
Industrial Wireless Sensor Networks. http://dx.doi.org/10.1016/B978-1-78242-230-3.00004-0
Copyright © 2016 Elsevier Ltd. All rights reserved.

4Wireless sensor network
administrative management
M. Kalochristianakis*, E. Varvarigos†

*Technological Educational Institute of Crete, Crete, Greece, †University of Patras,
Achaia, Greece

4.1 � Introduction

The proliferation of wireless sensor network (WSN) technologies is challenging
administration practices since the latter often lack standard solutions or established
management practices. Despite the potential value of managing remote, scalable, or
productive installations, there are currently very few integrated management systems
that support WSN infrastructures, besides standard workstations and smart devices.
Traditional network management priorities, such as fault, configuration, security, per-
formance, accounting management, etc., need to be complemented by additional ones,
such as energy conservation policing, code delivery, software updates, and topology
consciousness in the case of WSNs. Most commercial infrastructure management
(IM) systems use remote client or agent modules that convey network management
(NM) and systems management (SM) functionality. Agents may vary in terms of op-
eration, functionality, or presentation; they may run as user or system processes, sup-
port flexible types of installation, and they may support complex configurations and
expose extensive or minimal graphical interfaces to users. IM agents typically exploit
a family of management protocols by the Desktop Management Task Force (DMTF)
and the Internet Engineering Task Force (IETF), including WBEM (Thompson,
1998), CIM (Tosic and Dordevic-Kajan, 1999), WMI (Microsoft technet, n.d.), SNMP
(Chaparadza, 2005), and others. The overall complexity and data volume that come
with such technologies is typically beyond the capabilities of WSN terminal stations
and, unless management standards are established for WSNs, most IM solutions may
not include them in the near future. The few available Free, Open Source (FOSS) IM
systems employ customizations and extensions in order to apply integrated manage-
ment for wireless networks. The rest of the chapter describes how WSNs can be man-
aged by means of extending an open-source IM platform such as OpenRSM (Karalis
et al., 2009)—that is, how administrators can implement usable, custom, high-level
IM use cases for WSNs. The chapter choses TinyOS as the WSN platform but the aim
is to elaborate on a general-purpose methodology that can be applied for any type of
WSN technology.

TinyOS (Levis, 2006) is an open-source, component-based operating system for
the construction of WSNs that has gained in popularity in recent years. It relies on
systems-on-chip with communication, computation, and sensing capabilities. Other
similar operating systems for WSNs are MagnetOS (The MagnetOS Operating System,

58� Industrial Wireless Sensor Networks

2012), MantisOS (Bhatii et al., 2004), CONTIKI (Dunkels et al., 2004), SOS (Han
et al., 2005), PUSPIN (Lifton et al., 2002), and CORMOS (Yannakopoulos and Bilas,
2005). Recent surveys of networked sensor technologies can be found in Dwivedi
et al. (2009) and Chatzigiannakis et al. (2007). TinyOS started as a collaboration be-
tween the University of California, Berkeley, in co-operation with Intel Research and
Crossbow Technology (Crossbow technologies, 2012), and has grown to an interna-
tional consortium, The TinyOS alliance (2012). The system offers libraries and tool
chains for all the major families of embedded processors, and can thus build and de-
ploy applications for various types of boards. Like any operating system, it hides the
low-level details of the WSNs (Levis et al., 2005) and provides appropriate APIs for
the required abstractions—that is, packet communication, routing, sensing, actuation,
and storage. It is a monolithic operating system since it uses a component model at
compile time and a static image at runtime. It is also completely non-blocking and
supports a single stack. All I/O operations that last longer than a few hundred micro-
seconds are asynchronous and have callbacks. To enable compiler optimizations the
Network Embedded System C (NESC) language has been created in order to statically
link callbacks, called events according to the philosophy of TinyOS. NESC was based
on C and thus supports a syntax similar to that of C and also uses data types that corre-
spond to basic C types. For example, in MICA and TELOS motes, the integers are 16
bits wide while for INTELMOTE2 they are 32 bits. Being non-blocking enables the
system to maintain high concurrency with a single stack but it forces programmers to
write complex logic by implementing many small event handlers. TinyOS is capable
of supporting complex programs with low memory requirements; many applications
fit within 16 KB of memory and the core OS is only 400 bytes. To support larger com-
putations, TinyOS provides tasks that are similar to windows deferred procedure calls
and interrupt handler bottom halves. Thus, a component can post a task, which the
OS will schedule to run later. Tasks are non-preemptive and run in FIFO order. This
simple concurrency model is sufficient for applications that focus on I/O, but has dif-
ficulty supporting ones that demand high CPU utilization. To address this, there have
been several proposals for incorporating threads into TinyOS.

TinyOS supports WSN nodes that rely on specific hardware, abiding by its open
licensing. Many mote architectures are supported, including EPIC, Imote, Shimmer,
Kmote, and MICA, amongst others. MICAs as well as TELOS motes have been de-
veloped in UC Berkeley and became commercially available by Crossbow. WSN
nodes may also rely on third-generation MICA hardware for WSNs, such as MICAZ,
MICA2, or MICA2DOT, that typically support 4 KB or more data RAM, 128 or more
KB of program memory, and 512 or more KB of flash memory relying on the inte-
grated circuit CC1000 by CHIPCON. Such devices are supported by microcontrollers
such as the ATMEL 8-bit ATmega 128L. The former typically relies on a multi-
channel transceiver that operates at 868/916 MHz and the latter on one that can utilize
the band from 2.4 to 2.48 GHz that is the IEEE 802.15.4 (ZIGBEE) spectrum. Both
devices may rely on battery for power source and typically use two batteries, AA size.
The boards that host MICA2 or MICAZ motes with sensory circuits are MTS100,
MTS101, MTS300, MTS310, MTS400, MTS420, and MDA300. Most of the motes
also support expansion slots for additional sensors. MICA2DOT devices reply on

Wireless sensor network administrative management� 59

multiple channel transceivers that utilize the channels 315, 433, 868, or 916 MHz.
Their power source is typically lithium 3 V coin cells and they can be installed on
MTS510 or MDA500 boards. TELOS is another family of motes for TinyOS that in-
cludes the TELOSA, TELOSB, and TMOTE models. The motes in this are packaged
with the 16-bit SI MSP430 microcontroller, which is efficient in terms of energy con-
sumption. The modes utilize the 2.4‒2.48 GHz IEEE 802.15.4 band (ZIGBEE). The
motes typically integrate light, temperature, humidity, and voltage sensors. The mem-
bers of the family are differentiated in terms of resources such as memory. TELOSA
support 2 KB of RAM, 128 KB of program memory, and 512 MB of flash memory.
TELOSB support 10 KB of RAM, 48 KB of program memory, and 1 MB of mem-
ory flash. They rely on two AA batteries for power source or via USB ports. Other
motes that may run TinyOS are TinyNode, EyesIFX, and IntelMote2, amongst oth-
ers. TinyNode devices use the 16-bit SI MSP430 microcontroller and wireless trans-
ceiver at 868 MHz. They use 8 KB of RAM, 92 KB of program memory, and 512 MB
memory flash, the YE1205 integrated circuit and lithium batteries. TinyNode boards
support light, temperature, and humidity sensors and a small breadboard surface; they
are constructed and made available by Shockfish. EyesIFX devices are developed by
INFINEON during the Energy Efficient Sensor Networks (EYES) EU research pro-
gram. They employ TDA5250 integrated circuits for their operation. They have a 16-
bit SI MSP430 microcontroller, a wireless FSK and ASK transceiver that reaches up
to 64 kbps of rate. Their power source comes from AA batteries and they also come
with 10 KB of RAM, 48 KB of program memory, and 512 MB of flash memory. They
support high-precision temperature and light sensors. IntelMote2 or Imote2 is an ad-
vanced WSN platform that replies the powerful PXA271 microprocessor by Intel.
It uses the CC2420 integrated circuit and an IEEE 802.15.4 transceiver. It supports
256 KB SRAM, 32 KB SDRAM, and 32 MB flash memory. The mote supports differ-
ent interfaces for power such as USB or Imote2 board batteries. The ITS400 family
of Crossbow boards that use IntelMote2 support light sensors, temperature sensors,
triple axis accelerometer, and four-channel A/D converters. The IMB400 boards, also
from Crossbow, feature multimedia functionality since they support camera, micro-
phones, sound encoding and decoding, besides passive infrared sensor radiation (PIR).
IRIS devices come with the ATMEGA 1281 ATMEL 8-bit microcontroller, an IEEE
802.15.4 transceiver and also 8 KB RAM, 4 KB EEPROM, 128 KB program mem-
ory, and 512 MB flash memory. Such devices are powered by two AA batteries and
are expandable through the use of MTS300, MTS310, MTS400, MTS420, MDA100,
MDA300, and MDA320, just like MICA2 and MICAS motes.

There are several management tools, platforms, and architectures for WSN cur-
rently available, each relying on different IM approaches. The bridge of the sensors
system (BOSS) (Song et al., 2005) implements a management platform that relies on
the standard service discovery protocol UPnP. Since the UPnP protocol is difficult to
run on every sensor, BOSS adopts the bridging approach and uses designated nodes as
management intermediates that employ XML for the description of services and for
the communication of data. The system offers the ability to retrieve basic information
about the state of the network, the characteristics of sensor nodes, the number of nodes
in the network, and the topology. Administrators may interact with notes and configure

60� Industrial Wireless Sensor Networks

parameters such as the transmission power or the node state. The MANNA architec-
ture (Ruiz et al., 2003) is designed to manage any WSN application by exploiting spe-
cific operation models that reflect common functionality to WSN systems. It considers
three management dimensions, namely functional areas, management levels, and WSN
functionalities. Functional areas include configuration, fault, performance, security,
and accounting management. WSN functionality considers configuration, mainte-
nance, sensing, processing, and communication, and management can be applied at
the level of business, service, network, and network element management. MANA is
flexible, independent of the adopted WSN technology, and allows all possible con-
figurations of the managed entities. Both the BOSS and the MANA management ar-
chitectures follow the example of established NM principles. Middleware solutions
use additional logic layers within the firmware of motes in order to implement basic
IM services. The MATE (Levis and Culler, 2002) middleware introduces lightweight
virtualization that aims to overcome the diversity in boards and thus simplify the task
of managing diverse sensors. MATE's objective is to reduce complexity by reducing
the size of programs, making them capable to be run on MICA, RENE, and other
motes. The source code is broken down into 24 instruction capsules that self-replicate
through the network via ad-hoc routing and data aggregation algorithms. AGILLA
(Fok and Roman, 2005) is a mobile agent middleware that facilitates the rapid deploy-
ment of adaptive applications in WSNs. It allows users to create and inject programs,
called mobile agents, which can be coordinated through local tuple spaces. Mobile
agents migrate across WSNs and are capable of performing application-specific tasks.
COUGAR (Cougar Project, 2011) is another middleware for WSN that uses a data-
base for scalable and flexible WSN monitoring. COUGAR issues cross-layer optimi-
zations, such as query-layer-specific routing algorithms optimized for regular types
of communication patterns. The MIRES (Eduardo et al., 2004) middleware adopts
an asynchronous publish/subscribe model for the communication with WSN nodes.
NEST (Network Virtual Machine for Real-Time Coordination Services, 2012) is a
real-time network coordination and control middleware that abstracts, controls, and
ultimately guarantees the desired behavior of large unreliable networks. It is based on
operating system tasks, called micro-cells, that provide support for migration, replica-
tion, and grouping functionality. Older middleware systems are the SCADDS and the
Smart Messages project (Scalable Coordination Architectures for Deeply Distributed
Systems). Other management systems for WSNs include various types of implementa-
tions. SNMS (Gellersen et al., 2002) is an application-cooperative management system
for WSNs that uses minimum resources to provide a query system that enables rapid,
user-initiated acquisition of network state and performance data, and also an event
registration system. SNMS is based on a networking stack that runs in parallel with the
applications stack. LEACH (Heinzelman et al., 2000) and GAF (Xu, 2001) also fall
within the category of protocol-based management platforms for WSNs. GAF exploits
node redundancy and supports sleep modes for overlapping nodes, while LEACH uses
dynamic, efficient clustering in order to manage sensor networks. Another category
of WSN tools focuses on monitoring consoles for WSNs. WSNView (Chen et al.,
2007) is a technology capable of automatically searching and displaying network
facilities, collecting and analyzing network utilization, and automatically producing

Wireless sensor network administrative management� 61

notifications. Other similar visualization tools are TinyDB (Madden et al., 2003) and
MoteView (Touron, 2005). TinyDB uses an SQL-like syntax in order to collect data
from nodes and also provides basic configuration for motes. Administrators may re-
cover the topology of the network or create graphs of data using its versatile low-level
interface that offer only minimum levels of automation since administrators need to
manage network operations manually and know how to exploit its representations and
operations. MoteView is a tool for NM and control for WSNs from commercial work-
stations; it stores the measured data in an informational system and offers a graphical
user interface that presents the network topology or the measured values. MoteView
may also control mote parameters such as transmission power, sampling frequency,
and node identification numbers. There are also many tools that focus on battery or
transmit power management—that is, sampling frequency and transmission rate con-
figuration. Agent-Based Power Management (ABPM) uses intelligent mobile agents
for power conservation when nodes reach critical battery levels. Other similar tools
such as SenOS and AppSleep force WSN nodes to automatically sleep when they are
not performing data measurements. Systems like Siphon, DSN RM, and WinMS are
capable of managing the network traffic efficiently; Siphon takes advantage of nodes
that transmit in multiple directions in order to avoid congestion and heavily shared
links. DSN Resource Management (DSNRM) evaluates traffic for incoming and out-
going links and time-schedules the transmissions in order to optimize network usage.

4.2 � General-purpose IM

OpenRSM is a tool for the remote management of any IT infrastructure. It extends
and integrates high-value FOSS projects in order to provide an integrated manage-
ment platform. The goal has been to build a remote systems and NM platform capable
of facilitating daily tasks. The system is designed to be fully functional yet simple,
unlike most commercial management systems. IT is designed to offer information
retrieval about installed assets, management of installed software, sending executable
commands to stations, controlling remote desktops, wireless access points manage-
ment, and integration with EGEE Grid technologies. OpenRSM was developed by
integrating, enhancing, configuring, and customizing FOSS tools in order to deliver
general-purpose IM. The basic services supported by OpenRSM are assets manage-
ment (AM), software delivery (SD), remove desktop control (RDC), and NM. At the
time the system was being created, there was no FOSS system that could claim to
approach functionality similar to that of commercial Enterprise Management Systems
(EMS). The capabilities of the system extend to managing any station that can be
reached through standard IP connectivity in a secure manner. OpenRSM relies on local
agents capable of conveying and executing management actions, on a graphical man-
agement console user interface and on an integration server that serves user requests
and connections from the agents. OpenRSM depends on a management framework
designed to model all the involved entities and service units necessary for IM and
the description of the basic, abstract interactions between them. The design follows
a layered approach; the main management entities are tasks that users can create and

62� Industrial Wireless Sensor Networks

send to any managed workstation, and the workstations where tasks are dispatched.
Services correspond to the subsystems described above—that is, AM, RDC, SD, NM,
and also host discovery, remote procedure call, server tasks, access point management,
task scheduling, wake on LAN, router configuration, reporting, static and dynamic
entity grouping, customizable reports, and more. The hierarchy of the management
entities is structured as an object-oriented tree of classes that forms the OpenRSM IM
hierarchy. The design allows for modularity and extensibility and thus functionality
can easily be extended to include specialized tasks and complex procedures. The top-
level task object holds its identification, a mnemonic name, and execution parameters,
such as priority, execution method, task dependency parameters, and more. An anal-
ogous object models the abstract managed host. The framework builds on abstract
classes providing entity templates that can visually be instantiated in the user console
interface. For example, users can extend any task template, fill in custom parameters,
and create tasks that suit their needs. For example, in order to construct a task that
shuts down a remote workstation, users need to instantiate a new task object by using
the remote procedure call task class. They configure it to encapsulate a “shutdown”
command for the target platform and they associate it with a managed station. The
management framework takes care of the communication and execution details. Users
can then use the same template to construct a second “shutdown” task for a different
operating system. Both tasks will be descendants of the same framework task and
inherit core functionality implemented in the task management framework.

The task-handling engine rests at the core of the IM framework, since it coordi-
nates the underlying mechanisms. Other layers include communication, task encod-
ing/decoding, task/station verification, and security. All the previous layers have been
dimensioned in terms of the agent, manager, and server functionality. For example,
the communication between the server and the manager differs from that between the
server and the agent; in the latter case the server needs to wake the agent asynchro-
nously and then commence state verification handshakes, controls, and perform the
actual communication. The manager‒server communication is connection-oriented;
however, both cases are implemented under the communications layer. The API
hierarchy is made available via corresponding interfaces to all the components of the
system. OpenRSM has passed stress and scalability tests and has been deployed in
real conditions.

The design of the OpenRSM system considered several implementation strategies
and development solutions (Hochstein et al., 2005), ranging from web-based technol-
ogies (Wren and Gutierrez, 1999), peer-to-peer technologies, and layered server-side
middleware (Carey and Reilly, 2012), to more traditional client–server approaches
(Lee et al., 2012). In principle, OpenRSM needed to be simple and lightweight so
that it can be used by end-users who are not specialized in the use of management
or asset-reporting tools. OpenRSM has also been designed for fast and automatic
deployment in order to cover the needs of administrators who manage very dynamic
environments. Thus, the system adopted the FOSS development model so as to exploit
the dynamics of open IM projects and to gain value from integration. As mentioned
above, even if there is no complete, integrated FOSS EMS, it can be observed that the
related technologies have matured to the point that the FOSS community can provide

Wireless sensor network administrative management� 63

all the necessary components (SourceForge hosting portal, 2012). Several FOSS proj-
ects have been examined in order to find the most appropriate FOSS management
tools available for the purposes of OpenRSM. During the development of the project
and the compilation of the present article, the authors have not been aware of the exis-
tence of any other integrated FOSS EMS system. The architecture has been design to
be modular in order to follow the logical categorization of the entities involved and to
favor integration with other IM tools. The system has thus been based on the client–
server model where clients—that is, agents—model abstract manageable entities that
convey administrative actions from the OpenRSM server. Agents are designed to sup-
port any operating system in order to dispatch administrative actions originating from
the management console, the tool exposed to the end-users and the administrators of
the service. Users describe administrative tasks in terms of management commands
which are conveyed to the OpenRSM server and then scheduled to be executed at
agents. The component architecture of the system is illustrated in Figure 4.1.

Tasks are entities abstracted and designed with the use of the object-oriented model.
The design of the system has been based on the principle that tasks play a central role
in terms of usability, design efficiency, and system scalability. Thus, they have been
designed to behave as standard abstract system commands, for example AM, RDC,
PRC, or as reusable user-created—that is, instantiated—objects. Tasks can be man-
aged within OpenRSM since their creation and execution stages are decoupled. They
are created by administrators at the management console. They are then submitted
to the server, who checks their syntax and dependencies, schedules their execution
according to user commands, prepares (wakes) the agents, and sends them task infor-
mation, orchestrates interactions with back-end services, and interacts proxy modules
if necessary. The OpenRSM monitors the task execution cycle, keeps logs, and pro-
duces reports, while ensuring security. The back-end services of the OpenRSM server
consist of informational systems that run distinct IM server-side components. When
tasks reach the execution stage, they are served by one of the subsystems incorporated
in the OpenRSM system. For an AM query, the agent registers AM information about
the station it resides on and submits the information AM web application, hosted by
the web server of the OpenRSM system. Each server subsystem is presented in detail
in the corresponding paragraph in this section. The OpenRSM project is hosted in
SourceForge (The OpenRSM project, 2012). The development team consists of three
to five developers. The code repository of the project is available for download and
contributions.

The OpenRSM agents are the client modules residing in the workstations of the
end-users. Their functionality is limited to the execution of commands sent by the
server, and they do not interact with any module of the OpenRSM server system unless
it is absolutely necessary. The needs for uniform logic design and security converge
to this implementation; the execution of each task triggers communication with the
integration server and, from there, with the appropriate server subsystem. The server
subsystem controls the communication and performs all the complementary actions
and database transactions. Agents are implemented by integrating subsystems cor-
responding to different OpenRSM functionalities: integration logic, communication
with the server, system-dependent execution logic, and agent-type implementation.

64� Industrial Wireless Sensor Networks

(a)

(b)

(4) Execution

(4) Execution

(3) Relay

(3) Relay

(2) Send command

(6) Report

(1) User command

(5) Report

(5) Report

(5) Report

OpenRSM
Proxy

OpenRSM
integration server

Management
console

OpenRSM
Proxy

NAT

Figure 4.1  The OpenRSM component architecture and the graphical management console.

Wireless sensor network administrative management� 65

The fundamental agent module implements the communicational logic. As will be
described in the following sections, this part of the agent ensures consistent and secure
communication through a handshaking protocol and wake/sleep mechanisms. The re-
maining modules that make up the OpenRSM Agent are the subsystems that imple-
ment the task execution logic, namely the AM, NM, RDC, RPC, and agent discovery.
Whenever possible, subsystems take advantage of existing software or other FOSS
agent modules (e.g., the AM subsystem uses the OpenAudit agent for asset retrieval,
as described earlier). The task execution subsystems are integrated with the communi-
cation logic so that all task execution stages can be monitored by the integration server.
The OpenRSM system is capable of managing both Windows and *NIX systems,
through corresponding agent distributions that take into account the characteristics
of each platform. Each distribution includes different agent flavors that correspond to
different types of usage; the agent can be executed as a background process for silent
operation, as a graphical application user for verbose interaction, as a service, or as a
console application.

OpenRSM is capable of supporting a centralized architecture when all components
are installed on a single server or a distributed one, when each component is installed
on an autonomous system. The benefits that can be derived from a distributed server
topology are mainly related to customization, performance, availability, and efficiency.
Since overall performance depends on the system load, subsystems that are more fre-
quently used or subsystems that bring greater load to the system can be installed on
separate server stations. In that case service availability also increases, since if a single
server station fails then only a portion of the system service fails. NMS usually poses
a heavy load on the overall system, and it might be preferable to set it up on an auton-
omous server. If the server cannot cope with the load, the database server can also be
installed on a separate machine. The software repositories of the SD service can also
be separated from the web server. It can be configured to provide service to a subset of
the managed terminals so as to balance the overall load of the SD subsystem. Future
work includes the decoupling of the two web applications, AM and NM, so that the
former can be installable on a different server. A variety of different topologies are
also possible. The system can be set up with many OpenRSM integration servers so as
to avoid single points of failure. These server modules, each of which orchestrates the
integration of subsystems, form the heart of the OpenRSM system and can be more
than one per installation, so as to provide enhanced service availability. Other valuable
topologies that may be useful for network traffic planning purposes make use of the
OpenRSM proxy server module presented previously.

OpenRSM provides a controlling interface, illustrated in Figures 4.1 and 4.2, that
can be used by the administrators to control all the subsystems and their interactions.
The design has focused on synthesizing the independent functionalities provided by
the subsystems in a comprehensive and effective manner, and on the provisioning of
additional supervisory functionality. The OpenRSM management console provides a
multilingual control environment. The console can send any system command that is
supported by the operating system of the managed stations. Commands accept param-
eters related to CPU priority, type, and user visibility. The OpenRSM management
console management is the functionality that discovers the available stations that run

66� Industrial Wireless Sensor Networks

OpenRSM agents and are therefore manageable. Discovery of OpenRSM agents can
be directed towards any part of the Internet address space. Only agents configured to
communicate with the specific OpenRSM server that originated the discovery packets
will respond to the agent discovery. The result of the discovery process is to create ac-
tive interface elements, representing corresponding managed stations. Along with core
tasks (of the AM, RDC, SD, RPC type), they constitute the basic interface elements.
Machines and tasks are entities that can be combined, resulting in tasks assigned to
specific agent-equipped machines. They are both presented on the management tree
for easy supervision. Both tasks and machines can be grouped. Groups of machines
and tasks, or groups of tasks and machines, can also be combined in order to create
submittable machine–task mappings. Groups are generic: a group of tasks can contain
any kind of tasks and no dependencies are implemented. It is the administratorʼs re-
sponsibility to create a rational sequence of a group of tasks for execution. OpenRSM
allows the user to create customized tasks. Following a clean installation, only core
tasks exist. The core tasks include predefined AM, SD, RDC, and RPC tasks. As
stated in the previous paragraph, a task must be visually combined with one or more
agents. Thus, tasks can be considered as templates for submitted administration tasks.
Each type of task is created using interface components used for that purpose only.
For example, a delivery task must “know” the software that it has to install/uninstall
etc. OpenRSM provides the interface for customized task production. The tasks cre-
ated are stored and made available through the interface so that they can be reused.
A user can also use the machine and task groups forms to define machine and task
groups respectively. The management console also provides means of task execution

Figure 4.2  The task creation tab of the OpenRSM management console is used to instantiate
remote procedure calls, software management, remote desktop control, asset management
tasks single or in groups.

Wireless sensor network administrative management� 67

supervision. Users can submit and monitor the execution of tasks in real time through
the active task list. The task state is displayed along with information on the agent
that executes it, related timestamps, etc. Filters can be applied to the task list, creating
task–machine assignments that meet specific characteristics (e.g., owner, date, task
type). One key usability feature of OpenRSM is related to its reporting functionality.
This functionality can be further combined with the creation of dynamic groups of
machines. The management console reporting can search across the database pro-
duced by AM tasks for machines that match specific user-defined characteristics. The
objective is to enable the easy identification of workstations that share common char-
acteristics and group them together in new machine groups, or present their selected
attributes on a visual form. An example would be the retrieval of all workstations that
have, for example, more physical memory than a specific value, selected by the user.
The selection of attributes and the results are performed visually. The resulting work-
station information can also be presented as a group of machines, called “dynamic”
because of the way it is created. Dynamic groups behave as normal groups, but they
also enjoy the special feature that they are associated with the database statement that
created them. The query that created them may be executed at any time, in which
case the group is recreated based on updated workstation information. The reporting
functionality is complemented by the data explorer form, created to provide complete
database supervision. The user is capable of browsing database entities and combining
their contents whenever internal linking is possible. Combinations are presented in the
form of reports that can be exported in various formats, such as DOC, XLS, HTML,
TXT, and CSV. The management console is also capable of producing cumulative and
detailed statistics about system utilization. The generated statistics can record gen-
eral system usage, task distribution, workstation utilization, and user actions. General
information is presented in visual charts providing summary information on the task
submission rates, task error rates, and task distribution with respect to task type and
submitting user. Detailed information is presented in individual reports.

The following paragraphs present the four OpenRSM use cases that correspond to
fundamental EMS functionality implemented by server tiers—that is, AM, deploy-
ment and SD, NM, and RDC. The FOSS tools, informational systems, and platforms
integrated into OpenRSM have been selected on the grounds of functionality, maturity,
compatibility, and interoperability. AM rests at the core of IM, providing organiza-
tions with the ability to gather information about the hardware and software of their
infrastructure. This service provides the necessary data for effective troubleshoot-
ing, facilitates the planning of upgrades, increases control and security, and helps in
decision making and infrastructure planning. Asset management is usually realized
through a silent software agent loaded on the managed system. The agent retrieves
information about the system using native interfaces and presents it in a user-friendly
way to administrators through the appropriate user interface. The technologies used,
namely CIM/WBEM, are mature enough to provide vendor interoperability but, as
mentioned in previous paragraphs, cannot be applied in WSNs. The OpenRSM plat-
form relies on the FOSS OpenAudit (OpenAudit, 2012) AM software, a PHP/MYSQL
application that relies on manual configuration and execution of audit software locally
on workstations. The audit software reads information about the system and posts

68� Industrial Wireless Sensor Networks

it using an HTTP request to the web application. The OpenRSM AM builds upon
OpenAudit and enhances both automation of use and functionality. The audit software
has been integrated with the OpenRSM agent module and has been ported to FOSS
operating systems. Using the management console, it can be run from a remote loca-
tion and, thus, physical presence is not necessary and stations can be audited remotely.
The schema of the OpenAudit database is integrated within the informational system
of OpenRSM so that high-level administrative functionality can be built. For instance,
the dynamic groups feature takes advantage of this fact; the administrator is presented
with the capability of creating groups of stations that share one or more common asset
characteristics so that they can be treated in a uniform manner.

The SD functionality facilitates the management of already installed software, or
of software that is to be installed on workstations within an administrative domain.
Software management is time and resource consuming, in terms of experienced and
specialized man hours; if it is not automated, however, administrators are required
to know and manage the software of their managed stations, along with every other
infrastructure asset. The functionality provided by the SD subsystem fills the gap as
a high-level SD use case transparent to users. Administrators choose the software
to be delivered, designate the path to be executable, or the link from where it can
be downloaded; the software is then uploaded and registered within the software re-
pository, and is subsequently delivered by the server. The designated installation file
runs, and users may be required to complete the installation procedure. If silent or
unattended modes of operation are chosen, a feature supported by OpenRSM, then
the installation may not be interactive and users are not distracted in any way. Silent
installations/uninstallations are very useful for routine administration and for opera-
tions in scale. OpenRSM uses an extended version of the Windows-Get FOSS tool,
specifically enhanced in order to meet the requirements of the integrated graphical SD
subsystem—that is, the support of uninstallations, broken transfers, and archive files.
The SD subsystem is complementary with the AM subsystem; administrators may use
the AM system in order to supervise SD and they may use the SD subsystem in order
to install/uninstall desired modules. Figure 4.2 illustrates the SD task creation tab at
the management console.

NM systems are essential tools for remote SM and are capable of managing active
network elements using the SNMP protocol. The OpenRSM remote management sys-
tem is integrated with the NINO FOSS NMS tool and the OpenNMS platform, both
of which are full-featured NM systems that utilizes SNMP and WMI technologies for
the provisioning of real-time monitoring information for stations and network active
elements. The systems have been integrated so that changes in the OpenRSM man-
agement console are instantly reflected in the web interface of the monitoring system
and vice versa. The NM systems typically support features such as network discovery
using various methods, events (that is, traps), monitoring presets and groups, various
presentation methods (web interface device browser, reports, applet graphs), various
utilities, such as MIB browser, snmpwalk, service response meter (HTTP, FTP, POP),
and other useful features.

OpenRSM integrates the TightVNC remote desktop control package to deliver the
graphical remote control service. The management console is capable of starting the

Wireless sensor network administrative management� 69

TightVNC server at a managed station or at a group of managed stations by sending an
appropriate RDC task to the TightVNC viewer in the host where the console is being
run. Taking advantage of the features of the underlying FOSS tools, the remote desk-
top control request is started after the server has been started at the agent, that is the
remote desktop control task has been delivered since the agent calls back the adminis-
tration station. Thus, no synchronization failures may occur, since the server is guar-
anteed to have started when the remote control client (viewer) initiates the connection.
Synchronization also enhances security, since the server wakes when the agent has
been informed of a new connection request. The server sleeps again after a specific
and configurable amount of time. Besides the above, the remote control software has
been configured to ask users of the managed stations for permission whenever a con-
nection is to open, in order to avoid unwanted remote access and to proxy connections
in cases of isolated networks.

4.3 � Managing WSNs

Considering the diversity of the related IT systems, it is difficult to picture an IM
system that would inherently support any type of WSN. However, a general-purpose
remote management system, such as OpenRSM, can be customized in order to exploit
the management services offered by any WSN platform. Our goal has been to exploit
the general-purpose nature of OpenRSM in order to offer full support for remote man-
agement for TinyOS-based WSNs by constructing a finite number of tasks so that the
latter is installed on an FOSS or commercial platform, the environment is checked
and configured properly, sensing applications are installed on motes, readings and
measurements are stored, the operation of WSNs is monitored, and motes are config-
ured in real time. The above tasks were defined as OpenRSM framework entities and
made available at the management console. In the next paragraphs, we describe how
customized tasks can be constructed in order to remotely create any sensing and con-
figuration scenario and how we can retrieve measured data in the OpenRSM database.
For the purposes of our case study we used CrossBow TELOSB motes, which are
typically equipped with sensors that measure battery voltage, humidity, luminosity,
and temperature. The WSN uses a designated node as the intermediate between the
managed station and the sensing motes.

4.3.1 � Installing WSNs

The remote installation of the TinyOS 2.1 platform presupposes the installation of
a number of components, such as the JAVA programming platform, native compil-
ers, such as the ATMEL AVR Tools (Atmel AVR8 microcontrollers, 2012) or the
IT MSP430 tools (MSP430 16-bit Ultra-Low Power MCUs, 2012), the TinyOS tool
chains, the TinyOS source code, and the GraphVIZ tool. The environment can then
be configured by running appropriate shell scripts and by setting environment vari-
ables. The installation procedure can be implemented using either SD tasks or remote
procedure ones that call native package managers such as APT, YUM, ZYPPER, or

70� Industrial Wireless Sensor Networks

download and execute the necessary binaries. Whenever possible, features of the un-
derlying operating system can be used, such as package management software. For the
installation of tools and tool chains, commands such as

zypper --non-interactive --no-gpg-checks in -f --auto-agree-with-licenses java-1_6_
0-openjdk
apt-get install sun-java6-bin sun-java6-jre sun-java6-jdk openjdk-6-jre -y –force-yes

can be encapsulated in RPC tasks and then be sent to managed hosts. Such com-
mands can largely be sent by the management console. Alternatively, creating SD
tasks would include providing the URL pointing to JAVA, creating a software pack-
age for it at the management console, and then associating it with an appropriate
task. This is a typical procedure for SD tasks that are created graphically and may
encapsulate binaries, archive files or binary images. They can be configured to sup-
port any unattended installation or uninstallation method provided by the installer
of the software. The administrator will know of the software they are using, since
it will be registered with the system and made visible on the entity tree of the man-
agement console. Another alternative would be to send a WGET task to the agent,
followed by an execution command that utilizes the software downloaded by WGET
or a shell script that would contain the aforementioned commands. Analogous tasks
that install TinyOS, NESC, deputy, TinyOS-tools, and the TinyOS source tree are
illustrated in Figure 4.3. The window on the left is the agent terminal window as
presented by the LINUX window manager via a remote desktop connection, also
opened with an OpenRSM RDC connection task. On the right, there is a management
console which has sent a “TinyOS installation” SD task. Figure 4.3 also presents

Figure 4.3  The execution of a software installation task designed to install TinyOS
on remote stations.

Wireless sensor network administrative management� 71

tasks that install the JAVA platform and the Atmel AVR tools—that is, avr-binutils,
avr-gcc, avr-libc, avarice, avr-gdb, avrdude. The TI MSP430 tools are installed in
a similar way, namely the basic toolset, python tools, binutils, GCC, LIBC, JTAG,
GDB for MSP430. The registered packages, used by SD tasks, are presented in the
bottom branch of the tree. The final step in the installation of TinyOS is the instal-
lation of the GraphVIZ tool and MAKE. Note that tasks can be grouped so that
they are sent with a single click and they can be configured to be executed sequen-
tially in the same thread, taking advantage of task configuration properties. Thus,
the software is executed after the download and not in parallel with it, since the
two tasks are executed by the main management console thread and not by forked
ones. Administrators may monitor the execution logs via the logging console of the
management interface of OpenRSM, which conveys the output of the agents at the
management console.

4.3.2 � Running applications

After installation, the WSN environment needs to be configured so that applications
can be compiled and deployed. The configuration of the environment is achieved by
setting appropriate environment variables; this can be accomplished via the execution
of tasks or scripts that set the TinyOS root and home directories, the CLASAPTH for
JAVA and NESC, the display variable, the paths to the rules for MAKE, and any addi-
tional parameters. Additional tasks can be used to run system utilities that check and
return the state of the environment, such as tos-check-env and tos-install-jni. An exam-
ple set of RPC commands that can be sent either as RPC tasks or as an SD script may
include the configuration of the directory where the rules for MAKE are located—that
is, “export MAKERULES=$TOSROOT/support/make/Makerules.” After the config-
uration of TinyOS, RPC or SD tasks can be used to encapsulate standard deployment
commands that deploy applications on motes.

TinyOS provides toolboxes of applications that offer pieces of WSN IM functional-
ity. The fundamental implementation of a gateway between a serial port and the WSN
is the BaseStation application. When receiving packets from serial ports this applica-
tions transmits data towards the network and, vice versa, when receiving packets from
a network it transmits them to the serial port. In order to forward traffic from the serial
port towards network TCP sockets, the TinyOS platform provides the SerialForwarder.
This functionality enables any tool such as IM, NM, or data analysis to access WSN
measurements. Visualization for data is provided by Oscilloscope applications. The
BaseStation application can be deployed at a designated mote in order for it to collect
data from the WSN. Oscilloscope applications can also be deployed at the rest of the
motes, in order to take measurements and forward them to the BaseStation. Such com-
mands can be the following:

make -C apps/BaseStation -f apps/BaseStation/Makefile telosb install.0
java net.tinyos.sf.SerialForwarder -comm serial@/dev/ttyUSB0:telosb
java -cp support/sdk/java/tinyos.jar: apps/Oscilloscope/java/oscilloscope.jar Oscilloscope

72� Industrial Wireless Sensor Networks

The SerialForwarder application is usually executed at the managed station in order
to read data from the serial port where the mote that runs the BaseStation application
is connected and to forward them over network connections. If remote desktop func-
tionality is desired at the managed host, the oscilloscope graphical application can
also be executed in order to graphically present the received data. Figure 4.4 presents
the configuration of an RPC command for the remote installation of the BaseStation
application at the OpenRSM console. Retrieving measurements for battery voltage,
temperature, luminosity, or humidity entails the deployment of the respective measur-
ing applications—that is, VoltageOscil, TempOscil, LightOscil, or HumidOscil—and
the execution of the respective client applications at the OpenRSM agent. The afore-
mentioned applications are variations of Oscilloscope provided by TinyOS and use
appropriate NESC components for data retrieval. For the measurement of luminosity,
the HamamatsuS1087ParC driver is configured, and SensirionSht11C for temperature
and humidity. For each task that deploys a sensing application, an oscilloscope task
presents the measurements in the managed station. Commands such as:

make -C apps/TempOscil -f apps/TempOscil/Makefile telosb install
java -cp support/sdk/java/tinyos.jar:apps/TempOscil/java/oscilloscope.jar TempOscil

can be used to implement such tasks. In order to concentrate the functionality de-
scribed above in a single tab, a general-purpose TinyOS management task instantia-
tion panel has been developed for OpenRSM. The panel delivers graphical WSN task
creation. The panel includes tasks for the installation of TinyOS, for uninstallation,
for the discovery of motes, and for the deployment of applications. Figure 4.5 presents

Figure 4.4  An RPC task can be configured to remotely run the BaseStation and
SerialForwarder applications from the OpenRSM console.

Wireless sensor network administrative management� 73

this panel; users define the name of the task, the execution time, and the type. They
then instantiate it by saving it and then correlating it with managed TinyOS hosts. If
the task includes the deployment of applications, users may select which of the avail-
able ones will be deployed and the target mote. This procedure can be used in order
to implement any remote sensing scenario supported by the underlying technology.

4.3.3 � Concentrating measurements

OpenRSM has been enriched with an application for TinyOS, DBWriter, that inter-
faces with the SerialForwarder application at the managed host in order to receive
measured data as sent by motes and write them in the OpenRSM database. The ap-
plication is configurable with the appropriate transformations in order to convert the
data to the appropriate measurement systems. Figure 4.6 illustrates the measured data
as presented in the management console. The left panel in the database view presents
the navigation tree of the OpenRSM system and the right panel illustrates the func-
tionality for measurement presentation. Users can select a sensing dataset from each
mote that corresponds to a table in the database of OpenRSM. They are then presented
with the data and meta-information that includes moteIds, packet counters, sampling
frequency, date, etc. They can also view the logs of the system.

As mentioned in the previous paragraphs, motes utilize sensor circuits that sample
physical quantities from motes through applications such as TempMeasurement,
HumidMeasurement, LuminParMeasurement, and LuminTsrMeasurement. The
EnvAllMeasurement application is used to recover data from the network besides the
total number of packets received by each node, sampling frequency, and battery levels.
The code of the application is presented in Table 4.1.

Each sensor uses analog-to-digital components that produce numeric output that can
directly be converted to a metric system. The SHT11 sensor belongs to the Sensirion

Figure 4.5  The management console supports a task creation tab for WSN tasks.

74� Industrial Wireless Sensor Networks

AG family of SHT1x temperature/humidity surface mount. SHT11 integrates analog
measuring devices and signal processing logic to provide calibrated output. Moisture
is measured by a capacitive sensor and the temperature of a band-gap (proportional to
absolute temperature) sensor. Measurements are then converted to 14-bit digital words
which are conveyable to TinyOS via the serial interface. Converting the digital value
to relative humidity (RH) units is achieved using the following formula:

where SO
RH

 represents the 12-bit measured data (Sensirion Output), c
1
 = −4,

c
2
 = 0.0405, c

3
 = −2.8 × 10‒6. The respective conversion formula for temperature mea-

surements is the following:

Light sensors for TinyOS motes typically use photo-diodes manufactured by
Corporation. Hamamatsu S1087 photo-diodes detect photosynthetically active radi-
ation (PAR) and S1087-01 photo-diodes detect all the visible spectrum, including in-
frared (TSR). Photosynthetic active radiation can be defined as the electromagnetic
spectrum of visible light, namely wavelengths from 400 to 700 nm that helps process
plant growth via photosynthesis. Both analog sensors TSR and PAR convert measure-
ments to 12-bit digital words of length using 1.5-V signal pulses. LEDs generate cur-
rent I along a resistance 100 kΩ. The output of S1087 or S1087-01 can be converted
into units for brightness, LUX, using the following formulas:

RH SO SOlinear RH RH= + ´ + ´c c c1 2 3
2

Temp SO= + ´c c1 2

Figure 4.6  Measurements are sent by the DBWriter application to OpenRSM server and can
be displayed at management console in real time.

W
ireless sensor netw

ork adm
inistrative m

anagem
ent�

75

EnvAllMeasurementAppC.nc
components new HamamatsuS1087ParC() as Sensor;
components new HamamatsuS10871TsrC() as Sensor1;
components new SensirionSht11C() as Sensor2;
components new DemoSensorC() as Sensor3;
EnvAllMeasurementC.ReadPARLumin -> Sensor.Read;
EnvAllMeasurementC.ReadTSRLumin -> Sensor1.Read;
EnvAllMeasurementC.ReadExtTemp -> Sensor2.Temperature;
EnvAllMeasurementC.ReadHumid -> Sensor2.Humidity;
EnvAllMeasurementC.ReadVoltage -> Sensor3.Read;

EnvAllMeasurementC.nc
interface Read<uint16_t> as ReadPARLumin;
interface Read<uint16_t> as ReadTSRLumin;
interface Read<uint16_t> as ReadExtTemp;
interface Read<uint16_t> as ReadHumid;
interface Read<uint16_t> as ReadVoltage;
call. ReadPARLumin.read();
call. ReadTSRLumin.read();
call ReadExtTemp.read()
call ReadHumid.read();
call ReadVoltage.read();
event void ReadExtTemp.readDone(error_t result, uint16_t data){
 if (result != SUCCESS) {
data = 0xffff;
report_problem();
 }
 local.readingTemp = data;
}

EnvAllMeasurement.h
typedef nx_struct envAllMeasure {
 nx_uint16_t version;	 /* Version of the interval. */
 nx_uint16_t interval;	 /* Samping period. */
 nx_uint16_t id;	 /* Mote id of sending mote. */
 nx_uint16_t count;	 /* Number of readings */
 nx_uint16_t readingTemp;	 /*Var for temp*/
 nx_uint16_t readingHumid;	 /*Var for humitity*/
 nx_uint16_t readingPARLumin;	 /*Var for Par Luminosity*/
 nx_uint16_t readingTSRLumin;	 /*Var for Tsr Luminosity */
 nx_uint16_t readingVolt;	 /*Var for voltage*/
} envAllMeasure_t;

Table 4.1  The application EnvAllMeasurement concentrates data from all nodes of the WSN

76� Industrial Wireless Sensor Networks

where I is defined as:

The microcontroller MPS30 has internal sensors such as temperature and voltage
mentioned in the description of the devices category TELOS. The analog measurements
of the sensor voltage are converted into digital words of length 12 bits and conversion
to physical units is carried by the following formula:

where V
ref

 = 1.5 V.

4.3.4 � Conclusions and future trends

The previous sections illustrated how OpenRSM can be used in order to provide
remote IM for WSNs based on the TinyOS platform. OpenRSM can be used to
create analogous tasks for any type of WSN that offers high-level tools or utilities
and, since it has been stressed for scaled operation, it can support effective remote
management cases. Current work focuses on productive installations of distant
WSN infrastructures, on the integration of functionality for more WSN systems,
and on the enrichment of the functionality OpenRSM offers. Organizations that
need to minimize IM costs must be capable of testing the solutions described above
by using an OpenRSM according to their needs. They may autonomously install
the system or use a service dedicated for this purpose. The system must also not
be limited for WSNs that rely on TinyOS; since OpenRSM is general purpose, it
must be extended to include task creation forms for the best-known WSNs and
functionality such as automatic installation of the WSN platform, the deployment
of applications, and the concentration of measurements. The system can also be
complemented with interesting functionality that increases automation, such as
support for task execution in response to measurements. Users will be allowed to
define alerts or actions that will be executed as standard tasks in case measurements
reach thresholds, also defined by users. Interesting as well as challenging would
be to include AM for WSN motes, whenever the underlying WSN platform offers
identification applications or data based on the active mote and its types. Last but
not least, the system will have to be extended to web-based technologies such as
HTML5, AJAX, and middleware.

LUX e for photo diodeS= ´ ´ ´0 625 1 6 1000 1087. I -

LUX e for photo diodeS= ´ ´ ´0 769 1 6 1000 1087 01. I - -

I

AD

=
´æ
è
ç

ö
ø
÷output

1 5
4096

10 000

.

,

VCC
AD

V= ´
æ

è
ç

ö

ø
÷´2

4096
output

ref

Wireless sensor network administrative management� 77

References

Atmel AVR8 microcontrollers. http://www.atmel.com/products/avr/, October 2012.
Bhatii, S., et al., 2004. Mantis OS: an embedded multithreaded operating system for wireless

micro sensor platforms. Mobile Netw. Appl. 10 (4), 563–579.
Carey, K., Reilly, F., 2012. Integrating CIM/WBEM with the Java enterprise model. http://www.

dmtf.org/education/academicalliance/, October.
Chaparadza, R., 2005. On designing SNMP based monitoring systems supporting ubiquitous

access and real-time visualization of traffic flow in the network, using low cost tools. In:
2005 13th IEEE International Conference on Networks, 2005. Jointly held with the 2005
IEEE 7th Malaysia International Conference on Communication, vol. 2, pp. 16–18.

Chatzigiannakis, I., Mylonas, G., Nikoletseas, S., 2007. 50 ways to build your application: a survey
of middleware and systems for Wireless Sensor Networks. In: IEEE Conference on Emerging
Technologies and Factory Automation, 2007, ETFA, 25–28 September, pp. 466–473.

Chen, J., Lu, H., Lee, M., 2007. WSNView system for wireless sensor network management.
In: 11th IASTED International Conference on Internet and Multimedia Systems and
Applications, pp. 126–131.

Cougar Project. http://www.cs.cornell.edu/database/cougar, August 2011.
Crossbow technologies. http://www.xbow.com/, October 2012.
Dunkels, A., Gronvall, B., Voigt, T., 2004. Contiki – a lightweight and flexible operating sys-

tem for tiny networked sensors. In: 29th Annual IEEE International Conference on Local,
Computer Networks, pp. 455–462.

Dwivedi, A.K., Tiwari, M.K., Vyas, O.P., 2009. Operating systems for tiny networked sensors:
a survey. Int. J. Recent Trends Eng. 1 (2), 152–157.

Eduardo, S., Germano, G., Glauco, V., 2004. A message-oriented middleware for sensor net-
works. In: Proceedings of the 2nd Workshop on Middleware for Pervasive and Ad-Hoc
Computing, pp. 127–134.

Fok, C., Roman, G., 2005. Mobile agent middleware for sensor networks: an application case
study. In: Proceedings of the 4th International Conference on Information Processing in
Sensor Networks. pp. 382–387.

Gellersen, H.W., Schmidt, A., Beigl, M., 2002. Multi-sensor context-awareness in mobile
devices and smart artefacts. Mobile Netw. Appl. 5, 341–351.

Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M., 2005. SOS ‒ a dynamic operat-
ing system for sensor networks. In: Proceedings of the Third International Conference on
Mobile Systems, Applications, and Services (Mobisys).

Heinzelman, W.R., Chandrakasan, A., Balakrishan, H., 2000. Energy efficient communication
protocol for wireless microsensors networks. In: Proceedings of the Hawaii International
Conference on System Sciences.

Hochstein, A., Zarnekow, R., Brenner, W., 2005. Evaluation of service-oriented IT manage-
ment in practice. In: Proceedings of the International Conference on Services Systems and
Services Management, vol. 1. pp. 80–84.

Karalis, Y., Kalochristianakis, M., Kokkinos, P., Varvarigos, E., 2009. OpenRSM: a lightweight
open source remote management tool. Int. J. Netw. Manag. 19 (3), 237–252.

Lee, S., Choi, M., Yoo, S., Hong, J., Cho, H., Ahn, C., Jung, S., 2012. Design of a wbem-based
management system for ubiquitous computing servers. http://www.dmtf.org/education/ac-
ademicalliance/, July 2015.

Levis, P.A., 2006. TinyOS: an open operating system for wireless sensor networks. In: Invited
Seminar, Proceedings of the 7th International Conference on Mobile Data Management,
MDM’06.

http://www.atmel.com/products/avr/
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0010
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0010
http://www.dmtf.org/education/academicalliance/
http://www.dmtf.org/education/academicalliance/
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0015
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0015
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0015
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0015
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0020
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0020
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0020
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0025
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0025
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0025
http://www.cs.cornell.edu/database/cougar
http://www.xbow.com/
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0030
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0030
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0030
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0035
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0035
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0040
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0040
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0040
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0045
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0045
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0045
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0050
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0050
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0055
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0055
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0055
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0060
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0060
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0060
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0065
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0065
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0065
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0070
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0070
http://www.dmtf.org/education/academicalliance/
http://www.dmtf.org/education/academicalliance/
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0075
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0075
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0075

78� Industrial Wireless Sensor Networks

Levis, P., Culler, D., 2002. Mate: a tiny virtual machine for sensor networks. In: Proceedings
of the International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 100–111.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J.,
Welsh, M., Brewer, E., Culler, D., 2005. TinyOS: an operating system for sensor networks
export. In: Ambient Intelligence, pp. 115–148.

Lifton, J., Seetharam, D., Broxton, M., Paradiso, J., 2002. Pushpin computing system overview:
a platform for distributed, embedded, ubiquitous sensor network. Proceedings of the 1st
International Conference on Pervasive Computing, vol. 2414, pp. 139–151.

Madden, S., Hellerstein, J., Hong, W., 2003. TinyDB: an acquisitional query processing system
for sensor networks. ACM Trans. Database Syst. 30, 122–173.

Windows management instrumentation and simple network management protocol, Microsoft
technet. http://technet.microsoft.com/en-us/library/bb742612.aspx, July 2015.

MSP430 16-bit Ultra-Low Power MCUs. http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?-
sectionId=95&tabId=140&familyId=342, October 2012.

A Network Virtual Machine for Real-Time Coordination Services. http://www.cs.virginia.edu/
wsn/nest.html, October 2012.

OpenAudit. http://sourceforge.net/projects/openaudit/, October 2012.
Ruiz, L.B., Nogueira, J.M.S., Loureiro, A.A., 2003. MANNA: a management architecture for

wireless sensor network. IEEE Communications Magazine, vol. 41, pp. 116–125.
Scalable Coordination Architectures for Deeply Distributed Systems. http://www.isi.edu/div7/

scadds, July 2015.
Song, H., Kim, D., Lee, K., Sung, J., 2005. UPnP-based sensor network management architec-

ture and implementation. In: Second International Conference on Mobile Computing and
Ubiquitous Networking (ICMU 2005).

The list of available projects in the SourceForge hosting portal. http://sourceforge.net/software-
map/index.php, October 2012.

The MagnetOS Operating System. http://www.cs.cornell.edu/people/egs/magnetos/, October 2012.
The OpenRSM project at sourceforge. http://sourceforge.net/projects/openrsm/, October 2012.
The TinyOS alliance. http://www.tinyos.net/scoop/special/tinyos_alliance, October 2012.
Thompson, J.P., 1998. Web-based enterprise management architecture. IEEE Communications

Magazine 36 (3), 80–86.
Tosic, V., Dordevic-Kajan, S., 1999. The Common Information Model (CIM) standard ‒ an anal-

ysis of features and open issues. In: 4th International Conference on Telecommunications
in Modern Satellite, Cable and Broadcasting Services, vol. 2, pp. 677–680. http://dx.doi.
org/10.1109/TELSKS.1999.806301.

Touron. Crossbow: moteview interface, Crossbow, 2005. http://www.xbow.com/Technology/
UserInterface.aspx.

Wren, M., Gutierrez, J., 1999. Agent and web-based technologies in network management. In:
Proceedings of the Global Telecommunications Conference (GLOBECOM), vol. 3,
pp. 1877–1881.

Xu, Y., 2001. Geography-informed energy conservation for ad hoc routing. In: Mobicom’01,
pp. 203–212.

Yannakopoulos, J., Bilas, A., 2005. Cormos: a communication-oriented runtime system for sen-
sor networks. In: 2nd European Workshop on Wireless Sensor Networks, February.

http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0080
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0080
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0080
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0085
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0085
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0085
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0090
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0090
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0090
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0095
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0095
http://technet.microsoft.com/en-us/library/bb742612.aspx
http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342
http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342
http://www.cs.virginia.edu/wsn/nest.html
http://www.cs.virginia.edu/wsn/nest.html
http://sourceforge.net/projects/openaudit/
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0100
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0100
http://www.isi.edu/div7/scadds
http://www.isi.edu/div7/scadds
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0105
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0105
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0105
http://sourceforge.net/softwaremap/index.php
http://sourceforge.net/softwaremap/index.php
http://www.cs.cornell.edu/people/egs/magnetos/
http://sourceforge.net/projects/openrsm/
http://www.tinyos.net/scoop/special/tinyos_alliance
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0110
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0110
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0115
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0115
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0115
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0115
http://www.xbow.com/Technology/UserInterface.aspx
http://www.xbow.com/Technology/UserInterface.aspx
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0120
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0120
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0120
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0125
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0125
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0130
http://refhub.elsevier.com/B978-1-78242-230-3.00004-0/rf0130

	Wireless sensor network administrative management
	Introduction
	General-purpose IM
	Managing WSNs
	Installing WSNs
	Running applications
	Concentrating measurements
	Conclusions and future trends

	References

