
Fair Execution Time Estimation
Scheduling in Computational Grids

Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

Abstract We propose a fair scheduling algorithm for Computational Grids,
called Fair Execution Time Estimation (FETE) algorithm. FETE assigns a
task to the computation resource that minimizes what we call its fair execu-
tion time estimation. The fair execution time of a task on a certain resource
is an estimation of the time by which a task will be executed on the re-
source, assuming it gets a fair share of the resource’s computational power.
Though space-shared scheduling is used in practice, the estimates of the fair
execution times are obtained assuming that a time-sharing discipline is used.
We experimentally evaluate the proposed algorithm and observe that it out-
performs other known scheduling algorithms. We also propose a version of
FETE, called Simple FETE (SFETE), which requires no a-priori knowledge
of the tasks workload and in most cases has similar performance to that of
FETE.

Key words: grids, scheduling, fairness, task workload

Eleni Dafouli
Department of Computer Engineering and Informatics, University of Patras,
e-mail: dafouli@ceid.upatras.gr

Panagiotis Kokkinos, Emmanouel A. Varvarigos
Research Academic Computer Technology Institute, Patras, Greece,
e-mail: kokkinop, manos @ceid.upatras.gr

94 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

1 Introduction

Grids consist of geographically distributed and heterogeneous communica-
tion, computation and storage resources that may belong to different ad-
ministrative domains, but can be shared among users. Since the sharing of
resources is the ”raison d’ etre” of Grids, fairness is a concept that is inherent
in Grid scheduling, and has been previously ignored. Fairness can be defined
in a number of different ways, but an intuitive notion of fairness is that a task
submitted to the Grid, is entitled to as much use of the resources as any other
task. When the Grid serves different classes of users (e.g., users willing to pay
different prices for the service they receive) the notion of fairness depends on
the class of the user, with users belonging to the same class having ”equal”
access to the resources.

In this work we propose a fair scheduling algorithm for Computational
Grids, which we call the Fair Execution Time Estimation (FETE) algorithm.
FETE assigns a task to the computation resource that minimizes what we
call its fair execution time estimation. This estimation is obtained assum-
ing that the task gets a fair share of the resource’s computational power.
Though space-shared scheduling is used in the actual resource, the estimates
of the fair execution times are found assuming time-sharing is used. We also
propose a version of FETE, called Simple FETE (SFETE), which is a good
approximation of FETE, and does not require a-priori knowledge (or esti-
mates) of the task workloads. FETE and SFETE can be implemented both
in a centralized and in distributed way. We perform an extensive set of ex-
periments using the GridSim [7] simulator and show that FETE outperforms
other known scheduling algorithms with respect to performance and fairness
related metrics. The improvements obtained by using FETE are particularly
important when the load in the Grid, in terms of tasks submitted, increases.
Finally, it is observed that the FETE and the SFETE algorithms give similar
results, and so in almost every case the latter version is preferable, since it
has no need for the a-priori knowledge of the task workloads. These results
strengthen our belief that SFETE can in fact be incorporated in a production
Grid Middleware.

The remainder of the paper is organized as follows. In Section 2 we report
on previous work. In Section 3 we describe the Grid environment used. In
Section 4 we present the Fair Execution Time Estimation (FETE) and in
Section 5 the Simple FETE (SFETE) scheduling algorithms. Performance
results are presented in Section 6. Finally, conclusions and directions for
future work are presented in Section 7.

Fair Execution Time Estimation Scheduling in Computational Grids 95

2 Previous Work

A number of scheduling algorithms have been proposed so far, both for single-
and for multi-processor systems, some of which have also been adapted for
use in the Grid environment. Lately a number of scheduling schemes that
are specific to Grids have also been proposed. [1][2][3][4][11] present central-
ized, hierarchical and distributed scheduling schemes for Grids. Most of the
scheduling algorithms proposed so far try to minimize the total average task
delay [3] and maximize resource utilization, while several other performance
metrics are used. In [8] and in [9] scheduling algorithms that support deadline
and budget constraints are proposed and implemented.

The fair scheduling of packets in Data networks is a concept quite well
studied [5][6]. On the other hand fair scheduling algorithms for Grids have
received relatively little attention until now. In [10] a fair packet-by-packet
algorithm for the joint allocation of processing and bandwidth resources is
proposed. In [12] game theory is used to prove that a strong community con-
trol is required to achieve acceptable performance in Grids, by comparing
centralized and distributed fair scheduling algorithms. In [13] the authors
propose a resource allocation scheme based on fair resource sharing in hier-
archical Virtual Organizations (VOs). Simulation results show that the pro-
posed scheme provides greater fairness than other schemes, as well as better
performance. In [14] three different fair scheduling algorithms are proposed
and evaluated in a centralized scheduling environment.

3 Grid Environment

We consider a Grid environment consisting of a number of users and a num-
ber of computation resources. By the term user we do not necessarily mean
an individual user, but also (and probably more appropriately) a Virtual Or-
ganization (VO), or a single application, using the Grid infrastructure. Also
a computation resource can be a cluster, a parallel computer or a Grid site.

Users generate atomic (undivisible and non-preemptable) tasks and ev-
ery task i has workload wi and non-critical deadline Di. By the term ”non-
critical” we mean that if the deadline expires, the corresponding task remains
in the system until completion, but it is recorded as a deadline miss. Upon
creating a new task, the user sends the task characteristics to the central
scheduler, in the form of a task request. The central scheduler works ”offline”
or ”online”. In the former case the central scheduler receives task requests
by several users and stores them in a local queue. Periodically the scheduler
orders the queued task requests (using an ordering policy) and assigns them
to resources (using an assignment policy). In the ”online” mode the central
scheduler assigns tasks to resources immediately after the arrival of the cor-
responding task requests. Each resource j contains a number CPUs, of total

96 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

computational capacity equal to Cj and uses a space-sharing policy. Tasks
are served by the CPUs of a resource based on the order they arrive to it. At
any time t there are Nj(t) tasks in resource’s j local queue or under execution
in its CPUs.

The FETE and Simple FETE algorithms can work both in ”offline” and
”online” mode. However, these algorithms are presented, in this paper, in
their ”offline” mode and evaluated along with other ”offline” algorithms.
Finally, the FETE and Simple FETE algorithms do not use the task deadlines
in their operation.

4 Fair Execution Time Estimation Algorithm

The Fair Execution Time Estimation (FETE) scheduling algorithm assigns
task i to resource j that provides the minimum fair execution time Xij . The
fair execution time Xij is an estimation of the time required for task i to
be executed on resource j, assuming it gets a fair share of the resource’s
computational power. By fair share we mean that each time t the task gets
a portion:

1
Nj(t)+1 ,

of resource’s j computational capacity Cj . That is, the estimates of the fair ex-
ecution times are obtained assuming a time-sharing discipline, though space-
shared scheduling is used in the actual resource. The parameter Nj(t) is the
total number of tasks already assigned (queued or executed) to resource j at
the time t the assignment decision is made. The fair share of the resource’s
capacity each task gets changes with time, since Nj(t) also changes with time,
increasing by 1 every time a new task is assigned to resource j and decreasing
by 1 each time a task completes service at resource j. For this reason, during
the calculation of the fair execution time Xij of task i on resource j, the fair
execution time estimations of the tasks already assigned to resource j should
also be taken into consideration.

In the example of Figure 1, we present two resources A and B that have the
same computation capacity. At time 0 both resources have the same number
of tasks N assigned to them, however the tasks assigned to resource B have
smaller workloads. The first task completes its execution in resource A at
time tA1 , while in resource B at tB1 , and tA1 > tB1 . Similarly, for the second
task we have tA2 > tB2 , and so on. During the time periods [0, tA] and [0, tB],
we assume that there are no new arrivals of tasks, so the last task, in both
resources, utilizes the whole computational capacity of the corresponding
resource. The last task in resource A finishes its execution at time tA, while
in resource B at time tB , where tA > tB . These times, tA and tB , are also
the fair execution time estimations of the corresponding tasks. We see that
the fair execution time of a task depends not only on its workload, resource

Fair Execution Time Estimation Scheduling in Computational Grids 97

capacity and number of tasks assigned to resource, but also on the workloads
of the other tasks.

Fig. 1 Fair execution time estimation example.

For the calculation of the fair execution time Xij of task i on resource j, we
consider the fair execution time estimations of the tasks already assigned to
resource j. However, in this calculation it is not possible to also consider tasks
that may be assigned to the resource in the future, which would change the
fair share of existing tasks. he fair execution time estimations of the tasks are
calculated only once and are not re-estimated when new tasks arrive at the
resource. So, the calculation of the fair execution time of task i on resource
j is just an estimate and not the actual time that the task would complete
its execution, even if it were executed using an ideal time-sharing (processor
sharing) scheme.

The pseudocode of the centralized and ”offline” implementation of FETE
is presented in Algorithm 1. We assume that at the time a task arrives at
the resource, there are N tasks assigned to it, having fair execution times tn,
n = 1, · · · , N . Without loss of generality we also assume that tn−1 > tn for
all n. A task i has workload equal to wi and its remaining workload (defined
in Algorithm 1) is denoted by ŵi. In the end FETE algorithm assigns task i
to resource j that provides the minimum fair execution time estimation Xij .

5 Simple Fair Execution Time Estimation Algorithm

The FETE algorithm requires the a-priori knowledge of the task workloads for
obtaining the fair execution time estimations. However, the task workloads,
in practice, are often not known and may be hard to estimate. For this reason

98 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

Algorithm 1 Fair Execution Time Estimation - FETE
1: for each task i queued in the scheduler’s ordered list do
2: for each resource j in the Grid do
3: Set ŵi = wi

4: Estimate the fair execution time Xij :
5: Set t = 0, n = N and Xij = 0
6: Estimate task’s i temp fair execution time Xij assuming it gets computational

capacity
Cj

Nj(t)+1
on resource j: Xij = ŵi · Nj(t)+1

Cj

7: if Xij < tn then
8: Xij = Xij + t
9: else

10: ŵi = ŵi − Cj

Nj(t)+1
· (tn − t)

11: Xij = Xij + tn
12: Set t = tn and n = n − 1
13: Goto(6)
14: end if
15: end for
16: Assign task i to resource j that gives the minimum fair execution time Xij

17: Nj(t) = Nj(t) + 1
18: Send the scheduling decision to the user of task i
19: end for

we propose a version of FETE, called Simple FETE (SFETE), which requires
no a-priori knowledge of the tasks workload.

The SFETE assigns task i to resource j that provides the minimum simple
fair execution time X̂ij . The simple fair execution time X̂ij is an estimation
of the time by which task i will be executed on resource j, assuming it gets a
fair share of the resource’s computational power, without taking into account
the fair execution times of the other tasks already assigned to the resource
(Figure 2). So, when the SFETE is employed in the example of Figure 1, then
the simple fair execution time estimations of the tasks are equal (tA = tB).

Fig. 2 Simple execution time estimation example.

The simple fair execution time X̂ij of task i on resource j, is defined as

Fair Execution Time Estimation Scheduling in Computational Grids 99

X̂ij =
Nj+1

Cj
,

where Cj is the computational capacity of resource j and Nj is the number
of tasks in the resource’s queue, including the one being processed. It is once
again important to note that the calculation of the simple fair execution
time X̂ij of task i on resource j is only an estimate. New tasks may be sent
to resource j, or existing tasks may complete their execution. This way the
fair share of the computation capacity of the tasks already assigned to the
resource changes, however their simple fair execution time estimations are
not re-estimated.

The pseudocode of the centralized and ”offline” implementation of the
SFETE algorithm is presented in Algorithm 2.

Algorithm 2 Simple Fair Execution Time Estimation - SFETE
1: for each task i queued in the scheduler’s ordered list do
2: for each resource j in the Grid do

3: Estimate the fair execution time: X̂ij =
Nj+1

Cj

4: end for
5: Assign task i to resource j that gives the minimum simple fair execution time X̂ij

6: Nj = Nj + 1
7: Send the scheduling decision to the user of task i
8: end for

6 Performance Results

6.1 Simulation Environment

The proposed FETE and SFETE scheduling algorithms, along with other al-
gorithms used for comparison (Table 1) were implemented and evaluated in
the GridSim [7] simulator. The scheduling algorithms were implemented in a
centralized and ”offline” manner. FETE and Simple FETE algorithms were
compared against some well-known algorithms presented in . In the Earliest
Deadline First (EDF) ordering policy the task with the most imminent dead-
line is scheduled first, while in the Least Length First (LLF) ordering policy,
the task with the smallest workload is given priority. The Earliest Comple-
tion Time (ECT) assignment policy, assigns a task to the resource where the
task will finish its execution earlier. Also, the FETE and the simple FETE
algorithms use the First Come First Serve (FCFS) ordering policy, where
tasks are processed (assigned to resources) in the order they arrive to the
scheduler.

All the scheduling algorithms were evaluated in a Uniform resource sce-
nario, in which all resources have the same characteristics (number of CPU

100 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

Table 1 The scheduling algorithms compared with the FETE and the SFETE.

Algorithm Ordering policy Assignment policy

FCFS/ECT First Come First Served (FCFS) Earliest Completion Time (ECT)
EDF/ECT Earliest Deadline First (EDF) Earliest Completion Time (ECT)
LLF/ECT Least Length First (LLF) Earliest Completion Time (ECT)

and capacity) and in a non-Uniform resource scenario, in which the resources
have different characteristics. The total computational capacity of the re-
sources in both scenarios was the same. The tasks characteristics are defined
probabilistically and the users task submission rate follows an exponential
distribution, whose mean takes the following values: 12, 20, 25, 33, 40, 50,
55, 60, 65, 70 tasks/sec. Finally, in our simulations we assume that the com-
munication delays are negligible compared to the execution time of the tasks,
which is the case in Computational Grids.

6.2 Simulation Metrics

The algorithms are evaluated using the following metrics:

• Average Task Delay: The average of the delays of the tasks (task Delay =
task Finish Time - task Creation Time).

• Task Delay Standard Deviation: The standard deviation of the task delays.
• Average Excess Time: The average time by which a task misses its non-

critical deadline (task Excess Time = task Finish Time - task Deadline
Expiration).

• Excess Time Standard Deviation: The standard deviation of the time by
which the tasks miss their non-critical deadlines.

• Deadlines Missed: The number of tasks that miss their non-critical dead-
lines.

6.3 Simulation Results

For all the scheduling algorithms examined the average task delay increases as
a function of the task submission rate (Figure 3). Specifically, for light load all
the algorithms have similar behavior, however, when the task submission rate
increases the FETE algorithms (FETE and SFETE) achieve smaller average
task delay. This happens because the proposed algorithms treat the tasks
and utilize the resources in a more fair manner, something that becomes
more evident as the task load increases. We also observe that the FETE
algorithms result in smaller task delay standard deviation than the other

Fair Execution Time Estimation Scheduling in Computational Grids 101

algorithms (Table 1). These results where confirmed both for the Uniform
and for the non-Uniform resource scenario.

Fig. 3 Average task delay versus task submission rate in the Uniform resource scenario.

Figure 4 illustrates that the average excess time increases as a function
of the task submission rate, for both resource scenarios. In the Uniform re-
source scenario (Figure 4.a) the increase is smaller when the FETE algorithms
(FETE and SFETE) are used, meaning that the times by which the tasks
miss their deadlines are also smaller. In the non-Uniform resource scenario
(Figure 4.b) and for small task submission rates, the SFETE algorithm’s
performance is worse than that of the FETE and of the other algorithms ex-
amined. Next, as the task submission rate increases SFETE overpowers the
other algorithms, whose performance deteriorates, while SFETE’s remains
almost constant.

SFETE does not have any knowledge of the task workloads and indirectly
assumes a constant value for all the queued tasks fair execution times. On
the other hand the FETE algorithm estimates more accurately the queued
tasks fair execution times, whose values, however, are quite different due
to the non-uniformity of the resources. When the submission rate increases,
the number of tasks in the Grid also increases and the queued tasks fair
execution times (estimated by FETE) approach on average a constant value.
This is in accordance with the Law of Large Numbers and it is confirmed
by Figure 4.b. Specifically, in Figure 4.b the average excess time achieved
by the SFETE is almost constant and only increases in the very end when
the Grid environment is almost saturated by the large number of tasks. On
the other hand the average excess time of the FETE increases reaching that

102 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

(a)

(b)

Fig. 4 Average excess time versus task submission rate, (a) in the Uniform resource
scenario, (b) in the Non-Uniform resource scenario.

Fair Execution Time Estimation Scheduling in Computational Grids 103

of the SFETE. Similar results were observed for the excess time standard
deviation, for both resource scenarios.

Fig. 5 Deadlines missed versus the task submission rate, in the Uniform resource scenario.

Finally, our performance results showed (Figure 5) that fewer tasks miss
their deadlines when they are scheduled using the FETE algorithms than
when they are scheduled with other algorithms. This is due to the fact that
resources are utilized more uniformly, something that becomes more evident
as the task load increases.

7 Conclusions

In this work we proposed two fair scheduling algorithms for Computational
Grids, called Fair Execution Time Estimation (FETE) and Simple Fair
Execution Time Estimation (SFETE). The FETE algorithms (FETE and
SFETE) assign a task to the resource that minimizes what we call its fair
execution time estimation. The fair execution time of a task on a certain
resource is an estimation of the time by which a task will be executed on the
resource, assuming it gets a fair share of the resource’s computational power.
The FETE algorithms where evaluated and compared against a number of
known scheduling algorithms. The results indicate that in most cases and
especially at large task submission rates, the FETE algorithms have simi-
lar performance and both outperform the other algorithms considered, with

104 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

respect to performance and fairness related metrics. In addition, SFETE is
more realistic, since it does not need the a-priori knowledge of task workload.

Based on these facts, we implemented SFETE in a production Grid Mid-
dleware and specifically in gLite [15]. Currently we are in the process of eval-
uating the efficiency and the scalability of our algorithm against the other,
relative simple, scheduling algorithms implemented in gLite, by utilizing a
real Grid Testbed.

References

1. I. Ahmad, Y.-K. Kwok, M.-Y. Wu, K. Li, Experimental Performance Evaluation of
Job Scheduling and Processor Allocation Algorithms for Grid Computing on Meta-
computers, IPDPS, 2004.

2. V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, Distributed job schedul-
ing on computational grids using multiple simultaneous requests, HPDC, 2002.

3. Y. Cardinale, H. Casanova, An evaluation of Job Scheduling Strategies for Divisible
Loads on Grid Platforms, HPC&S, 2006.

4. T. Braun, et al., A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems, JPDC, 2001.

5. A. Parekh, R. Gallager, A generalized processor sharing approach to flow control in
integrated services networks: the single-node case, IEEE/ACM ToN, 1993.

6. A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair queuing algorithm,
SIGCOMM, 1989.

7. R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of Dis-
tributed Resource Management and Scheduling for Grid Computing, Concurrency and
Computation: Practice and Experience (CCPE), 2002.

8. R. Buyya, J. Giddy, D. Abramson, An evaluation of economy-based resource trading
and scheduling on computational power grids for parameter sweep applications, Active
Middleware Services, 2000.

9. R. Buyya, M. Murshed, D. Abramson, S. Venugopal, Scheduling Parameter Sweep
Applications on Global Grids: A Deadline and Budget Constrained Cost-Time Opti-
mization Algorithm, Journal of SPE, 2005.

10. Y. Zhou, H. Sethu, On Achieving Fairness in the Joint Allocation of Processing and
Bandwidth Resources, IWQoS, 2003.

11. S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan, D. Grushin, N. Kuzjurin, A.
Pospelov, A. Shokurov, Comparison of Scheduling Heuristics for Grid Resource Broker,
ENC, 2004.

12. K. Rzadca, D. Trystram, A. Wierzbicki, Fair Game-Theoretic Resource Management
in Dedicated Grids, CCGrid, 2007.

13. K. H. Kim, R. Buyya, Fair Resource Sharing in Hierarchical Virtual Organizations for
Global Grids, Grid Computing, 2007.

14. N. Doulamis, E. Varvarigos, T. Varvarigou, Fair Scheduling Algorithms in Grids, IEEE
TPDS, 2007.

15. http://glite.web.cern.ch/glite/

