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Abstract—Hypervisors’ smooth operation and efficient perfor-
mance has an immediate effect in the supported Cloud services.
We investigate scheduling algorithms that match I/O requests
originated from virtual resources, to the physical CPUs that do
the actual processing. We envisage a new paradigm of virtualized
resource consolidation, where I/O resources required by several
Virtual Machines (VMs) in different physical hosts, are provided
by one (or more) external powerful dedicated appliance(s),
namely the I/O Hypervisor (IOH). For this reason I/O operations
are transferred from the VMs to the IOH, where they are
executed. We propose and evaluate a number of scheduling
algorithms for this hypervisor model, concentrating on providing
guaranteed fairness among the virtual resources. A simulator
has been built that describes this model and is used for the
implementation and the evaluation of the algorithms. We also
analyze the performance of the different hypervisor models and
highlight the importance of fair scheduling.

I. INTRODUCTION

In recent years, there has been a rapid development of
Clouds, in various forms and shapes. In their essence Clouds
provide an abstraction between what is offered, as a service
or as a resource, and what it is actually required (both in
hardware and in software) for that offering. This abstraction
reduces complexity, cost and increases efficiency since the
actual resources can be highly utilized. Additionally, this
abstraction eases the provision of tolerance against faults.
Hypervisors, the software necessary for creating and running
Virtual Machines (VMs), are the basic building block for
creating this abstraction. This is why their operation and
performance has a direct effect on the provided Cloud-based
services.

Traditionally, there is one physical machine, one hypervisor
and multiple guest Virtual Machines (VMs), running on top
of them. Clouds are supported by datacenters that consist of
several thousands of physical machines. The computational,
storage and network resources of a datacenter are orchestrated
using Cloud software like OpenStack [1], which among others
interacts with the hypervisor running on each physical machine
for managing the VMs. Task scheduling is apparent at various
levels: at a higher level the orchestration software is equipped
with scheduling logic in order to decide the physical host
where a guest VM will be initiated, while at a lower level
the hypervisor’s scheduling mechanism matches the requests
coming from virtual resources to the hosting machine’s phys-
ical cores.

In our work, we propose and evaluate scheduling algo-
rithms for the lower level, on a, somewhat, different model
of operation from the classical hypervisor. This architectural
model stems from the “ORBIT: Business Continuity as a
Service” project [2], with the main aim to address the needs of
mission-critical services, in terms of enabling advanced high
performance fault-tolerance and disaster recovery.

In this new paradigm of virtualized resource consolidation,
I/O resources used by several Virtual Machines (VM), running
on top of multiple physical hosts, are provided by one (or
more) external powerful dedicated appliance(s), namely the
I/O Hypervisor (IOH). Externalization (from the perspective
of the guest VM) and consolidation of virtualized I/O are
carried out by transferring I/O operations requested by the
VMs to the IOH, where they are executed. In this way I/O
services, like firewall, Deep Packet Inspection (DPI) and block-
level encryption that consume a lot of CPU resources, can be
consolidated in a dedicated server, increasing CPU utilization
and accommodating changes in load conditions where demand
from different hosts fluctuates.

The way I/O operations, originating from (or destined to)
multiple VMs in several physical hosts, are scheduled for exe-
cution in the I/O Hypervisor’s (IOH) available cores, is critical
for the efficiency of I/O consolidation. This efficiency can be
translated to the number of VMs an IOH can concurrently
serve, to the serving throughput and other parameters. The I/O
operations are packet structures that are sent between virtual
and physical devices in either direction, and the objective is
the selection of the core in the IOH that processes each one.

In our work, we implement and evaluate a number of
online fair scheduling algorithms for the IOH. For this purpose,
the IOH (Section III) is formulated as a multiple-queues and
multiple-servers system (Fig. 1). These queues correspond to
the virtual and physical devices, located in the VMs and the
IOH respectively, while the servers to the actual CPU cores of
the IOH that process the I/O operations. Also, a simulator has
been build that describes this I/O paravirtualization model and
is used for the implementation and evaluation of the various
algorithms’. Fairness is the main criterion considered. In ad-
dition, we analyze the performance of the different hypervisor
models and show that the considered I/O consolidation model
achieves smaller queuing delays.

The remainder of this paper is organized as follows. In
Section II we report on previous work. The I/O Hypervisor
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Fig. 1: A graphical representation of a multiple-queues and
multiple-servers system.

problem is formulated in Section III. Also, I/O Hypervisor’s
performance is theoretically analyzed in Section IV. Section V
describes the implemented scheduling algorithms. Sections VI
and VII present the simulator used for the evaluations and the
results. Finally, the paper is concluded in Section VIII.

II. PREVIOUS WORK

Three major techniques are common for hosts to virtu-
alize I/O services for their guests: emulation [3], where a
familiar device (e.g., a common network card) is emulated,
paravirtualization [4], which emulates a new device, designed
not to resemble any existing device but to be as efficient as
possible when used across the guest-host boundary, and device
assignment [5], [6], where the host gives a guest (mostly) direct
access to a portion of a certain physical device.

Despite the proven performance advantage of device as-
signment, paravirtualization is preferred or even required be-
cause device assignment does not support I/O interposition and
thus cannot be used when the hypervisor needs to intercept
all the I/O channels to implement fault tolerance capabilities.
Device assignment also requires more expensive hardware.
For these and other reasons, most real-world applications
of virtualization today choose to use paravirtual I/O. Using
paravirtual I/O, the hypervisor running on each server is
responsible for interposing on the I/O of each of its guests.
The hypervisor requires and consumes physical resources such
as CPU, RAM, and SSDs from each of the servers, which
could otherwise be assigned to the running guests or be used
to run additional guests. In addition, this model degrades the
performance of I/O intensive guests and limits the scalability of
the system [7]. In the I/O paravirtualization model we consider
in our work, we combine SR-IOV [8] that provides near native
I/O performance, together with paravirtual I/O technologies
[3], [4], which enable I/O interposition (required for fault
tolerance).

The scheduling of the VMs’ operations on physical pro-
cessing units (e.g., cores) is an important task for any kind
of hypervisor. Credit scheduler, which is the default scheduler
in Xen hypervisor, manages CPU allocation for VMs based
on credit value set by predefined weight of each VM [9].
The calculated credit is assigned to each VM periodically
and is consumed proportional to the processing time of the

VM; this consumption is conducted at the granularity of a tick
interval. Cherkasova et al. [10][11] analyzed three CPU of Xen
(BVT, sEDF and credit) by measuring I/O throughput for dif-
ferent scheduling parameters. Their experiments demonstrate
the performance impact of CPU allocation for host domain,
which hosts I/O on behalf of guest domains. They show that
frequent interventions of host domain degrade I/O throughput
because this incurs several domain switches and prevents guest
domains from batching I/O requests. This work illustrates
challenging issues related to VM scheduling mechanism for
varied workloads. In [9], the authors evaluate the Credit and
the sEDF schedulers within Xen, which are able to do a good
job of fairly sharing processor resources among computing-
intensive domains. However, when bandwidth intensive and
latency-sensitive domains were introduced both schedulers
showed mixed results.

Fairness is one of the most important objectives in any kind
of scheduling. Most fair scheduling policies (GPS [12][13],
WF2Q [14], SFQ [15], BVT [16], DRR [17]) target single-
resource systems . However, multi-resource (network, storage,
memory, computation) systems arise in a number of cases. For
example, end-hosts are increasingly equipped with multiple
network interfaces, ranging from smartphones with multiple
radios to servers with multi-homing. Also, in many cases these
interfaces are diverse; some are expensive to use (e.g., 4G),
some are free (e.g., WiFi) and they have different rates and
reliability. Similarly, the parallel subcarriers of OFDM systems
in wireless networks can be considered as multiple servers
[18]. Multi-resource contention also arises in systems hosting
VMs, which require access to physical resources (computing,
storage and memory) for their operations. In our work, the I/O
Hypervisor is formulated (Section III) as a multiple-queues
and multiple-servers system (Fig. 1), which correspond to the
various virtual and physical devices and the cores that serve
their I/O operations. A major issue in the above is how requests
from different flows are scheduled to the available resources.

Fair scheduling mechanisms, like GPS-based and round-
robin algorithms, for the single resource (link, core etc.) do
not trivially extend to the multi-resource case [19], [20], [21].
Another idea is to employ a GPS-based scheduler for each
processor and partition the set of threads among processors
such that each processor is load balanced. While such an
approach can provide strong fairness guarantees on a per
processor basis, it has certain limitations [19].

A number of multi-resource extensions of single-resource
fair scheduling algorithms have been proposed over the years.
In [22] GPS scheduling was extended to the case of multiple
nodes. In [23], the authors extended Weighted Fair Queuing
(WFQ) and WF2Q to multi-link scheduling, proposing the
MSFQ algorithm. When a server is idle and there is a packet
waiting for service, MSFQ schedules the “next” packet, defined
as the first packet that would complete service in the GPS
system with one server and equal total capacity if no more
packets were to arrive. MSFQ does not provide bounded
fairness, in terms of the independence of the amount of service
any flow receives, in relation to the set of flows. The authors
also propose MSF2Q that provides bounded fairness and prove
it.

The work in [24] focuses on the allocation of resources of
different types and proposes Dominant Resource Fair (DRF)
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algorithm. The allocation of a user (flow, etc.) is determined by
the user’s dominant share, which is the maximum share that
the user has been allocated of any resource type. Dominant
Resource Fair Queuing (DRFQ) [25] generalizes the concept
of virtual time from classical fair queuing to multiple resources
that are consumed at different rates over time and implements
DRF allocations in the time domain. In [26], the authors show a
simple scheduling scheme for packet-by-packet GPS over mul-
tiple interfaces, and prove that it can provide bounded delay
and rate guarantees. They present again the idea of clustering
flows with the same service rate in the same servers, which
may better approximate the GPS. In [27], a greedy algorithm
for the fair allocations of resources based on bottlenecks is
defined.

A number of works extend DRR for the multi-resource
scenario [28] [29]. In [29], a DRR-based scheduling algo-
rithm is presented, called miDRR, generalized for multiple
interfaces. The algorithm is designed for sharing multiple
interfaces while respecting user preferences about how they
should be used and by which application and rate preferences.
miDRR algorithm strives wherever possible to give each
flow its weighted fair share of capacity (defined by the rate
preference), while guaranteeing that it will never violate the
interface preference, and remaining work-conserving on all
interfaces. The algorithm remains fair even in the case that the
queues prefer using particular CPU cores (e.g., for CPU affinity
reasons). The authors prove that miDRR finds the correct max-
min allocation. The provided methodology permits building a
practical packet scheduler.

III. PROBLEM FORMULATION

A. I/O Hypervisor

The I/O Hypervisor (IOH) externalizes storage and network
I/O resources from a total of N Virtual Machines (VMs)
residing on H different physical hosts, and consolidates all
of them in a single dedicated machine M . The IOH has
D physical storage devices (disks) and C physical network
devices (communication devices or NICs), for a total of
S = D+C physical devices. The IOH’s architecture is briefly
presented in Fig. 2.

Each virtual device d of Vi (where i = 1, 2, ..., N ) is served
by a pair of transport t(d) and service s(d) FIFO queues,
belonging to the I/O Hypervisor (IOH). A transport queue
maps to a particular virtual device (network or storage of a
VM), connected via Layer 2 connectivity. A service queue
maps to a physical device (network card or disk ofM ) that can
be shared by many VMs (and corresponding virtual devices).
We assume that there is a total of T transport queues (virtual
devices) and S service queues (physical devices). The mapping
of the T queues to the S queues determines which physical
devices serve the VMs’ virtual ones. Though this mapping
may be interesting, performance-wise, we assume it is decided
when a VM is set up, and is considered fixed. The IOH is
also equipped with a number of Processing queues, where
I/O data are stored for processing operations like: deep packet
inspection - DPI, block-level encryption etc.

The I/O Hypervisor (IOH) is a multi-core machine, with
K CPU cores that can be utilized in parallel. The (t, s)
or (s, t) pair each CPU core is dedicated to, changes over

Fig. 2: The I/O Hypervisor’s architecture.

time according to scheduling. It is evident that the maximum
number of pairs served simultaneously (in parallel) at any
given time is equal to the number K of I/O Hypervisor CPUs.
Also, the number of VMs’ virtual devices concurrently served
cannot be larger than T , the total number of transport queues
at the IOH M .

B. I/O Operations

An I/O operation r uses a (t, s) pair, e.g., when a VM’s
virtual device is writing data to the storage or the network,
and a (s, t) pair when a VM’s device is reading data from the
storage or the network (a network packet arrives).

In particular, we define an I/O request r as an I/O packet of
size Br bits that originates from a virtual device and is stored
in a transport queue. Indicatively, it can be (i) a block write;
(ii) a block read request; (iii) or a packet send. An I/O response
r is an I/O packet of size Br bits that is stored in the service
queue and is destined for a particular virtual device of a VM.
Indicatively, it can be one of the following: i) a block that was
read from a physical disk ii) a notification that a write request
has finished iii) a packet received from the network Usually,
an I/O request such as read request from a VM’s device to a
disk, results in an I/O response, with the data, from the disk
back to the VM.

Generally, a CPU core is engaged twice for processing an
I/O request: (i) for passing data from the transport to the
processing queue and for performing the processing operation
and (ii) for passing the processed data from the processing
queue to the service queue and for writing data from the service
queue to the actual physical device. Similarly, a CPU core is
engaged twice for processing an I/O request: (i) for passing
data from the service to the processing queue and for perform-
ing the processing operation and (ii) for passing the processed
data from the processing queue to the transport queue and for
writing data from the transport queue to corresponding VM’s
device. A different core may be used to serve (i) and (ii). Also,
since a response can be created “long” after the initial request
(on the order of milliseconds for a disk), a different CPU core

4747



may be used for handling it, than the one used for the original
request.

The execution time Xr for a request or a response r de-
pends mainly on its size, on a constant time penalty describing
the latency of a physical device, on a constant initiation delay
penalty (incurred each time the serving CPU is changed) and
on the bandwidth (bits/sec) of the corresponding device.

Requests r are generated for each transport queue t
with rate λt requests/sec (for each service queue s with
λs responses/sec). Each request r belongs to a particular
type (read, write, storage, network) with probability p(r)
and carries Br bits on average. The load on a transport
queue t is λt

∑
r∈Qt

p(r)E(Xr), where Qt are the types
of requests (network, storage). The load on a service queue
s is λs

∑
r∈Qs

p(r)E(Xr). The conditions (1), (2) and (3)
determine the maximum (type-dependent) load that can be
handled by the I/O Hypervisor, without having any drops;

λt

∑

q∈Qt

p(q)E(Xq) < 1 (1)

λs

∑

q∈Qs

p(q)E(Xq) < 1 (2)

∑

t

λt

∑

q∈Qt

p(q)E(Xq) +
∑

s

λs

∑

q∈Qs

p(q)E(Xq) < K (3)

C. Scheduling

The I/O Hypervisor (IOH) scheduler is responsible for
selecting the CPU core that will serve an I/O operation from
a particular (t, s) or (s, t) pair. The scheduling procedure
runs periodically so as to serve new I/O requests/responses
or assigned CPU cores that completed their assigned I/O
operation. The scheduler uses an online algorithm, making
decisions in a bounded short time (deadline-based scheduling).
This impacts not only the frequency at which we can run the
scheduling algorithm, but also impacts the performance of the
IOH itself. For example, if we were to run the scheduling
algorithm once per second, the decision algorithm would have
to finish within the one second period, but would also use
100% a CPU core during that time, reducing the CPU power
available for I/O processing.

IV. I/O HYPERVISOR PERFORMANCE

A. Analysis

As mentioned, the I/O Hypervisor (IOH) suggests a dif-
ferent architectural model of operation from the classical
hypervisor, in which memory and I/O resources used by a guest
Virtual Machine (VM) are provided by an external host, instead
by the local one. This also means that the I/O operations
generated by the VMs in a host are not carried out by the
corresponding local CPU resources but they are all sent and
processed by the consolidated CPU resources located in the
IOH. The two architectural models are presented in Fig. 3,
assuming N physical hosts and corresponding VMs.

In this section, we theoretically compare these two models
in terms of the queuing delays of the I/O operations, using stan-
dard queuing theory concepts [30]. In the classical hypervisor,
we model each physical host as an M/M/c queuing system,

assuming that all I/O operations, generated by the guest VMs,
are put in a single FIFO queue. When one of the c CPU cores
becomes available, it receives the first I/O operation from the
queue and processes it. In the IOH model, we do not consider
the transport and service queues but instead we assume that
there is again a single FIFO queue where all operations are
placed as they arrive from the VMs located in other machines.
In this way, the IOH is again modeled as a M/M/k system,
where k the number of CPU cores in the IOH. Also, Poisson
arrival rate λ and service rate μ is an acceptable assumption.
Additionally, in both cases we do not consider scheduling,
but in a way we assume that scheduling is perfect, with all
I/O operations treated equally and the CPU resources always
working. Based on the assumptions made, the queuing delay
of an I/O operation for the original (T ) and the I/O hypervisor
(T̂ ) models, in any of the N physical hosts is equal to

T =
1

μ
+

PQ

cμ− λ
(4)

T̂ =
1

μ
+

P̂Q

kμ−Nλ
(5)

We should note that for the IOH, the load of the system is
equal to the accumulated load (Nλ), since we assumed for our
analysis that all I/O operations are placed in a single queue.

PQ and P̂Q represent the queuing probability in each case
that relates to the system load. In case of lightly loaded sys-
tems, where few I/O operations are generated, both probabili-
ties can be considered almost equal to 0, since these operations
are immediately served by the waiting CPU resources. In this
case, the average queuing delay in both models is equal to
T = T̂ = 1/μ. On the other hand, in case of heavily loaded
systems, PQ and P̂Q can be considered almost equal to 1 (the
same approach has been presented in [30]), meaning that any
I/O operation will be queued for some time before a CPU
resource becomes available for its processing. In this case,

assuming also that 1
μ � PQ

cμ−λ ,
1
μ � PQ

kμ−λ and k = Nc we
have that

T

T̂
∼= kμ−Nλ

cμ− λ
⇒ T

T̂
∼= N (6)

which means that in heavy loads the queuing delay of an
I/O operation in the classical hypervisor model can be N
times larger than that in the I/O Hypervisor (IOH) model.
This performance difference is due to the fact that the IOH
can better serve unbalanced, between the various VMs and
guest hosts, I/O traffic than the classical model. In particular,
in the classical model the I/O operations generated in a heavy
loaded machine cannot take advantage of the CPU resources
available, in other possible lightly loaded physical machines.
On the other hand, in the IOH all I/O operations are served
from the same set of resources.

In the previous analysis, we assumed in the classical model
that all machines have the same number of CPUs. In case we
do not make this assumption and the CPU cardinality varies
among machines, then for heavily loaded systems the average
queuing delay of an I/O operation on the classical model
increases. This scenario highlights even more the advantage
of IOH model, since the average operation delay ratio of the
two models, increases as well. In this scenario, the machine
with the smallest number of CPUs (e.g., one) becomes a
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Fig. 3: The classical and the I/O Hypervisor models.

bottleneck for the average queuing delay. In particular, the
average delay of an I/O operation generated in the bottleneck

machine is T̃ = 1
μ +

P̃Q

μ−λ . In case we have lightly loaded

systems (P̃Q
∼= 0 and P̂Q

∼= 0) the average waiting time, as in
the previous case, is equal. In case of having heavily loaded
systems (P̃Q

∼= 1, P̂Q
∼= 1), we have that

T̃

T̂
∼= kμ−Nλ

μ− λ
= k +

(k −N)λ

μ− λ
⇒ T̃

T̂
� N (7)

since k � N by definition. A similar analysis can be
carried out assuming different arrival rates for the various
machines, where the machine with the largest rate becomes
the bottleneck.

Of course in practice it is expected that the number of
CPU resources of the I/O Hypervisor (IOH) to be smaller than
the accumulated count of CPU resources from all the physical
host (of the first model): k < Nc. In this case the performance
difference of the two models is reduced. Also, in addition to the
queuing delay there is the transfer delay of each I/O operation
from the original physical machine to the IOH that also hinders
the performance. However, this delay is relatively insignificant
compared to the processing time of an I/O operation, and we
expect that emerging fast interconnects with lower latency and
higher throughput will make it even more negligible.

B. Criteria

The main performance criterion for the I/O Hypervisor
(IOH) is the number of Virtual Machines (VMs) that it can
efficiently serve. This actually translates to the number of
virtual devices that it can serve assuming a particular average
I/O operation generation rate and data size. The efficiency of
the IOH has mainly to do with the time required for an I/O
operation to complete.

One can relatively easily identify the main bottlenecks,
that is communication delay between the physical machines
hosting the VMs and the IOH and queuing delays inside the
IOH. Communication delay can limit the I/O operation service
rate and the corresponding completion time. However, inside a
datacenter environment this delay is expected to be low, even
under heavy I/O workloads. Also, the Layer 2 communication
used between the VMs and the IOH induces low additional
control overhead, in comparison to Layer 3 communication.
Queuing delays inside the IOH relate to the way transport and
service queues are matched and the various queues (transport,
service, processing) are served by the available cores of the
IOH. For example, matching heavily loaded transport queues
to a single service queue of small service rate (e.g., disk write
rate) increases queuing delay. Similarly, a poor scheduling
mechanism that decides which cores will process which queues
may lead to I/O requests waiting for too long in their queues or
to VMs’ virtual devices that are unfairly handled by the IOH.
In this work we consider the matching between the transport
and service queues to be static and we concentrate on the
implementation and evaluation of scheduling algorithms that
can serve the IOH queues in a fair manner, providing in this
way indirectly Quality of Service (QoS) to the corresponding
virtual devices.

The main objectives of this work are described below:

• fairness on service capacity allocation between queues
• minimization of mean queuing delay fir I/O re-
quests/responses

• capability of giving priorities to requests/responses of a
particular type (or from a particular VM)

• maximization of resource utilization
• maximization of I/O throughput
• maximization of the number of VMs that can be served
Among the objectives described above, we mainly target

in providing fairness between queues. So, we propose an
algorithm that essentially achieves this objective and provides a
good performance for the other objectives as well. In particular,
we propose the miDRR-IOH fair scheduling algorithm, which
is based on [29], miDRR algorithm. The minimization of the
mean I/O queuing delay is a natural consequence of fairness in
capacity allocation, and is explained in the following sections.
Maximum resource utilization is also achieved through the
specifications of the algorithm, as it is work conserving and
does not waste any capacity available. In addition, maximum
resource utilization depends on the operational frequency of
the scheduler, as there may be capacity waste if the scheduler
operates slowly. Furthermore, we conduct experiments for
discovering the number of CPU cores required to serve a
particular number of queues.

V. IMPLEMENTED ALGORITHMS

A. The miDRR-IOH Algorithm

The multiple interface Deficit Round Robin-I/O Hypervisor,
or miDRR-IOH weighted max-mix fair algorithm, is a variance
of miDRR introduced by Yap et al. in [29], a generalized
form of the classic Deficit Round Robin [31][32] for the case
of multiple servers. miDRR is adapted based on the charac-
teristics of the I/O Hypervisor (Section III), where multiple
I/O virtual devices’ queues are served by the available cores.
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This algorithm, unlike most fair queuing algorithms available,
allows both rate and interface preferences to be met, i.e.
preferences on service rate of each queue, and the capability
a subset of queues to be served by particular interfaces (or
CPU resources in the case of miDRR-IOH). Furthermore, the
algorithm is also work-conserving, which means that capacity
is not wasted when there is traffic available in the queues,
and remains max-min fair, even with the existence of interface
preferences. This indeed is achieved very efficiently, using a
list of flags, called service flags, while no other coordination
between the queues is required. Each flag corresponds to a
device-core pair, indicating whether the device is currently
served by the core.

For each queue, the user can set a weight value (defaults
to 1.0). Also, each queue keeps a deficit counter value that is
initialized to 0 and a quantum size value that is determined
from its weight. The quantum size value Qi of queue i is
derived by Qi = wi ·Qmin, where Qi and wi are the quantum
size and weight of queue i, respectively. Qmin is the minimum
quantum size of all queues. The minimum quantum size, in our
case, is derived by the length of the smallest (in bytes) request
of the system. A device’s queue is designated as “backlogged”,
at a given time, if there are queued requests.

In each scheduling round, the algorithm selects the first
available (not busy) core, in a round-robin manner. If there
are no cores available, the algorithm returns. After selecting
the core, the algorithm selects the next, again in round-robin,
transport-service pair (t, s) with a backlogged queue. If there
are no transport-service pairs with backlogged queues left, the
algorithm returns. If the length of the selected queue’s head-
of-line request is less than, or equal, to the deficit counter, then
the request is processed. The deficit counter is then decreased
by the request’s length (in bytes). In addition, the service flags
of all other cores that correspond to the selected queue are set.
The core serves the particular transport-service pair (t, s) until
the corresponding queue is empty or the deficit counter is zero.
When a transport or service queue is empty, the value of the
deficit counter is reset, indicating that it is no longer considered
backlogged. In the following round the core selects the next,
in round-robin, pair for processing. Also, if the service flag
corresponding to a pair is set, which means that it is served by
another core, the flag is reset. This last step is repeated, while
iterating cores, until an already reset service flag is found. After
that the deficit counter for the selected queue is increased by
its quantum. The miDRR-IOH algorithm is described as in
Algorithm 1.

B. Other Algorithms

1) Credit Algorithm: The Credit algorithm is based on
the Xen’s Credit Scheduler, which is a proportional fair
share CPU scheduler built from the ground up to be work
conserving on Symmetric multiprocessing (SMP) hosts. We
have implemented and experimented on a packetized variation
of the algorithm for the case of I/O operation scheduling.
We have reduced all Xen components to their corresponding
components of an I/O Hypervisor. In particular, a domain is
reduced to a VM, a VCPU is reduced to a transport-service
pair and a PCPU to a core. Each core must be assigned to at
least one virtual I/O device, while a virtual I/O device may be
served by multiple cores, depending on the user specifications.

Symbol Description
BLi Backlog of flow i
Sizei Size of flow i’s head-of-line packet
Qi Quantum for flow i
DCi Deficit counter for flow i
Fj Set of flows willing to use interface j
Cj Current flow interface j is serving
B Set of backlogged flows
SFij Interface j’s service flag for flow i

(Service flags for new flows are initiated to zero.)

Algorithm 1 miDRR-IOH(j)
1: if Fj ∩ B = ∅ then
2: return
3: end if
4: i← Cj
5: if Sizei ≤ DCi then
6: Send Sizei bytes
7: DCi ← DCi − Sizei
8: end if
9: if BLi = 0 then
10: DCi ← 0
11: Remove i from B
12: end if
13: if BLi = 0 or Sizei ≥ DCi then
14: Cj ← miDRR-IOH-Check-Next(i, j)
15: i← Cj

16: DCi ← DCi +Qi

17: end if

Algorithm 2 miDRR-IOH-Check-Next(i, j)
1: (s, d)← Next device pair with s being backlogged
2: i← s
3: Cj ← i
4: while SFij �= 0 do
5: SFij ← 0
6: (s, d)← Next device pair with s being backlogged
7: i← s
8: Cj ← i
9: end while
10: SFik ← 1, ∀k �= j
11: return (i)

We associate a weight to an I/O device, either virtual
that corresponds to a transport-service pair (t, s) or physical
that corresponds to a service-transport pair (s, t). A weight
value may range between 1 and 65536, defaulting to 256,
determining the core capacity assigned to the device, i.e. a
device with a weight of 512 takes twice as much core capacity
as a device with a weight of 256.

Each I/O device pair is also associated to a priority value,
under or over that indicates if there is a positive or negative
amount of credits left. Each core manages a local run queue of
I/O device pairs that can be scheduled. This queue is sorted by
I/O devices’ priorities, which means that the devices labeled
as under have priority to those that are labeled as over.
When inserting an I/O device pair to a core’s run queue, it is
placed after all other pairs of equal priority to it. Devices of
the same priority are scheduled in a round robin manner. When
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a core doesn’t find an I/O device of priority under, it looks
on run queues of other cores to find one. If no backlogged
under devices found, it looks in the same manner for devices
with priority over. This technique guarantees that the system
remains work conserving and that each I/O device pair receives
its fair share of core capacity system-wide. As an I/O device
pair is served, credits equal to its served bytes are consumed.
After a device has been served, it is placed in the end of
the core’s local queue. Periodically, a system-wide accounting
process recomputes how many credits each active I/O device
pair has.

2) First Come First Served Algorithm: The First Come
First Served Algorithm (FCFS) algorithm, is a variation of
the classical round robin algorithm and is used in this work
for comparison with miDRR-IOH. In summary, the basic idea
of the algorithm is the following:

1) A core is selected, in a cyclical repetitive manner. The
core which is selected, is the first available found while
iterating, starting from the last selected core. If there isn’t
any available core, the algorithm returns.

2) We select the first available transport-service pair whose
source is backlogged and can be served by the selected
core. The selection is done in a cyclical repetitive manner.
If there are no available backlogged pairs, the algorithm
returns.

3) We serve the selected pair, by sending the head-of-line
queued request to the selected core, for service.

We should note that the quantum is equal to the minimum
request size, so if all requests are equally sized, miDRR-IOH
and FCFS behave identically, assigning an (unweighted) fair-
share to transport-service pairs.

VI. I/O HYPERVISOR SIMULATOR

A. Overview

In order to conduct our experiments on I/O operation
scheduling for the I/O Hypervisor, we have developed a state-
of-the-art simulator, written in Python. The simulator allows
the user to set up an infrastructure that includes Virtual Ma-
chines (VMs), I/O devices, and the I/O Hypervisor (described
in Section III). It also allows generation of customized work-
load traffic from the I/O devices (storage and network). Using
the simulator we have implemented the algorithms described in
Section V that take decisions on the I/O operations processing
priorities.

B. Simulation process

The user interacts with the simulator via an internal
console, or an input script, using the built-in command set.
Initially, the user sets up the parameters of the system, by
creating VMs, transport queues (that correspond to virtual
devices), service queues (that correspond to physical devices)
and CPU cores. Also, each VM is assigned to virtual I/O
devices and each virtual I/O device to a physical one (it must
be the same type, storage or network). The attributes of each
component are set to to their default values, expect if otherwise
specified. The types of entities that are used in the system
and their corresponding attributes, are shown in TABLE I.
The workload of each device is also defined as a sequence

TABLE I: Simulator Entities Attributes

Device Attribute Default Value

VM weight 1.0

Core capacity 1500.0

Virtual Storage

type hdd

workload –

weight 1.0

queue 10000

Physical Storage

type hdd

weight 1.0

queue 10000

Virtual Network

workload –

weight 1.0

queue 10000

Physical Network
weight 1.0

queue 10000

of requests (following a Poisson process) generated by each
device for a given finite time duration. The size of each I/O
request is uniformly distributed from a predefined range. In
particular, the default sizes of the requests from storage devices
(block requests) range between 4 KB and 128 KB, while the
ones from network devices (packet requests) range between
64 B and 64 KB. Of course other ranges can also be setup.
Next, the scheduling algorithm is set and we can start the
simulation for a time duration, given as input (in ms). The
simulator schedules workload, using the selected algorithm.
The simulation lasts for the duration given in the input,
regardless of the duration for which requests are generated
(Poisson process duration). In the end the simulator returns
the results, and resets the workload to its initial state, in order
for another simulation process, with alternate parameters, to be
ready to start. Also there is a multi-level logging subsystem
that enables viewing of the internal operations of the simulator.

VII. EXPERIMENTAL EVALUATION

We evaluated miDRR-IOH and the other state-of-the-art
algorithms by conducting experiments using the I/O Hypervi-
sor Simulator. The simulator has been implemented in Python
2.7.6 and the experimental runs took place on a VMware
ESXi VM with Ubuntu 14.04.1 LTS (Linux 3.16.0-41-generic
under x86 64 platform) with 4 Intel® Xeon® CPUs E5-2620
@ 2.00 GHz and 4 GiB of RAM.

In what follows, we compare the implemented algorithms
with respect to i) the service capacity allocated to each virtual
device, defined as the amount of data (in bytes) of each pair
that was processed by any core and ii) the I/O operations’
queuing times, defined as the interval between the time a
request (or response) was generated and placed in a queue
and the time the request was processed by some core. It is
also important to mention that the measurements are taken on
continuously backlogged queues. Also, when a queue is full
of requests, future arrivals are dropped.

TABLE II provides information on the exact simulation
settings. In particular, the simulation duration was set to
300 ms in all the experiments conducted. The scheduler runs
iteratively, with a period of 0.5 μs and on each loop assigns
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a queued request (or response) to a core for processing. If no
assignment is possible, the scheduler skips to the next loop.

TABLE II: Simulation Parameters

Parameter Value

Simulation duration 300 ms

Scheduler loop period 0.5 μs

λ 2000 requests/sec

Virtual storage device cardinality 14

Virtual network device cardinality 14

Physical storage device cardinality 1

Physical network device cardinality 1

Cores cardinality 8

A. Experiment 1

In the first set of experiments, we evaluated the miDRR-
IOH, Credit and FCFS algorithms performance as the request
sizes (for block-device and network-packet operations) scale.
The actual sizes of block and packet requests used for our
experiments, are given in TABLE III, along with the corre-
sponding ratios. The request arrival rate for each virtual device
is modeled as a Poisson process, with λ = 2000 requests/sec
(TABLE II).

TABLE III: Sizes of Requests and Responses

Ratio Block Request/Response Size Packet Request/Response Size

1.0 50000 50000

2.0 100000 50000

3.0 150000 50000

4.0 200000 50000

5.0 250000 50000

6.0 300000 50000

7.0 350000 50000

Fig. 4 illustrates the standard deviation of capacity share
per device pair, while increasing the differentiation between the
size of block and network requests (according to TABLE III).
We observe that initially when block and packet request
sizes are equal, all algorithms seem to allocate a similar
service capacity share among devices. However, as request
size ratio grows (TABLE III), miDRR-IOH keeps a similar
capacity share allocation between the device pairs (s, t), while
FCFS deviates proportionally to the request size ratio. Credit
scheduling policy has a deviation on the capacity allocation,
thus it does not achieve near-optimal fairness as miDRR-IOH
does. However, this deviation is bounded and is not affected
by the request size ratio. We should remind that each (t, s)
pair corresponds to a particular virtual device of a VM, so in
practice miDRR-IOH provides the same service capacity to all
virtual devices utilizing the particular I/O Hypervisor. On the
other hand, FCFS does not take into account the requests’ sizes
and as a result in the end the (t, s) pairs that generate larger
requests are more benefited than those that generate smaller
ones.

The deviation of capacity share ratio, introduced in the
experiments conducted with credit policy, is due to the fact
that credit updating is taking place in a fixed time-slice,
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Fig. 4: Standard deviation of capacity share per device pair,
while increasing the differentiation on the sizes of requests.

TABLE IV: Devices Cardinality of VMs

# Disks # Network Weight (1) Weight (2)

vm0 3 1 2.0 1.0

vm1 1 3 2.0 1.0

vm2 4 0 1.0 1.0

vm3 0 4 1.0 1.0

vm4 3 1 1.0 1.0

vm5 1 3 1.0 1.0

vm6 2 2 1.0 1.0

independent from the time required a request to be processed.
This results to a lower granularity than miDRR-IOH’s which
is reflected as a relaxation in the accuracy of the results.
Therefore the existence of requests of diverse lengths, results
to this deviation of capacity share allocation. However, the way
that credit policy prioritizes devices, bounds this deviation.

Also, the miDRR-IOH and Credit algorithms achieve
shorter, on average, queuing time for the requests than FCFS
does, as it is shown in Fig. 5. This is due to the fact that these
two policies also take into account the sizes of the requests,
balancing the capacity allocated in terms of bytes, while
FCFS balances the number of requests between the devices,
disregarding their sizes. As a result, FCFS may send for
processing, much more arbitrarily large requests than miDRR-
IOH and Credit do that results in keeping cores busy, for
arbitrarily long time periods, amplifying the average waiting
times for the rest of the devices.

B. Experiment 2

Next, we evaluated miDRR-IOH algorithm using different
weight values (TABLE IV) on some of the served VMs (and
the corresponding device queues), in order to evaluate the
algorithm’s capacity share capabilities. It is clear from Fig. 6
that by setting a value of 2.0 on the weights of vm0 and
vm1 VMs, the miDRR-IOH based scheduler allocates to the
corresponding devices twice as much as the capacity allocated
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Fig. 5: Standard deviation of average queuing delay per device,
while increasing the differentiation on the sizes of requests.
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Fig. 6: Capacity share percentage allocated to each VM, while
using weights on vm0 and vm1.

to the rest of the devices. Additionally, it uniformly reduces
the capacity share of the devices belonging to VMs with a
weight of 2.0. Furthermore, we can also observe in Fig. 7
that requests generated by the devices that belong to vm0 and
vm1 are served faster than requests from other devices (and
corresponding VMs).

C. Experiment 3

In the third set of experiments, we evaluated the number
of cores required to serve a given number of devices (Fig. 8)
using the miDRR-IOH algorithm, so as to avoid any dropped
requests. All devices used for this experiment were configured
with the same characteristics (e.g., generated workload), using
the parameters of TABLE II, while both block and packet
request sizes are set to 50000 bytes. It is evident that the
minimum number of cores required to serve the generated I/O
requests increases linearly to the number of devices.
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Fig. 7: Average queuing delay of each VM, while using
weights on vm0 and vm1.
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Fig. 8: Minimum number of cores required to serve the traffic
generated by a variable number of devices.

VIII. CONCLUSION

We introduced a new paradigm of virtualized resource
consolidation, where I/O resources used by several Virtual
Machines (VMs), running on top of multiple physical hosts,
are provided by one (or more) external powerful dedicated
appliance(s), namely the I/O Hypervisor (IOH). In particular,
I/O Hypervisor hosts a number of physical storage and network
devices, which are shared between the virtual devices of the
VMs. In this way, I/O operations requested by the VMs are
transferred to the I/O Hypervisor, where they are executed.

We analyzed theoretically the I/O Hypervisor’s model in
comparison with the classical one, where a separate hypervisor
runs on each host, without any kind of device consolidation,
and compared their average queuing delays. The theoretical
results show that for heavy loads, an I/O operation on the
classical model has about N times larger queuing delay (where
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N is the number of hosts) than a similar I/O operation taking
place on the I/O Hypervisor’s model. Both models behave
similary on light loads.

We proposed miDRR-IOH algorithm for the I/O Hyper-
visor’s scheduler that is responsible for deciding the way
the available CPU resources will serve the aggregated (from
multiple VMs) I/O operations. For the evaluations a novel
I/O scheduling simulator was implemented, along with the
miDRR-IOH and two state-of-the-art algorithms (Xen’s Credit
and FCFS). A number of experiments were conducted, compar-
ing miDRR-IOH with Credit and FCFS algorithms, measuring
the average allocated CPU core capacity, and the average
I/O request queuing delay. The results show that miDRR-
IOH achieves fair allocation of the CPU capacity between
the VMs’ virtual devices and smaller average queuing delays
than the other algorithms. It is clear from our work that
scheduling efficiency plays a major role in the success of the
I/O Hypervisor.
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