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Abstract— This paper introduces a decision making framework 
for aggregating Microgrids and/or other small energy producers 
and consumers (i.e. prosumers) into groups, whose purpose is to 
participate in liberalized electricity markets as single entities. 
The aggregator is able to offer aggregated Renewable Energy 
Source (RES) units to the wholesale market, in ways that are 
more efficient than individual prosumers acting alone. We first 
present the proposed framework and information flow among 
the involved market entities. We then focus on the problem of 
finding the set of prosumers whose aggregate prosumption 
profile can best fit a given target pattern requested by a market 
actor. We propose a linear autoregressive forecasting algorithm 
and a genetic clustering algorithm, which can easily adapt to the 
requirements set by the various use cases. Numerical results 
show that the aggregator can produce clusters in real time 
improving the average deviation from the target pattern by up 
to 50%. 
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I. INTRODUCTION 

During the last few years, several countries have used 
subsidy policies in order to incentivize the generation of 
renewable energy. In order to allow small energy prosumers to 
participate and compete in the electricity market against 
traditional power generators, the concept of virtual micro-
grids (VMG) is investigated in the framework of the Virtual 
Microgrids for Smart Energy Networks (VIMSEN) EU project 
[1]. A VMG is defined as an association of rather small and 
distributed energy prosumers, created for the purpose of 
participating in a liberalized electricity market [2]. These 
small or very small actors (the prosumers) agree to operate on 
a common basis, without the need to install advanced smart 
grid equipment, such as storage, advanced PVs, advanced DR 
equipment or advanced communication routers. Instead, their 
functionalities and capabilities are enhanced by forming 
coalitions and collaboratively participating in the market under 
the efficient management of a Virtual Microgrid Aggregator 
(VMGA). In the VIMSEN context, an aggregator (VMGA) is 
responsible for orchestrating the prosumers located in a given  

area (whose definition and size depends on the use case) into 
clusters, thus creating energy groups that are better placed to 
offer reliable services to different markets, and serve different 
market players (i.e. Market Operator, Distribution System 
Operator etc.). As a result, a Virtual Microgrid in VIMSEN is 
slightly different from the traditional Microgrid and the 
Virtual Power Plant concepts [3], even though there are 
common functionalities, as it involves both production and 
consumption (prosumption) and tries to exploit statistical 
multiplexing and market participation advantages coming 
from the aggregation of very small actors [4].   

The different electricity markets typically operate at 
various time intervals prior to the time of delivery. After a buy 
or sell bid has been accepted in the market, the participant is 
committed to consume or deliver the traded amount of energy. 
Thus, efficient market participation requires an estimation of 
the amount of energy that the aggregator (i.e. on behalf of its 
registered prosumers) will need to consume, and also the 
amount of energy that it will be able to contribute to the 
system at each time interval. Therefore, accurate forecasts of 
the production and consumption for each prosumer must be 
available at the aggregator’s side at times prior to the closing 
time of each market [5].  

The large amount of recent literature in the area shows that 
the accuracy of the energy forecasts is not only an interesting 
research problem, but is also of great economic significance. 
In the case of consumption forecasting, models based on 
historical data may be used, as these load patterns are 
relatively easily predictable. However, in the case of RES 
production forecasting, more advanced and accurate 
forecasting methods are required [6]. As presented in [7], most 
forecasting tools for renewable energy production are based 
on Neural Networks. As a result, they pose large 
computational burden, which would prohibit the aggregator’s 
participation in near-real-time events, given the relatively light 
processing capabilities of the low-cost energy gateways 
residing at the prosumer’s premises. In a related context, in 
order to reduce RES production fluctuations during the day, 



several studies propose load prediction techniques 
accompanied by batteries and/or demand response (DR) 
solutions to reduce the hourly deviations. In [8], the authors 
propose a system to program the day-ahead output of a hybrid 
RES system comprising a wind-turbine and PV panels based 
on output prediction, using a battery to smoothen deviations. 
In [9], a battery is used to minimize the grid power peaks 
created by a RES microgrid. In order to achieve that, the 
system forecasts the day-ahead power generation and the 
consumption load in the microgrid and runs in an operational 
setting using 1-min resolution data, to incorporate a dynamic 
load target threshold towards which the load can optimally be 
reduced. The system limitations include the battery 
performance efficiency and the actual and predicted power 
outputs, which may lead to a loss of battery control. In [10], 
authors propose a technique that makes use of forecasting 
data, and apply a central moving average (CMA) strategy, 
eliminating any lag in the response and reducing the battery 
needs or, in other words, getting a better grid power profile 
with the same battery system. This approach, however, is 
subject to the accuracy of the forecast data. In order to handle 
forecast errors, the proposed strategy makes corrections in the 
power exchanged with the grid, taking into account not only 
the forecasting error, but also the battery state of charge. 
Authors in [11] propose a framework based on a unit 
commitment (UC) problem aiming to minimize system cost. 
The proposed demand model captures the aggregated behavior 
of a large population of small-scale RES loads equipped with 
PV-battery systems, including appropriate energy 
management systems. The effect of the demand model on the 
load profile of each residential and commercial prosumer 
shows that increasing the penetration of DR, improves 
controllability in the presence of increased intermittent supply 
penetration in the grid. In [12], a Demand-Side Management 
(DSM) optimization-based model is proposed that is 
applicable to Electric Vehicles (EVs), considering that EV 
load can be shifted based on charging prices. In the proposed 
model, agents are responsible for load, generation and storage 
management. Finally in [13] a methodology to assess the 
impact on the demand profiles due to the charging of plug-in 
electric vehicles in distribution networks is presented.   

The above studies assume that end users are equipped 
with smart meters, home energy management systems for 
resources scheduling, and batteries in order to achieve the DR 
target. Such devices, however, increase the total cost for each 
prosumer. Despite the aforementioned methods, it is essential 
for the energy market to focus on low-cost (e.g. simple smart 
meters, communication gateways) system solutions for the 
low end market. The premise of the current paper is that the 
use of lightweight systems by small prosumers, combined 
with the decentralized intelligence offered by aggregators, is 
sufficient to enable them to participate in the electricity 
market and compete with traditional power generators.  
Towards this end, we present (i) an auto regressive 
forecasting method and (ii) an optimized matching genetic 
algorithm schema for dynamically selecting a set of 
prosumers that matches, on aggregate, a given (target) 
distribution published by the wholesale market operator (MO) 
or some other actor such as the Balance Responsible Parties 
(BRP) or DSO. The reliability of the energy delivery is 

increased through both aggregation and forecasting. Since the 
forecasts’ accuracy heavily depends on the amount of time 
between the calculation of the forecast and the delivery time, 
a near real time prediction technique is executed for the 
efficient estimation of RES prosumption. The main 
contributions of this paper are: 

 The applicability of the proposed solution to small-scale 
RES prosumers who operate with basic smart grid 
equipment installed at their premises, such as low-cost 
gateways that are able to acquire energy prosumption 
datasets. There is no need for complex and expensive 
equipment for DR, batteries for storage, advanced micro 
grid controllers or any advanced communication 
between the aggregator and the prosumers. 

 Through the dynamic clustering, the smoothening of the 
profiles through aggregation and accurate forecast 
estimations make the application of storage devices or 
DR flexibility less necessary to reduce fluctuations. 

 The implementation of complex auctioning techniques 
in not necessary as we assume that a private fixed SLA 
exists between the VMGA and each one of the 
prosumers [14].  

 Based on the prosumption forecasts, the aggregator 
executes the target matching algorithm in order to 
quantify the cluster of prosumers that will respond to a 
specific demand response event. Genetic clustering 
algorithm is preferred among other methods as its 
performance has already been tested in our previous 
work [4].  

II. SYSTEM MODEL & PROBLEM STATEMENT  

RES generation is qualitatively very different compared to 
conventional fossil energy production, mainly due to the 
positive externalities (e.g. green credits, locality benefits) but 
also the negative externalities (increased variations) that the 
former creates. An aggregator acts as a middleware layer 
between the electricity market and the small RES prosumers 
providing an interface of determining RES price based on the 
current demand-supply requirements and the value of RES 
externalities. This results in an independent operation 
between the traditional and the RES market. In the following, 
we assume that RES market acts as a split market from the 
conventional electricity wholesale market [15]. In this way, it 
is possible to internalize the green credits stemming from 
RES production, while simultaneously accounting for the 
demand and supply requirements. In the context of a split 
(independent but interacting) RES energy market, a request of 
prosumption (ݐ)ݎ, ݐ∀ ∈ ሾݐ௔ ,  ௕ሿ RES units is assumed to beݐ
asked by the wholesale MO. The same procedure is followed 
during the energy request by DSO and BRPs. In most cases, 
demand and generation bids are collected in the wholesale 
electricity market, which finally determines the generation to 
activate. However, special conditions in the distribution 
network lead the MO to request specific DR in order to keep 
the network stable. Variables ݐ௔ and ݐ௕ denote start and finish 
time of forward time intervals. 



 

Figure 1. The proposed architecture for prosumer clustering in order to satisfy the requested RES demand for the ahead time interval 

. 

This amount is requested to the RES market operator (or 
to the RES aggregator if such a market operator does not 
exist), which aims at matching the demand bid. This request 
may involve a specific area (in which case only prosumers in 
that area will be allowed to contribute) or be nationwide. This 
means that the request of (ݐ)ݎ, ݐ∀ ∈ ሾݐ௔, ௕ሿݐ

 is a time series of 
RES request for the time ahead interval ൣݐ௔, ݐ௕ ൧. In general, 
the (ݐ)ݎ value could be a time series of near-real-time DR 
units request by the DSO to deal with an imminent 
congestion management problem or in other cases a time 
series of near-real-time DR units request by the BRP to deal 
with an imminent balancing problem. In this paper, we only 
deal with the demand decrease scenario. The RES market 
operator tries to match the requested demand by employing 
the services of a RES aggregator (or of multiple aggregators). 
Let us assume that a set of N small prosumers (i.e., units that 
are capable of both producing and consuming electricity) are 
available (nationwide or in the area specified in the request). 
The ultimate goal of the RES aggregator is to apply a 
matching algorithm in order to estimate the M<N out of N 
available prosumers that collectively better fit the requested 
ahead target profile. In order to perform demand matching, 
the RES aggregator needs to know the forecasted 
prosumption (excess of energy) for each prosumer i=1 ,.., N. 

 

As a result it is necessary to know: 

x(t) = cons୧(t) − prod୧(t) ∀ t ∈ ሾtୟ, tୠሿ          (1)                  

where ݀݋ݎ݌௜(ݐ) and ܿݏ݊݋௜(ݐ)
 
denote the energy production 

and consumption, respectively, of prosumer ݌௜  versus time, 
for the time ahead interval ൣݐ௔, ݐ௕ ൧. The amount ݔ௜(ݐ) is 
forecasted by the gateway ܩ ௜ܹ of prosumer  ݌௜ . In particular, 
each gateway ܩ ௜ܹ  is aware of the prosumption ݎ௜(ݐ) at time t. 
Then, the forecasting module embedded in the gateway is 
responsible for providing estimates of ݔ௜(ݐ) for the time 
ahead interval ൣݐ௔, ݐ௕ ൧. It is clear that the better the forecast is, 
the more closely the matching algorithm will be able to 
satisfy the requested target profile (ݐ)ݎ, ݐ∀ ∈ ሾݐ௔,  ௕ሿ.  Weݐ
introduce a forecasting method and an optimized matching 
algorithm for dynamically selecting (clustering) a set of M<N 
out of N available prosumers, that collectively best satisfy the 
requested target profile (ݐ)ݎ based on forecasting estimates of 
the prosumption ݔపෝ ,(ݐ) ݐ∀ ∈ ሾݐ௔,  ௕ሿ. The clustering process isݐ
performed after a signal from the MO has received and before 
the delivery time. The forecasted estimates ݔపෝ  are related (ݐ)
with the actual prosumption measurements ݔ௜(ݐ)  through 
(ݐ)௜ݔ  = పෝݔ (ݐ) ൅ ,(ݐ)ߝ ݐ∀ ∈ ሾݐ௔,  denotes the (ݐ)ߝ ௕ሿ whereݐ
prediction error. Then, the forecasting approach aims at 
minimizing the error (ݐ)ߝ based on an adopted model. The 
proposed architecture depicted in Table I, provides a 
description of the main steps of the proposed algorithm for 
the dynamic clustering of prosumers in order to collectively 
satisfy the requested target profile.  

III. PROBLEM FORMULATION  

A. The Forecasting Model 

Let us recall that (ݐ)ݔ is the measured prosumption (excess 
energy) from a prosumer’s gateway. Based on previous actual 
measurements of  ݔ௜(ݐ), ∀ ݐ ≤  ௖ the forecasting interfaceݐ
provides time ahead predictions. In the following, a linear 
autoregressive moving average model is adopted to relate the 
previous and the ahead energy excess units. Formally, an 
autoregressive moving average model is written as follows: 

(t)ݔ = ෍ ܽ௜ݐ)ݔ − ݅)

௣

௜ୀଵ

൅ ෍ ܾ௜ݐ)ݕ − ݅)

௤ିଵ

௜ୀ଴

൅ ߝ = (ݐ)ොݔ ൅   (2)     ߝ

Step #1: A demand prosumption request (ݐ)ݎ, ݐ∀ ∈ ሾݐ௔,  ௕ሿݐ
for the time ahead interval ൣݐ௔, ݐ௕ ൧ is provided to the RES 
aggregator by the wholesale traditional electricity market. 

Step #2: The aggregator forwards the demand request to 
the matching optimized interface. 

Step #3: The gateways measure the excess of energy until 
the current time instance ݐ௖. 

Step #4: The forecasting interface estimates  ݔపෝ  for the (ݐ)
time ahead interval ൣݐ௔, ݐ௕ ൧ exploiting previous actual 
measurements ݔ௜(ݐ), ∀ ݐ ≤  .௖ݐ

Step #5: The matching algorithm, exploiting a genetic 
optimization schema, selects a set of optimal M out of N 
available prosumers whose aggregate prosumption profile 
best satisfies the requested target profile. 

Table 1: Proposed Algorithm steps 



   In Eq. (2), variables ݌ and ݍ denote the model order both for 
the autoregressive and the moving average term, while 
variables ܽ௜ and ܾ௜ denote the model coefficients. Actually, 
Eq. (2) expresses that the values of the energy prosumtion at a 
time instance t is related with the values at previous time 
instances plus some external factor [modeled through 
variables ݐ)ݕ − ݅). In Eq. (2), we have denoted as ݔො(ݐ) the 
predicted prosumption at the time ahead instance t by the 
model. Usually, coefficients ܽ௜ and ܾ௜ are estimated to 
minimize the error (ݐ)ߝ of the prediction, thus the error 
between (ݐ)ݔ −  .the actual and the predicted value (ݐ)ොݔ
Several optimization algorithms exist in the literature for 
estimating the coefficients ܽ௜ and ܾ௜ of the model. Examples 
include the Yule-Walker [16] approach where a system of 
linear equations are exploited to estimate ܽ௜  and ܾ௜ , or the 
Burg’s lattice method [16] that solves the lattice filter using 
the harmonic mean of forward/backward squared prediction 
errors, or even the geometric lattice approach, where the 
geometric mean instead of harmonic mean is exploited. The 
model of (2) actually assumes a temporal coherency among 
the prosumption values. This implies a temporal smoothness 
in the energy production, which is actually a valid statement 
for RES generators. Usually, there are no abrupt changes in 
the RES generation and therefore assumption of temporal 
continuity is valid.  

B. Improving Clustering Through Forecasting 

Forecasting can greatly improve clustering decisions and 
consequently the efficiency of the overall scheme. This is 
because the grouping of prosumers so as to achieve a given 
target prosumption function is performed, in the absence of 
forecasts, based on previous prosumption measurements. 
Thus, variations in the actual prosumption (mainly due to 
high RES production variability) make it highly probable that 
the selected prosumer group (VMG) will not be able to 
satisfy the targeted function. Forecasting allows better 
clustering decisions, by basing the grouping decisions on the 
predicted prosumption rather than on its previous 
measurements. In case that no forecasting is exploited, the 
matching optimization interface adopts a differentiated pulse-
coded modulator (DPCM) approach. This means that the 
error between two successive samples of ݔ௜(ݐ) are encoded. 
The difference is used to predict future samples of ݔ௜(ݐ). In 
case of incorporation of a better prediction method, we 
exploit better forecasts and therefore better performance of 
the optimization matching interface. 

C. Genetic algorithm approach  for optimal clusters                
Prosumer  ݅, 1 ≤ ݅ ≤ ܰ is characterized by his prosumption 
equation (1) where t is the index of the time period. Variables 
(ݐ)௜ݏ݊݋ܿ

 
 and ݀݋ݎ݌௜(ݐ)

 
correspond to the energy consumption 

and production, respectively, for the given prosumer and time 
period. We define an indicator variable z୧ ∈ {0,1}, that 
indicates whether prosumer ݅ is part of the cluster or not. The 
aggregate prosumption for the cluster is: 

(ݐ)ܴ =  ∑ ௜ݖ × ே(ݐ)௜ݔ
௜ୀଵ          (3) 

The objective of the clustering algorithm is to search for a 
cluster that has an aggregate prosumption close to a given 
target pattern. If we denote the target pattern as ݃(ݐ), then we 

try to find a cluster where the mean square error between the 
target pattern and the aggregate prosumption of the cluster is 
as small as possible. In other words, given the sequences ݔ௜(ݐ) 
and ݃(ݐ), we obtain values ݖ௜ that minimize the expression: 

෍(ܴ(ݐ) − ଶ((ݐ)ݎ

்

௧ୀଵ

=  ෍  

௡

௞ୀ଴

൭෍(ݖ௜ × ((ݐ)௜ݔ − (ݐ)݃

ே

௜ୀଵ

൱

ଶ

    (4) 

This problem appears to be NP-hard at least for the general 
case of VMGA’s operation in which a huge prosumers’ 
portfolio and near-real-time responses are assumed [4].  

1) The genetic algorithm 

We can use a genetic algorithm to search for solutions to the 
above combinatorial problem. The genetic representation 
follows logically from the structure of the problem. We define 
the structure of a chromosome as a vector ݖ

 
of binary values 

z୧ ∈  {0,1}, 1 ≤ i ≤ N                                                       (5) 

If ݖ௜ is equal to zero, then the corresponding prosumer ݅ is not 
a member of the cluster, and its prosumption is not counted. 
Otherwise prosumer ݅ is part of the cluster, and its 
prosumption is aggregated in the total prosumption of the 
cluster.  

2) The fitness function 

The fitness function also arises logically from the problem 
definition. However, since the optimization engine that was 
used for the simulations tries to maximize the fitness function 
(instead of minimizing it), we use the opposite of Eq. (4). 
Thus we define the fitness function of a solution z as 

− ෌ (∑ ௜ݖ) × ((ݐ)௜ݔ − ே(ݐ)݃
௜ୀଵ )ଶ்

௧ୀଵ
                                   (6) 

If the cluster's aggregate prosumption matches the target 
exactly, then the above fitness function will produce a value of 
zero, which is the largest possible value. If a perfect matching 
is not found, the fitness of a solution will be negative, with a 
value proportional to the mean square error between the 
solution and the target. 

3) The mutation function 

The mutation function defines the way that new solutions will 
be generated from an existing solution. In the mutation 
function that we implemented, mutation corresponds to the 
random swapping of two consecutive genes. 

4) The reproduction function 
The reproduction function defines the way a new offspring 
solution is generated from two parent solutions.  



In our implementation we used the two-point crossover 
method. 

IV. NUMERICAL RESULTS  

A. Simulation Scenarios and setup  

In order to evaluate the performance of the proposed 
algorithm, we implemented it in the Decision Support System 
(DSS) component of the VMGA that was developed for the 
VIMSEN project. The DSS system is already able to run and 
execute in an efficient way the matching algorithm. This 
allowed us to use data from 40 real life solar prosumers to 
measure the efficiency of the algorithm. The methodology of 
our evaluation is the following. We generated “demand 
response” (DR), events with a random starting time and 
duration of 15-minute blocks. Each DR event specifies an 
amount of energy (kWh), for each 15-minute block, which is 
requested by the DSO, the BRP or any other market 
participant. The request is made available 15-minutes before 
the start of the first 15-minute interval of the delivery period. 
The aggregator requests the gateways for their forecasts of 
their energy availability for the duration of the DR event. 
Using these forecasts, aggregator executes the target 
matching algorithm in order to create the cluster of prosumers 
that will respond to the event. For the purpose of this 
evaluation, we used DR events that were not concurrent. In 
an actual implementation, one would have to take into 
account any commitments that the prosumers have already 
made in different markets or other (previous) DR events. For 
every request, we evaluated the response of the system under 
two scenarios: using an AR model for generating the 
forecasts, and using the “latest known” measurement of the 
meter as estimate for the next timeslots (no forecasting).  

We tested different values for the order of the AR model, 
from 10 up to 100. We performed 50 DR events for every 
value of the order parameter that was tested. To provide a 
graphical view, in Fig. 2 the response of the system for three 
different DR events is presented. The red line represents the 
demand pattern that is requested. The green and purple lines 
are the predicted patterns of the selected cluster, using and 
not using the AR forecasting model respectively. The dark 
and light blue lines are the actual achieved prosumption over 
the period with and without forecasts respectively. We 
observed that in most experiments the dark blue line is closer 
to the red line than the light blue line is to the red line. This 
indicates that the forecasting algorithm helps in achieving a 
better match of the requested demand pattern than the case 
when no forecasting algorithm was used. In Fig. 3, we can 
see the mean absolute error of the actual prosumption vs. the 
target for each 15-minute block. When the forecast values are 
used, the system achieved a smaller mean absolute error, with 
a smaller variance. We can see that the order parameter 
affects the accuracy of the forecasts, with an order of 100 
resulting to the best accuracy on these experiments. The 
forecasting algorithm can improve the deviation from the 
target on average up to 50%, but considering the large 
variance in the estimation error, the gains may be much 
higher in some cases. 

 

 

Fig. 2: The requested demand versus the demand achieved by the 
selected cluster, with and without forecasts 

I. CONCLUSION  

In this paper, we presented a scheme for enabling energy 
prosumers to participate in real-time energy markets. We 
introduce an entity called aggregator, which is responsible for 
representing the prosumers in the energy markets. The 
aggregator is capable of receiving “Demand Response” 
events from other energy market participants, and to respond 
to them, by creating a cluster of prosumers that will respond 
to the published event. We used the autoregressive (AR) 
model for generating the energy prosumption forecasts.  



 

 

 

Fig. 3: The mean absolute error of the actual prosumption vs. the 
target for different values of the order parameter. 

The identification of the optimal set of prosumers to respond 
to the event is a computationally complex problem, so we 
introduce a heuristic genetic algorithm for finding near-
optimal solutions. Using real prosumption data, we evaluated 
the algorithms performance and found that the target 
matching algorithm is generally capable of finding a good set 
of prosumers, given accurate forecasts. Due to the inaccuracy 
of the forecasting algorithm, a deviation exists between the 

target prosumption pattern and the one actually achieved by 
the prosumers. This deviation, however, is smaller than what 
would be achieved if no forecasting algorithm is used. 
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