimal algorithm running in
linear time to the size of the problem and the number of
generic slots per period. The greedy heuristic can be used
as an offline or as an incremental algorithm. In the follow-
ing we focus on the incremental case. The algorithm takes
as input the difference traffic matrix D (n) [or Q(n+1)in
offline]. It follows steps 1-3 described above, so that it finds
the half-filled schedule, denoted as S'(n + 1) and the pos-
itive difference matrix D" (n). By iterating on each non-zero
element of D*(n), it greedily finds the available generic
slots to use. This is done by taking into account constraints
SC; and SCo, of Table II, which ensure that at each generic

VOL. 9, NO. 12/DECEMBER 2017/J. OPT. COMMUN. NETW. 1153

slot a TOR can send to or receive from only one other TOR.
Data structures TC(n) and RC(n) are used to keep track of
these two constraints. In particular, element 7C,(n,g) [or
RC;(n,g)] records whether the transmitter (or receiver) at
source s (or destination d, respectively) and generic slot g is
active or not. The pseudo-code of the incremental greedy
algorithm is given in Algorithm 1.

2) Sublinear Greedy Incremental Heuristic: The sublin-
ear greedy algorithm is a variation of the linear greedy
heuristic, but it schedules blocks of DUs instead of DUs.
In particular, an integer £ = O(I) is chosen and used to cal-
culate the block estimated queue matrix Qk (n) = % (in our
implementation we chose £ = 5, and I was a multiple of 5).
The purpose of this procedure is to reduce the amount of
load to be scheduled, within a span of T' -% generic slots,
speeding up the scheduling process roughly by a factor
of k. The block estimated queue matrix is treated as the
estimated queue matrix, while applying the previous
greedy algorithm. The schedule produced by the greedy al-
gorithm is reproduced % times, in order to cover the initial
traffic. As expected, the speedup obtained comes at a cost:
dummy DUs are introduced when the ceiling function is
applied, which are allocated some generic slots, reducing
the resource usage. In particular the load overhead
introduced is

Number of dummy DUs = k- w - Qsan) .

s.d

8

In order for the algorithm to run in sublinear time
(a speedup of roughly % is expected), some filtering has
to be applied to Q(n) in such a way that its critical sum
is at most % after the division, rather than 7' - I. This proc-
ess takes place in the estimated queue matrix creation
module and requires at least linear time to complete.
These two operations, however, namely, the estimated
queue matrix creation and the scheduling, are performed
by different modules. The queue matrix creation module
can start executing while receiving monitoring informa-
tion; once the block estimated queue matrix is created,
the scheduling algorithm is executed in sublinear time.
We consider this to be technically feasible for the
NEPHELE’s architecture.

3) Randomized Heuristic: A randomized variation of the
greedy heuristic was also implemented for an incremental
resource assignment. Randomized operation avoids the
greedy first find approach, aiming to increase (on average)
the traffic that is served [30]. The algorithm follows an ap-
proach similar to the four steps presented at the start of
this subsection: it receives as input the previous period’s
schedule S(n), the estimated queue matrix @(n + 1), and
calculates the schedule S(n + 1). In the first phase, it
examines the previous period’s permutation matrices
P(n,g) against the traffic they can carry in the new
period and discards any P(n.g) that carries less traffic
than SdQsd(n + 1)/ - T), expecting that a new random-
ized allocation could provide a better solution for the

1154 J. OPT. COMMUN. NETW./VOL. 9, NO. 12/DECEMBER 2017

corresponding generic slot. The P(n,g) that carry tiheir fair
share of the traffic load are then subtracted from Q(n + 1):

1. Ifthe subtraction of a P(n,g) leaves no negative entries,
then the P(n,g) is kept unaltered in S'(n + 1).

2. Whenever negative entries occur, the corresponding
entries on both P(n.g) and Q(n + 1) are set to zero,
and the updated P(n,g) is used in S'(n + 1).

The previous steps calculate (i) the updated set of per-
mutations S'(n + 1), by skipping the calculation of D~(n),
and (ii) the positive change matrix D*(n), which is the
Q(n + 1) matrix after the subtractions. In this case,
D*(n) includes the new connections, the old connections
with increased traffic, and the old connections that
belonged to discarded permutations. Then the entries of
D*(n) are distributed randomly on S'(n + 1) following
the algorithm below:

1. Select a random destination TOR (column) d of D™ (n).

2. Find the m active source TORs for destination d, corre-
sponding to rows {sq,Sg, ...,S,,} of the non-zero entries
in column d, and re-arrange them randomly.

3. For each row s;, in the randomized arrangement:

a. Find the existing P(n + 1,g) that are available
for the (s;,d) communication (by checking the
related scheduling constraints—using the data
structures TC(n) and RC(n), as discussed in
Subsection IV.C.1).

b. Ifthe number of available P(n + 1, g) is greater than
the D} ,(n) entry (i.e., more resources are available
than those required), randomly select the required
number; otherwise select all of them.

4. Repeat steps 1-3 for all columns of D*(n).

Finally, if any traffic remained in D" (n) and not all the
I-T permutations are utilized, then the algorithm
performs a final round where it repeats steps 1-4, with
the only difference being that new permutations are
considered to be initially available to all connections.

V. ARCHITECTURE-RELATED CONSTRAINT

The resource allocation problem at hand is quite similar
to scheduling problems for TDM satellite or ATM crossbar
switches [19-23]. Scheduling constraints SC; and SC,, are
common, but constraint SCs (Table II) is new and is a result
of specific architecture choices, and particularly of using
static routed (C)AWGs instead of reconfigurable compo-
nents. This design choice, which was decided to keep the
cost and routing complexity low, results in a NEPHELE
DCN (when seen as a huge switch connecting TORSs) losing
its nonblocking character even for I = S. In the previous
section, we described algorithms that operate without
taking into account SC3, whose effect is studied here.

To evaluate the performance under the additional con-
straint SC3, we extended the incremental greedy heuristic
Subsection IV.C.1) to account for SCs. The algorithm to be
described is referred to as the ring-segment greedy

Christodoulopoulos et al.

heuristic. To be more specific, consider a transmission from
source TOR s = (wy, ps) to destination TOR d = (wy, py) at
generic slot g (timeslot ¢ over optical plane i), where p, < py
without loss of generality. Such a communication is repre-
sented in the schedule by P,;(n,g) = 1 Under the baseline
architecture of Section II that uses W x R CAWGs at the
input of the rings, this communication uses wavelength
wy and ring ry =[(ws +wg - 1)modR], according to
Eq. (1). So, the communication from s to d captures the
ring-wavelength resource, indexed

lyg = [(ws + wg — 1)mod R]- W + wy. 9

Resource [; is actually captured only for the segment
of the ring that is between pods p,; and p; and can be used
by other connections if they use non-overlapping segments
of the ring. SC3 constrains that s to d communication can-
not take place simultaneously with communication from
§' = (Wy,py) to d' = (wg.pa), With p; <py <pg or p, <
pPa <pg and wy =wy; and (w,-w,modR =0 (see
Table II).

The ring-segment greedy heuristic algorithm keeps
track of the utilization of the ring-wavelength resources
and the specific ring segments utilized. To accommodate
the communication from s to d at generic slot g, we need
to check whether ring-wavelength resource /,; is used be-
tween pods p, and py. Ifit is not used, we reserve it to block
any future conflicting communication. The data structure
records for each generic slot g =1,2,....1-T the ring-
wavelength resource/ = 1,2, ..., R - W and the specific ring
segment it uses (P ring segments in the worst case), result-
ing in size O(P+-R-W -1-T). This data structure can be
similar to TC(n) and RC(n) used to keep track of SC;
and SCy (Subsection IV.C.1), which, however, are of size
OP-W-I-T). Specifically, line 8 of the pseudo-code of
Algorithm 1, should also search for maximum P ring
segments, which increases the complexity.

The worst case traffic pattern is obtained when we have
the maximum number of conflicting communication pairs
defined by SCs, and all of them carry maximum traffic.
Regarding the constraint on the overlapping of ring seg-
ments, there are P such conflicting (s, d) pairs for unidirec-
tional traffic (pl to Pp, P2 to Pi1>---Pp-1 to Pp,Pp to pP—l)’
and since they are in different pods they can have maxi-
mum traffic equal to Qsd (n) =S+ T. In this case, we require
I = P - S planes to fully serve the worst case traffic. Such
worst case traffic is, of course, highly improbable to occur.
Still, our simulations show that the throughput is affected
even in the average case when considering SC;, while
the execution time increases, since we need to account
for the ring segment utilization.

We developed two solutions to address this problem:
the first extends the incremental greedy algorithm of
Subsection IV.C.1, considering in a more coarse way the
utilization of the ring-wavelength resources, while the
second relies on a variation of the architecture that uses
spectrum-shifted optical planes.

Christodoulopoulos et al.

—
©

=
IS

3.5 | =—=—greedy

3 ‘ —e&—random

Queuing Latency (in periods)
N

0.5
0 = T = T o g |
0.20 0.40 0.60 0.80 1.00
Load
|| =—trgreedy
g —o—random
3 ~m—sublinear
£
3
c 2 1
-]
815 i
oo
£
2 1
3
g
0.5
0+ = T = = ——— . —]
0.00 0.20 0.40 0.60 0.80 1.00
Load

Fig. 5. Average queuing latency resulting from the examined
scheduling algorithms, measured in Data periods additional to
the control cycle, for intra-pod density ;, equal to (a) 100% (locality
68%) and (b) 2.5% (locality 5%).

DUs in a small block increases the column sum more than
when traffic and the locations of the dummy DUs are
spread out.

We next examine the effect of the locality dynamicity
parameter (|D4|). When (|D4]) = 0.1% [Fig. 6(a)], all
three heuristic algorithms start to induce high latency at
network load of about 0.7. As in the previous cases, the
queuing latency increase with network load is steeper
for the case of the sublinear heuristic, followed by the lin-
ear greedy, and then by the randomized heuristic. This is
more clear at load 0.8, where the sublinear greedy heuristic
is already in the unstable region, while the linear greedy
and the randomized heuristic remain stable until load 0.85.

When the locality dynamicity parameter (|D4|) = 10%
[Fig. 6(b)], all three algorithms improve their results by in-
creasing their maximum throughput (latency asymptote
moves to the right). Higher dynamicity reduces the persist-
ency of bad scheduling matrices, improving the perfor-
mance, but as expected, has negative effects on
execution times, as will be discussed in the following.

2) Scheduling Algorithms Execution Times: Next, we
present results on the execution times of the considered
algorithms. We provide four plots for the same parameters
examined in Subsection VI.A.1.

As shown in Fig. 7(a), the algorithms’ performance in or-
der of increasing execution times is randomized, linear

VOL. 9, NO. 12/DECEMBER 2017/J. OPT. COMMUN. NETW.

1157

(@) 4
35 .|—l—greedy
w
8 3 | —m—random
g | —m—sublinear
£ 25 H
>
g -
-1 |
315 |
oo
£
2 1
&
0.5 il
0 = & -
0.00 0.20 0.40 0.60 1.00
Load
(b) 4
3.5 | =—#=—greedy
3 3 || —e—random il
g ~m—sublinear
£ 25+
>~
g 24
0
®
=15
o0
=
3 11
=
(]
0.5
0+ & = = T
0.00 0.20 0.40 0.60 1.00
Load

Fig. 6. Average queuing latency resulting from the examined
scheduling algorithms, measured in Data periods additional to
the control cycle, for locality dynamicity (|D4]) equal to
(a) 0.1% and (b) 10%.

greedy, and sublinear greedy heuristic. As expected, the
average execution times increase with the load. At load
0.8, the randomized heuristic needs an average of 1.5 s
to complete. Next comes the linear greedy heuristic with
an execution time (at 0.8 load) of about 0.7 s, and last comes
the sublinear greedy heuristic with about 0.5 s. These re-
sults were expected from the theoretical complexity analy-
sis given in Section IV. The relative order of the algorithms
with respect to their execution times remains the
same when intra-POD connection density is set to 2.5%
[Fig. 7(b)]. The decrease in the execution times for low
intra-POD density is due to the fewer connections, each
of higher load, which reduces the complexity of all three
algorithms. The execution times for different values of
locality dynamicity parameter (|D,]|) are depicted in
Fig. 8. As expected, by complexity analysis, execution time
increases as load and locality dynamicity (|D,|) increases.

3) Maximum Network Throughput: We now focus on the
maximum network throughput achieved by the scheduling
algorithms, defined as the load at which the queues and the
latency become (asymptotically) infinite and the system be-
comes unstable. The throughput is examined with respect
to two parameters that were not discussed above: (i) the
inter-POD connection density ., and (ii) the load dynam-
icity (|D,|). The results are shown in Table IV. We see that
the impact of inter-POD connection density ,, is quite sig-
nificant, since for dense traffic (,,; = 50%), the throughput

1158 J. OPT. COMMUN. NETW./VOL. 9, NO. 12/DECEMBER 2017

(a) 2 =
—t—greedy
1.6 -| —®=random
- ~—sublinear
o
o 1.2
£
c
)
5 08
o
@
x
w
0.4
O T
0.00 1.00
b 21— s
—t—greedy
1.6 | —@—random
- ~m—sublinear
3 el |
o 1.2+
£
P
2
5 081
o
GJ
<
w
0.4
= i
0 + T -
0.0 0.20 0.40 0.60 0.80 1.00

Load

Fig. 7. Execution times of the algorithms for intra-pod density ;,
equal to (a) 100% (locality I = 68%) and (b) 2.5% (locality I = 5%).

reaches about 0.97, while for sparse traffic, it drops to
0.85 at most. The reason is similar to the one discussed
for the role of intra-POD density. It should be noted that,
for dense inter-POD connections (o, = 0.5%), the sublin-
ear greedy heuristic is unstable even at low traffic loads,
since it wastes too much capacity. This should be expected,
as small and spread demands result in many entries that
create many dummy DUs, thus wasting network capacity.
Regarding load dynamicity, we consider the cases (|D4|) =
0.1% and (|D4|) = 10%. We observe that this parameter
does not affect substantially the throughput, nor the exe-
cution time. The throughput performance of all the
algorithms was similar, with the sublinear greedy heuristic
being slightly worse and faster (lower than 0.4 s in almost
all cases).

B. Evaluating the Effect of the SCs Constraint

We evaluated the performance of the NEPHELE net-
work under the architecture constraint SC; and also for
the architecture variation that uses the spectrum-shifted
planes. In particular, we assessed the performance for

(a) reference architecture/greedy (no SCs),

(b) reference architecture/segment-ring greedy,
(c) reference architecture/full-ring greedy, and
(d) spectrum-shifted planes/segment-ring greedy.

Christodoulopoulos et al.

(@ 2
—a—greedy
1.6 +| =—e=random —
“ —#—sublinear
g 1.2
c
9
5 08
b
X
L
0.4 |
M—»”’E
= -
0 T ; .
0.00 0.20 0.40 0.60 0.80 1.00
Load
(b) 2+
—a—greedy
1.6 | —®—random 3
- ~m—sublinear
2
o 1.2 -
£
c
2
5 08
o
@
f]
0.4 _a
-~
0 + T T T —
0.00 0.20 0.40 0.60 0.80 1.00
Load

Fig. 8. Execution times of the algorithms considered for locality
dynamicity (|D,|) equal to (a) 0.1% and (b) 10%.

In all examined cases, the number of planes was the
same (I = 20). Case (a) was examined in the previous sub-
sections and is used here as a reference. The network of
case (a) can achieve maximum throughput; that is, it can
accommodate any traffic if an optimal algorithm is used.
The network of cases (b) and (c) has worst-case traffic that
requires more (20 times) planes, while case (d) also re-
quires more planes than the I available, but lower than
those of cases (b) and (c). The probability of generating
the worst-case traffic is extremely low, but cases (b) and
(c¢) have several traffic instances that require more than
I planes, while for case (d) this probability is low. Note,
however, that we use a heuristic (incremental greedy)
and thus blocking is expected even for case (a).

Figure 9(a) shows the latency for density between pods
out = D0%, corresponding to [= 2.5% locality (default
in = 25%). Such a low locality results in heavy utilization

TABLE IV
MaximuM THROUGHPUT OF ALGORITHMS CONSIDERED AS A
Funcrion oF INTER-POD CoNNECTION DENSITY ,; AND LOAD
Dynamicity (|Dyl)

Parameter Symbol Value Linear Randomized Sublinear
Inter-POD ot H0% 097 0.97 0.4
connection density 0.5% 0.85 0.85 0.82
Load dynamicity (|ID4al) 0.1% 0.92 0.93 0.9
10% 0.88 0.88 0.87

